conservation production systems – a basic review

39
Conservation Production Systems – A Basic Review 2013 ConservaJon Tillage ProducJon Systems Training Conference Ti<on, GA March 12, 2013 Kip Balkcom Research Agronomist USDA-ARS, NSDL ConservaJon Systems Research Auburn, AL 1

Upload: others

Post on 22-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Conservation Production Systems – A Basic Review

Conservation Production Systems – A Basic Review 2013 ConservaJon  Tillage ProducJon  

Systems  Training  Conference Ti<on,  GA

March 12, 2013

Kip Balkcom

Research Agronomist USDA-­‐ARS, NSDL

ConservaJon Systems Research

Auburn, AL 1

Page 2: Conservation Production Systems – A Basic Review

2

In case you are not familiar, I want to show you a map of the U.S. and give you and idea of where I am from. The research andapplication of this research that I plan to discuss applies to the Southeastern region of the U.S. The soils is this region arepredominately Ultisols that are characterized by coarse soil textures, poor structure, and organic matter contents below 1%. These soils could certainly use some improvements through the use of conservation tillage.

The blue star is also for reference and indicates where the National Soil Dynamics Lab is located in Auburn, AL.

Page 3: Conservation Production Systems – A Basic Review

Biomass  Cto  TOC  ra5o

Total  Organic  C  and  N

Infiltra5on

SoilStrength

BulkDensity

Water

content

reten5on

capacity

SizeDistribu5on

NH    and  NO    ,  P,  K,  Ca,  Al,  

CEC

NH   and NO ,P, K, Ca,  Al,  

CEC

3344

Microbial  Biomass  C  and  N

SoilRespira5on

N

Respira5onto  Biomass  ra5o

mineralized CAggregate  Stability

Soil C is the basis of soil quality and productivity. It affects many physical and chemical soil properties as indicated by this illustration. By increasing soil C, the positive effects associated with these soil properties are also enhanced.

3

Page 4: Conservation Production Systems – A Basic Review

How to increase soil C andimprove soil quality?

ConservaJon Tillage  with Cover  Crops

ConservaJon System

In our part of the world, we use a two pronged system to increase soil C. This involves a tillage component and a cover crop component. We try to use non-inversion tillage to maintain surface residues and maximize below ground disruption. With the cover crops, we want to utilize a high residue cover crop.

4

Page 5: Conservation Production Systems – A Basic Review

ConvenJonal Tillage Promotes SOM  OxidaJon

5

Page 6: Conservation Production Systems – A Basic Review

Manage compacJon . . .

Our Coastal Plain soils are particularly susceptible to hard-pan formation. We are not able to utilize no-tillage because our soils have the potential to form hard pans. Obviously, the hard pans limit the rooting depth and hinder nutrient and water uptake. The picture on the right shows the hardpan belowground and the grooves are where implements have scratched across the top of thehardpan, but they have not fractured the hard pan.

6

Page 7: Conservation Production Systems – A Basic Review

Soil CompacJon Rainfall Rainfall

7

Page 8: Conservation Production Systems – A Basic Review

Non-­‐inversion  Tillage

8

In our part of the world, we use a two pronged system to increase soil C. This involves a tillage component and a cover crop component. We try to use non-inversion tillage to maintain surface residues and maximize below ground disruption. With the cover crops, we want to utilize a high residue cover crop.

Page 9: Conservation Production Systems – A Basic Review

9

Page 10: Conservation Production Systems – A Basic Review

Residues/Soil C Surface soil effects  are most  criJcal

We have discussed the benefits of increasing soil C. These effects are most pronounced in the surface soil. By minimizing surfacesoil disturbance and keeping the soil covered, we can increase surface soil C contents. It is difficult to change soil C levels very far below the soil surface, but increasing soil C near the soil surface can be very beneficial.

10

Page 11: Conservation Production Systems – A Basic Review

High Residue Cover Crop

I mentioned the second component of conservation systems for us is using a high residue cover crop. Based on the gentleman standing in the back, you can see we try to promote a lot of growth. Rye is a very popular choice for us due to its adaptability tomany soil types, biomass potential, and resistance to decomposition. In addition to the aboveground portion, the root system helps to minimize hard pan formation and help break up existing hard pans.

11

Page 12: Conservation Production Systems – A Basic Review

What is  a Cover  Crop?

