compressed air energy storage - diva1214933/...degree project in technology, first cycle, 15 credits...

35
IN DEGREE PROJECT TECHNOLOGY, FIRST CYCLE, 15 CREDITS , STOCKHOLM SWEDEN 2018 Compressed air energy storage Process review and case study of small scale compressed air energy storage aimed at residential buildings EVELINA STEEN MALIN TORESTAM KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ARCHITECTURE AND THE BUILT ENVIRONMENT

Upload: others

Post on 09-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

IN DEGREE PROJECT TECHNOLOGY,FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2018

Compressed air energy storageProcess review and case study of small scale compressed air energy storage aimed at residential buildings

EVELINA STEEN

MALIN TORESTAM

KTH ROYAL INSTITUTE OF TECHNOLOGYSCHOOL OF ARCHITECTURE AND THE BUILT ENVIRONMENT

Page 2: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  1  

ACKNOWLEDGMENT    We  would  like  to  express  our  gratitude  to  our  supervisor  Assist.  Prof.  Justin  Ning-­‐Wei  Chiu,  for  without  his  advice  and  guidance  the  making  of  this  report  would  not  have  been  possible.  Thank  you!      

Page 3: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  2  

 

INDEX  OF  FIGURES  FIGURE  1.  SCHEMATIC  IMAGE  OF  CAES  SYSTEM.  NOTE  THAT  THERMAL  STORAGE  IS  OPTIONAL  AS  IS  THE  NUMBER  OF  COMPRESSORS  

AND  TURBINES.  ...........................................................................................................................................  12  FIGURE  2.  DETAILED  DESCRIPTION  OF  EQUATIONS  USED  FOR  DECIDING  CHANGES  IN  TEMPERATURE,  PRESSURE  AND  VOLUME  FOR  ALL  22  

DIFFERENT  STAGES  IN  THE  CAES  PROCESS.  ISENTROPIC  PROCESS  RELATION  IS  ABBREVIATED  AS  IPE  AND  IDEAL  GAS  LAW  AS  IGL,  BOTH  USED  TO  DENOTE  HOW  THE  VALUE  OF  THE  CONCERNED  PROPERTY  IS  DERIVED.  .....................................................  18  

FIGURE  3.  LOAD  PROFILES  FOR  ONE  HOUSEHOLD  DURING  MONDAY-­‐FRIDAY  AND  SATURDAY-­‐SUNDAY.  ......................................  23  FIGURE  4.  THE  BLUE  AND  ORANGE  STAPLES  SHOW  VARIATIONS  IN  PRESSURE  DURING  CHARGE  PHASE,  DISCHARGE  PHASE  AND  THE  GREY  

LINES  FOLLOWS  THE  PRESSURE  IN  THE  STORAGE.  DURING  PERIODS  WHERE  ONLY  THE  GREY  LINE  IS  PRESENT  THE  STORAGE  HAS  

BEEN  EMPTIED  TO  MINIMUM  PRESSURE  AND  THE  SYSTEM  IS  AT  REST.  THIS  FIGURE  IS  TRUE  FOR  MONDAY  TO  FRIDAY.  ............  24  FIGURE  5.  THE  BLUE  AND  ORANGE  STAPLES  SHOW  VARIATIONS  IN  PRESSURE  DURING  CHARGE  PHASE,  DISCHARGE  PHASE  AND  THE  GREY  

LINES  FOLLOWS  THE  PRESSURE  IN  THE  STORAGE.  DURING  PERIODS  WHERE  ONLY  THE  GREY  LINE  IS  PRESENT  THE  STORAGE  HAS  

BEEN  EMPTIED  TO  MINIMUM  PRESSURE  AND  THE  SYSTEM  IS  AT  REST.  THIS  FIGURE  IS  TRUE  FOR  SATURDAY  AND  SUNDAY  EXCEPT  FOR  THE  SMALL  DETAIL  THAT  FOR  THE  LAST  HOUR  OF  SUNDAY  THE  PRESSURE  INCREASES  LIKE  IN  FIGURE  4  TO  ACCOMMODATE  THE  

SEVEN-­‐HOUR  CHARGE  PERIOD  FOR  MONDAY.......................................................................................................  24  FIGURE  6.  THE  BLUE  AND  ORANGE  STAPLES  SHOW  THE  MASS  THAT  NEEDS  TO  BE  EXPANDED  TO  SATISFY  THE  DEMAND  OF  EACH  

