constituent materials fibres - eth z · 2017-03-09 · eth zurich, laboratory ofcomposite materials...

25
| | ETH Zurich, Laboratory of Composite Materials and Adaptive Structures 9 February 2017 Paolo Ermanni Constituent Materials Fibres Spring Semester 2017 151-0548-00L Manufacturing of Polymer Composites 09.03.2017 Manufacturing of Polymer Composites - Constitutent Materials 1

Upload: others

Post on 31-Dec-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

9 February 2017Paolo Ermanni

Constituent MaterialsFibres

Spring Semester 2017

151-0548-00L Manufacturing of Polymer Composites

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 1

Page 2: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

„The New Science of Strong Materials“, J.E. Gordon

Thin fibers are stronger then bulk material

A.A. Griffith (1893-1963)

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 2

Page 3: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Typical fibers for application un composites

2D covalent bonding Graphene sheets High orientation degree

Fiber Structure Features

1D covalent bonding Linear molecules are oriented

along fibre axis

Carbon fibers

Glass fibers

Aramid fibers

Si-Atom

O-Atom

3D isotropic properties Covalent bonding

Flemming, M.; Ziegmann, G.; Roth S.: Faserverbundbauweisen, Fasern und Matrices; Springer-Verlag, Berlin Heidelberg 1995

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 3

Page 4: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive StructuresMcGuire, C.; Vollerin, B.: Thermal Management of Space Structures; SAMPE-European Chapter, 1990

Crystallite structure

Strong covalent bonding Relatively weak Van der Waals forces between the sheets

Fibre direction

Tran

sver

se d

irect

ion

The achievable properties of the carbon fibers are strongly influenced by the precursor type, the processing route, and defects of the crystallite structure.

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 4

Page 5: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Achievable fiber properties

Young‘s modulus Strength [GPa]

5 3

25

70

HT-Faser HM-Faser

1050

250

700

Theoretisch HT-Faser HM-Faser

Fitzer, E.: Neue Entwicklungen für Faserverbundwerkstoffe, Handbuch für neue Systeme; Hrsg. Demat Exposition Managing; Vulkan-Verlag, Essen 1992

Theorertical Experimental

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 5

Page 6: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Defects in the graphite structure

H. Heissler, Verstärkte Kunststoffe in der Luft- und Raumfahrt, Kohlhammer, Stuttgart Berlin, 1986

Lattice vacancies Stacking faults Disclinations

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 6

Page 7: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Effects of preferred orientation on the Young‘smodulus of carbon fibres

H. Heissler, Verstärkte Kunststoffe in der Luft- und Raumfahrt, Kohlhammer, Stuttgart Berlin, 198609.03.2017Manufacturing of Polymer Composites - Constitutent Materials 7

Page 8: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Precursor materials

Requirements:

– High carbon yield– Spinnable in order to produce precurso fibres– Good mechanical and thermal properties (high degradation

temperature)

Material

RAYONPANMPP

C[%]

456894

H[%]

664

N[%]

-241,0

O[%]

49-

0,6

S[%]

--

0,4

Carbon yield[%]

204585

Spengler, H.; van Galen, J.: Herstellung von Kohlenstoffasern aus Steinkohlenteerpech; BMFT-Verbundprojekt 03M1015; Verbundpartner: AKZO, Wuppertal; Rütgerswerke AG, Frankfurt; TU Karlsruhe; Universität Erlangen, 1990

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 8

Page 9: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

R.J. Diefendorf; “Carbon / Graphite Fibers“, in Engineered Materials Handbook, Volume 1, Composites; ASM International Metals Park, OH, USA, 49-53, 1987 Fitzer, E; Weiss, R.: Oberflächenbehandlung von Kohlenstoffasern, Verarbeiten und Anwenden kohlenstoffaserverstärkter Kunststoffe; VDI-Verlag, Düsseldorf 1989

PAN-HT: High Tenacity, PAN-HM: High Modulus

Carbonise Graphitize

PAN-HT PAN-HM PAN-HT PAN-HM

Manufacturing process of PAN-based fibres

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 9

Page 10: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Oxidation/Stabilization

Carbonization

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 10

• Cyclization of the nitrile group • Dehydrogenation of the C / C-chain by

oxygen

The carbonization is carried out at rising temperatures of up to 1500 ºC, leading to pure carbon rings. This step takes place in a nitrogen atmosphere.