• A crop whose main purpose is to benefit  the soil and/or asubsequent  crop  inone or more ways,  butis not intended  to beharvested  for feed  orsale.

Courtesy: Harry Schomberg, USDA-­‐ARS 12

A cover crop is a crop whose main purpose is to benefit the soil or other crops in one or more ways, but is not intended to beharvested for feed or sale.

Page 13: Conservation Production Systems – A Basic Review

Why use  Cover  Crops? • Erosion  control  • Soil  and water qualityimprovement

• Increased  water infiltraJon  

• Minimize nutrient loss

Soil  organic  carbon

13

Cover crops can provide several benefits both for the farmer and for society. These include erosion control and improved soilorganic matter, the capacity to provide nitrogen (from legumes), to recycle nutrients from deeper in the soil profile, and to take upand retain nutrients against loss through leaching or erosion. Well-managed cover crops can also decrease weed managementcosts while conserving water and decreasing the need for irrigation. Cover crops can provide habitat for wildlife including deer, ground nesting birds, and rodents. Finally, cover crops can increase profitability of conservation tillage systems . Improvements insoil productivity and profitability are usually seen after the second or third year, when the on-going addition of residues has resultedin soil quality improvements.

Page 14: Conservation Production Systems – A Basic Review

Cover Crop Fer1liza1on

14

Page 15: Conservation Production Systems – A Basic Review

N ContribuJon of Peanut Residue

• EsJmate N contributed  bypeanut  residues  to asucceeding  rye cover crop  in a conservaJon  Jllage system.

• UJlized  laboratory  andfield studies.   Peanut residue  did not contribute  

significant  amounts  of N based  on 3-­‐year biomass  yields.

15

Page 16: Conservation Production Systems – A Basic Review

Peanut Residue Mineraliza@on Carbon Nitrogen

Balkcom et al., 2004 16

Page 17: Conservation Production Systems – A Basic Review

-----% ------------------%

Peanut Residue

Peanut crop year

Peanut biomass

lb ac-1 C N

-----%----------

C/N ratio P K Ca

---------%---------%------------------2002 2820 42.2 1.7 25.3 0.10 1.2 0.83

2003 2880 44.0 1.1 39.6 0.16 1.3 1.2

2004 3000 36.2 1.4 26.6 0.18 0.35 0.97

17

Page 18: Conservation Production Systems – A Basic Review

Peanut Residue

WGS Headland, AL 18

Page 19: Conservation Production Systems – A Basic Review

AlternaJve N Sources • Compare  N sources, rates, and Jme of applicaJon  for a rye cover crop  tomaximize  biomassproducJon.

19

Page 20: Conservation Production Systems – A Basic Review

Rye

bio

mas

s, lb

ac-1

20

Page 21: Conservation Production Systems – A Basic Review

Biomass  ProducJon  Time  of  TerminaJon

21

Bio

mas

s, lb

ac-1

Page 22: Conservation Production Systems – A Basic Review

Headland – IniJal Plots; No Cover Crop

22

Page 23: Conservation Production Systems – A Basic Review

Headland – IniJal Plots; Cover Crop

23

Page 24: Conservation Production Systems – A Basic Review

Headland – At PlanJng; No Cover Crop

24

Page 25: Conservation Production Systems – A Basic Review

Headland – At PlanJng; Cover Crop

25

Page 26: Conservation Production Systems – A Basic Review

Initial tingAt PlaAt Planting stHa

h  (cm)DepDepth  (cm) (cm)Depth  Depth  (cm) cm)Depth  

15-­‐30 15-­‐30

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐Soil  Moisture,  %-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐ -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐Soil  Moisture,  %-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐ -­‐-­‐-­‐-­‐-­‐-­‐Soil  Moisture,  %-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐ -­‐-­‐-­‐Soil  Moisture,  %-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐ ture,  %-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐Soil  Moi -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐Soil  Moisture,   -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐Soil  Moisture,  %-­‐-­‐ -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐Soil  Moisture,  %-­‐-­‐-­‐-­‐-­‐ -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐Soil  Moisture,  %-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐

Headland – Soil Moisture; 2 Depths

InitialInitial At Plannting Harvervest

Cover Deptth (cm) Depth (cm) Depth ((cm)