DISCHARGE  PERIOD.  THE  GREY  LINE  IS  THE  DIFFERENCE  BETWEEN  MAXIMUM  AND  MINIMUM  MASS.  ..................................  25  FIGURE  7.  AVERAGE  ELECTRICITY  SPOT  PRICE  FOR  EACH  HOUR  DURING  WEEKDAY  AND  WEEKDAY  FOR  THE  OF  2017  (NORDPOOL,  

2018A).  ...................................................................................................................................................  26    

INDEX  OF  TABLES  TABLE  1.  EFFICIENCIES  FOR  VARIOUS  COMPONENTS  AND  PROCESSES.  ................................................................................  21  TABLE  2.  SPECIFIC  HEAT  CAPACITIES  USED  DURING  CALCULATIONS.  ...................................................................................  21  TABLE  3.  ECONOMIC  RESULT  FOR  A  WEEK  WITH  AND  WITHOUT  CAES.  ..............................................................................  26  TABLE  4.  CAPITAL  COST  AND  CHARACTERISTICS  OF  MAIN  COMPONENTS.  ............................................................................  26  TABLE  5.  NET  PRESENT  VALUE  FOR  TWO  SCENARIOS.  .....................................................................................................  27    

   

Page 4: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  3  

NOMENCLATURE    

Abbreviations    CAES   Compressed  air  energy  storage  EES   Electrical  energy  storage    IGL   Ideal  gas  law  IPE   Isentropic  process  equations  HPC   High  pressure  compressor  HPT   High  pressure  turbine  LPC   Low  pressure  compressor  LPT   Low  pressure  turbine  NPV   Net  present  value  RFB   Redux  flow  batteries  TES   Thermal  energy  storage  U-­‐CAES   Underground  compressed  air  

energy  storage  UW-­‐CAES   Underwater  compressed  air  

energy  storage      

Variables  

𝐴   Area  c#   Specific  heat  capacity  constant  

volume  c$   Specific  heat  capacity  constant  

pressure  𝐸   Energy    𝑚   Mass  �̇�   Mass  flow  𝑀   Molar  mass  𝑝   Pressure  

�̇�   Heat  flux  𝑅   Gas  constant  𝑡   Time  𝑇   Temperature  𝑣   Specific  volume  𝑉   Volume  𝑤   Work  

Greek  symbols  𝜅   Heat  capacity  ratio  𝜂   Efficiency    

 

 

 

Subscripts  

1   Inlet/Before  process  2   Outlet/After  process  𝐺   Generator  𝑀   Mechanical  𝑇   Total  𝑎𝑡𝑚   Atmospheric  conditions  𝑠   Specific    𝑆   Storage  𝐶   Compressor  𝐻   Heat  𝑁𝐺   Natural  gas  𝑅𝑇   Round-­‐trip  

Page 5: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  4  

ABSTRACT  The  potential  for  electrical  energy  storage  to  both  provide  services  to  the  electrical  grid  and  help  to  better  integrate  renewable  energies  in  the  electrical  system  is  promising.  This  report  investigates  one  type  of  storage,  compressed  air  energy  storage  (CAES),  where  energy  is  stored  by  compressing  air  during  hours  of  low  electricity  demand  and  later  expanding  the  air  to  generate  electricity  during  high  demand  hours.  To  this  day  it  exists  two  large  plants,  but  small  facilities  have  yet  to  be  implemented,  raising  the  question  whether  it  could  be  viable  to  use  CAES  on  a  smaller  scale  as  well.  By  creating  a  model  of  a  CAES  system  based  on  the  principles  of  thermodynamics  and  applying  it  to  a  hypothetical  group  of  residences,  its  ability  to  balance  daily  fluctuations  in  electricity  demand  is  explored.  The  result  show  that  the  system  is  able  to  cover  some  of  the  demand  but  there  is  no  economic  profit  to  be  gained.  The  results  of  this  report  suggest  that  a  CAES  system  of  this  size  is  not  a  viable  option  during  current  price  market  for  electricity  in  Sweden  but  during  other  circumstances  it  could  be  relevant.  

KEYWORDS:  compressed  air  energy  storage  (CAES),  electrical  energy  storage  (EES),  artificial  air  storage,  thermodynamic  analysis,  economic  evaluation  

   