• Inhert environment• Slight tension -C-rings are oriented along the fibre axis• Fibre diameter reduces due to the removal of non-C-elements• Crosslink in lateral direction by dehydration and de-Nitorgenation

Page 11: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Flemming, M.; Ziegmann, G.; Roth S.: Faserverbundbauweisen, Fasern und Matrices; Springer-Verlag, Berlin Heidelberg 1995

Selected properties of PAN-based carbon fibres

1,743,602402,501,50206

13800~ 75003600

HochfestHT

IntermediateIM

HochsteifHM

Hochsteif /Hochfest

HMS

1,805,602904,201,93311

16100~ 55003600

1,832,304001,500,57125

21850~ 6,55003600

1,853,605501,800,65194

29730~ 55003600

Dichte g/cm3

Zugfestigkeit BZ GPaZugmodul EZ GPaDruckfestigkeit Bd GPaBruchdehnung BZ %Reisslänge BZ/ kmDehnlänge EZ / kmFaserdurchmesser d mLangzeiteinsatztemperatur TL °CSublimationspunkt TS °C

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 11

Page 12: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Strength / Elasticity Modulus of PAN-based Carbon Fibers

Toray Carbon Fiber Composite Materials Businesses, June 6, 2005, Masayoshi Kamiura, Managing Director of the Board, General Manager, Torayca & Advanced Composites Division

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 12

Page 13: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Carbonise Graphitize

PAN-HT PAN-HMPAN-HT PAN-HM

Manufacturing of pitch-based carbon fibres

R.J. Diefendorf; “Carbon / Graphite Fibers“, in Engineered Materials Handbook, Volume 1, Composites; ASM International Metals Park, OH, USA, 49-53, 1987 Fitzer, E; Weiss, R.: Oberflächenbehandlung von Kohlenstoffasern, Verarbeiten und Anwenden kohlenstoffaserverstärkter Kunststoffe; VDI-Verlag, Düsseldorf 1989

PAN-HT: High Tenacity, PAN-HM: High Modulus

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 13

Page 14: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Quelle: McGuire, C.; Vollerin, B.: Thermal Management of Space Structures; SAMPE-European Chapter, 1990

Thermal expansion coefficent and thermal conductivity

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 14

Page 15: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Typical fibers for application un composites

2D covalent bonding Graphene sheets High orientation degree

Fiber Structure Features

1D covalent bonding Linear molecules are oriented

along fibre axis

Carbon fibers

Glass fibers

Aramid fibers

Si-Atom

O-Atom

3D isotropic properties Covalent bonding

Flemming, M.; Ziegmann, G.; Roth S.: Faserverbundbauweisen, Fasern und Matrices; Springer-Verlag, Berlin Heidelberg 1995

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 15

Page 16: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Relationship between temperature and specificvolume

The point at which the curve changes slope iscalled glass transition temperature

Flinn R., Trojan P., Engineering Materials and their Applications, Houghton Mifflin Company, Boston, 1990.

Si-Atom

O-Atom

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 16

Glass is a ceramic material with a specific feature: Below a transformation region (Glass transition temperature) the toughness is

so high (super-cooled liquid), that the body will first enter a furtherplastic state, and finally it converts into a solid brittle state.