Crop 0-­‐15 15-­‐30 0-­‐15 15-­‐30 0-­‐15 15-­‐30

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐Soil Moissture, %-­‐%-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐

No 8.38 9.65 8.38 10.32 6.75 6.51

Yes 7.81 7.46 9.54 10.36 7.45 7.29

26

Page 27: Conservation Production Systems – A Basic Review

Soil Water Conserva1on

Plot 141 Plot 142

27

Page 28: Conservation Production Systems – A Basic Review

Timing  TerminaJon

MAY 1

2-­‐4 weeks

28

Page 29: Conservation Production Systems – A Basic Review

ConservaJon Systems Absorbs rainfall impact

Cooler  soil temps Lower evapora@ve losses

Greater  soil water  infiltra@on

Increases  plant available water

29

Page 30: Conservation Production Systems – A Basic Review

Water  Content-­‐Cover  Crop

30

Page 31: Conservation Production Systems – A Basic Review

Rainfall SimulaJons

31

Page 32: Conservation Production Systems – A Basic Review

1

*No Deep Tillage

Rain

fall

(%)

100

80

0

60

40

20

No Till w/ residue

No Till w/o residue

ConventionalTillage

Tillage and residue effects on infiltration of a Coastal Plain Soil (2-inch rain event)

3 days

11 days

32

Page 33: Conservation Production Systems – A Basic Review

   

     

a(onInfil noff

Rainfall SimulaJons Infiltrtra(on RuRunoff

Soil Tillage Time in @llage  regime  (years)

mm/h % rainfall mm/h % rainfall ET assigned (mm/d)

PAWest (days)

Ti<on CT 6 26.0 51 25.0 49 7 3.7

ST 6 44.0 80 11.0 20 7 6.3

Cecil CT 15 25.0 44 31.0 56 6 4.2

ST 15 51.0 90 6.0 10 6 8.5

Sullivan et  al. (2007) 33

Page 34: Conservation Production Systems – A Basic Review

Soil Water Content  and IrrigaJon

(unpublished  data) 34

Page 35: Conservation Production Systems – A Basic Review

Increased Plant Available Water

• Increases  efficiency  of a rain  orirrigaJon  event.

• PotenJal lower  water  requirements.

• Preserve water  resources  and lower producJon  costs.

$$$$

35

Page 36: Conservation Production Systems – A Basic Review

IrrigaJon  Level  %Level  %IrrigaJIrrigaJon  Level  

b/ac-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐ac-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐lb-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐lb/a

Peanut Yield (2002)

IrrigaJon  on Level  %%

Tillage 0 33 66 100

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐l-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐lb//ac-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐c-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐

Conv 3265 4267 4770 4681

Strip 3349 4506 4818 4958

1994-­‐2001 state avg. 2787 lb/ac 36(Georgia Agricultural Sta@s@cs Service)

Page 37: Conservation Production Systems – A Basic Review

Effect  of cropping/Jllage system on soil Cfrom  an eroded UlJsol in Georgia.

Bruce et al., 1995

Soil

Carb

on (g

kg

–1)

5

10

30

25

20

15

1984 1986 1988 1990Year

conversion to conventional till soybean

Grain sorghum no-till intocrimson clover

37

This slide illustrates how a specific rotation affects soil C levels in an Ultisol in Georgia over a period of time. You can see the most dramatic increase was in the most shallow depth. The graph also illustrates what happens when conventional tillage is introducedback into the system. The organic C levels drop very rapidly and fall back to levels equal to the lower depths.

Page 38: Conservation Production Systems – A Basic Review

Benefits  of ConservaJon  Systems

• Soil erosion  control  -­‐ increased  soilquality

• Increased  water infiltraJon  and storage – potenJally increase yields and profits

• Preserve water  supplies  (e.g.  streams  and lakes)

38

Page 39: Conservation Production Systems – A Basic Review

ConservaJon Systems Research

Managing Cover Crops Profitably, 3rd ed. Sustainable Agriculture Network. www.sare.org/publicaJons/ covercrops/covercrops.pdf

Schomberg, H.H., and K.S. Balkcom. Cover crops [Online]. Available at: www.soilquality.org/pracJces/cover  crops.html

• More informaJon available at:

www.ars.usda.gov/msa/auburn/nsdl Subscribe to mailing  list: NSDL-­‐[email protected]  

39