Page 6: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  5  

SAMMANFATTNING  Dagens  energisystem  kräver  vissa  tjänster  för  att  kunna  behålla  stabilitet  och  tillgodose  energibehovet.  Energilagring  är  ett  sätt  att  förse  systemet  med  dessa  tjänster  samtidigt  som  det  också  skapar  möjlighet  att  bättre  utnyttja  förnyelsebara  energiresurser,  som  vind  och  sol,  som  annars  kan  vara  för  oförutsägbara  för  att  kunna  utnyttjas  maximalt.  I  denna  studie  undersöks  komprimerad  luft  som  energilagring  (CAES).  Sammanfattningsvis  används  billig  elektricitet  under  timmar  då  elförbrukningen  är  låg  för  att  komprimera  luft  och  lagra  denna  för  att  sedan  expandera  luften  igen  och  på  så  vis  generera  elektricitet  vid  behov  eller  då  det  finns  ekonomisk  vinstmöjlighet.  CAES  systemet  kan  vara  uppbyggt  och  dimensionerat  på  flera  olika  sätt  vilket  undersöks  samt  beskrivs  i  närmare  detalj.  Möjligheten  att  använda  CAES  i  liten  skala  för  att  tillgodose  ett  dagligen  varierande  energibehov  undersöks  och  det  utrönas  ifall  detta  är  ekonomiskt  gynnsamt  eller  inte.  Detta  undersöks  genom  att  skapa  en  modell  över  ett  CAES-­‐system  som  appliceras  på  energibehovet  för  en  grupp  bostäder.  Resultatet  visar  att  systemet  kan  täcka  en  del  av  energibehovet  men  ekonomisk  vinning  är  inte  möjligt.  Utifrån  dessa  resultat  konstateras  att  CAES  i  liten  skala  inte  är  ett  ekonomiskt  försvarbart  alternativ  för  att  täcka  toppar  i  ett  varierande  energibehov  vid  det  rådande  energipriset  i  Sverige  men  under  andra  omständigheter  skulle  det  kunna  vara  möjligt.    

NYCKELORD:  komprimerad  luft  som  energilagring  (CAES),  elektrisk  energilagring  (EES),  artificiell  luftförvaring,  termodynamisk  analys,  ekonomisk  utvärdering    

Page 7: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  6  

TABLE  OF  CONTENTS  Acknowledgment  .........................................................................................................................  1  Index  of  figures  ............................................................................................................................  2  Index  of  tables  ..............................................................................................................................  2  Nomenclature  ...............................................................................................................................  3  Abstract  ..........................................................................................................................................  4  Sammanfattning  ..........................................................................................................................  5  1.   Introduction  ..........................................................................................................................  8  1.1.   Purpose  .......................................................................................................................................................................  9  1.2.   Objectives  ..................................................................................................................................................................  9  

2.   Background  ........................................................................................................................  10  2.1.   Electrical  energy  storage  ................................................................................................................................  10  2.1.1.   EES  in  the  energy  system  .........................................................................................................................  10  2.1.2.   Electrical  energy  storage  solutions  ....................................................................................................  11  

2.2.   The  CAES  process  ................................................................................................................................................  12  2.2.1.   Compression  ...................................................................................................................................................  13  2.2.2.   Storage  ...............................................................................................................................................................  13  2.2.3.   Expansion.........................................................................................................................................................  15  2.2.4.   Thermal  storage............................................................................................................................................  15  

3.   Methodology  ......................................................................................................................  16  3.1.   Case  study...............................................................................................................................................................  16  3.2.   Load  Profile  ...........................................................................................................................................................  16  3.3.   Calculations  for  system  dimensioning  ......................................................................................................  16  3.4.   Heat  treatment  ....................................................................................................................................................  19  3.5.   Efficiencies  .............................................................................................................................................................  19  3.6.   Constants  ................................................................................................................................................................  20  3.7.   Economic  Evaluation  ........................................................................................................................................  21  3.8.   Electricity  prices  .................................................................................................................................................  21  3.9.   Investments  ...........................................................................................................................................................  21  

4.   Results  .................................................................................................................................  22  4.1.   System  Properties  ...............................................................................................................................................  22  4.1.1.   Load  profile  .....................................................................................................................................................  22  4.1.2.   Compression  and  expansion  work  ......................................................................................................  23  4.1.3.   Charge  and  discharge.................................................................................................................................  23  4.1.4.   Efficiency  ..........................................................................................................................................................  25  4.1.5.   Heat  .....................................................................................................................................................................  25  

Page 8: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  7  

4.1.6.   Loss  due  to  constant  volume  storage  ................................................................................................  25  4.2.   Financial  results  ..................................................................................................................................................  26  

5.   Discussion  ...........................................................................................................................  27  5.1.   Assumptions  ..........................................................................................................................................................  27  5.2.   Constant  volume/varying  pressure  vs.  Constant  pressure/varying  volume  ...........................  28  5.3.   Optimization  .........................................................................................................................................................  28  5.4.   Profitability  ...........................................................................................................................................................  29  5.5.   Large  scale  or  small  scale  ...............................................................................................................................  30  5.6.   Environmental  aspects  .....................................................................................................................................  30  5.7.   Social  aspects  .......................................................................................................................................................  30  