•Silica is atypical glass former

Page 17: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Source: Hagen, H. u.a.: Glasfaserverstärkte Kunststoffe, Kap. 1.4, Glasfasern; Springer Verlag, 1961

Manufacturing of glass fibres

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 17

Nozzle-drawing process for production of glass fibers

Page 18: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Quelle:Kleinholz, R.: Neue Erkentnisse bei Textilglasfasern zum Verstärken von Kunststoffen; 22. Internationale Chemiefasertagung, Dornbirn 1983

3,573

~ 4,51,3828,8

3 - 132,555 - 6840

E R/S M C D Q

4,7885,01,83410

2,494

1000

7,0125

~ 5,52,850,310

3,1713,51,329

2,457,2

E: elektrisch C: chemisch resistentR/S: hochfest D: dielektrischM: steif Q: Quarz

Zugfestigkeit GPaE-Modul GPaBruchdehnung %spez. Zugfestigkeit GPa x cm3/gspez. E-Modul GPa x cm3/gFaserdurchmesser mDichte g/cm3

therm. Ausdehnungskoeffizient 10-6/KSchmelzpunkt °C

Selected properties of glass fibres

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 18

Page 19: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Typical fibers for application un composites

2D covalent bonding Graphene sheets High orientation degree

Fiber Structure Features

1D covalent bonding Linear molecules are oriented

along fibre axis

Carbon fibers

Glass fibers

Aramid fibers

Si-Atom

O-Atom

3D isotropic properties Covalent bonding

Flemming, M.; Ziegmann, G.; Roth S.: Faserverbundbauweisen, Fasern und Matrices; Springer-Verlag, Berlin Heidelberg 1995

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 19

Page 20: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

General consideration

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 20

Applications: http://www.dyneema.com/emea/

Page 21: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Crystallinity in thermoplastic polymers

Semi-crystalline polymers form crystallites of folded chains entangled with bridging molecules in the amorphous phase between the crystallites.

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 21

Spherulites: spherical semi-crystallites of folded chains

Baer, E., Hochentwickelte Polymere; Spektrum der wissenschaft, Heidelberg, 1996

Page 22: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Orientation of the chains in the semi-crystalline polymer

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 22

Bridging molecule

Page 23: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Source: Blumberg, H.: Stand und Entwicklungstendenzen für Hochleistungs- Polymer- und Kohlenstoffasern; 28. Internationale Chemiefasertagung, Dornbirn September 1989

„Rigid rod“ polymers

Source: Morgan, R.J.; Allred, E.A.: Aramid Fiber Composites, Handbook ofComposites Reinforcements, pp. 5 - 22, Edited by Lee, S.M.; VCH-Verlagsgesellschaft, Weinheim 1993

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 23

PPTA (poly-para-phenylene terephthalamide),

Page 24: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Quelle: Ehrenstein, G.W.: Faserverbund-Kunststoffe, Werkstoff-Verarbeitung-Eigenschaften; Carl Hanser Verlag, München 1992

Manufacturing of aramide fibers

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 24

Page 25: Constituent Materials Fibres - ETH Z · 2017-03-09 · ETH Zurich, Laboratory ofComposite Materials andAdaptive Structures | | 9 February 2017 Paolo Ermanni Constituent Materials

||ETH Zurich, Laboratory of Composite Materials and Adaptive Structures

Quelle: Morgan, R.J.; Allred, E.A.: Aramid Fiber Composites, Handbook of Composites Reinforcements, pp. 5 - 22, Edited by Lee, S.M.; VCH-Verlagsgesellschaft, Weinheim 1993

Structure and properties of aramide fibres

Mechanical propertiesKennwert Einheit

1.44834,03.62...12

1.441242,93.62...12

1.471862,0

3.44...12

29 49 149

Dichte g/cm3

Zugmodul GPaZugbruchdehnung %Zugfestigkeit GPaDruckfestigkeit GPaFaserdurchmesser µm

im UD-Verbund ca. 30% der Zugfestigkeit

09.03.2017Manufacturing of Polymer Composites - Constitutent Materials 25