6.   Conclusions  and  recommendations  ............................................................................  31  7.   References  ..........................................................................................................................  32    

     

Page 9: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  8  

1.  INTRODUCTION  As  global  warming  and  climate  change  continue  to  increase  and  make  themselves  known  not  only  by  their  consequences  but  increased  awareness,  the  interest  for  sustainable  solutions  grows  rapidly.  The  concept  of  “sustainable  development”  is  a  multifaceted  term,  used  by  many  and  in  just  as  many  contexts.  Many  definitions  of  sustainable  development  are  derived  from  the  Brundtland  report,  which  states  that  to  make  development  sustainable  humans  need  to  “ensure  that  it  meets  the  needs  of  the  present  without  compromising  the  ability  of  future  generations  to  meet  their  own  needs”  (UN,  1987)  but  this  can  be  interpreted  in  many  ways.  While  its  vague  definition  is  by  some  deemed  problematic,  the  general  consensus  is  still  that  sustainable  development  is  of  the  greatest  importance  for  the  future  of  the  human  race  and  needs  to  be  a  top  priority  (Kuhlman  and  Farrington,  2010).      One  of  the  most  important  drivers  of  development  is  energy,  which  is  necessary  for  growth  on  both  a  individual  and  global  level  (IPCC,  2016)  and  also  part  of  the  UN’s  sustainability  goals  (UN,  2016).  In  many  parts  of  the  world  there  is  an  abundance  of  energy,  as  society  has  spent  both  time  and  resources  in  developing  the  techniques  of  harnessing  energy  from  sources  such  as  oil,  coal  and  nuclear  materials.  With  the  growing  climate  changes  it  has  been  made  obvious  that  the  traditional  ways  of  energy  production  will  no  longer  be  able  to  sustain  the  world  in  ways  that  do  not  risk  radically  changing  the  global  ecosystem.  Furthermore,  the  UN  sustainability  goals  specify  that  energy  should  be  both  clean  and  affordable,  a  criterion  that  is  not  fulfilled  by  the  use  of  fossil  fuels  (Stockholm  Resilience  Centre,  2018).  Renewable  energies  in  many  forms  are  being  developed,  but  just  as  fossil  energies  have  a  problem  fulfilling  the  “clean”  part  of  “clean  and  affordable  energy”,  renewables  have  a  problem  fulfilling  the  “affordable”  part.  Within  this  affordability  spectrum  falls  the  problematic  fluctuating  properties  of  many  renewable  energies  as  the  main  sources  (such  as  sun,  wind  and  waves)  are  not  constant  in  their  supply  but  vary  with  time.  A  proposed  solution  to  battle  the  fluctuation,  and  thereby  making  renewables  a  more  attractive  and  stable  form  of  energy,  is  energy  storage.    Today,  the  practiced  forms  of  electric  energy  storage  are  pumped  hydroelectric  storage,  certain  battery  technologies  and  compressed  air  as  energy  storage  (Drury  et  al.,  2011).  While  these  solutions  all  have  the  ability  of  supporting  renewable  energies  in  terms  of  balancing  peak-­‐demand  and  providing  back-­‐up  reserves,  they  all  come  with  their  respective  set  of  problems.  Although  these  solutions  are  already  being  commercially  implemented  to  some  extent,  further  development  is  required  if  they  are  to  be  applied  on  a  global  scale.  This  report  will  focus  on  investigating  the  field  of  compressed  air  as  energy  storage,  commonly  known  as  CAES.  The  concept  of  CAES  is  to  compress  air  in  period  of  excess  energy,  and  later  on  expand  it,  releasing  the  energy  back  into  the  grid  during  periods  of  energy  shortage.  

There  already  exists  two  functional  CAES  plants  (Garvey  and  Pimm,  2016)  which  were  constructed  several  decades  ago,  and  as  technology  has  since  then  developed,  many  aspects  could  be  improved.  In  the  process  of  compressing,  storing  and  expanding  the  air  the  main  emissions  originate  from  the  burning  of  fossil  fuels  to  regulate  temperatures,  giving  the  environmental  issues  a  more  uniform  solution  by  simply  ensuring  that  the  required  energy  comes  from  renewable  sources.  To  promote  an  increased  use  of  CAES,  this  report  will  instead  focus  on  investigating  the  technical  performance  and  economic  viability.  Since  large  scale  CAES  plants  already  exist,  the  report  will,  in  addition  to  providing  a  detailed  description  of  the  technical  process  and  how  CAES  is  being  used  today,  investigate  the  

Page 10: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  9  

possibility  of  implementing  it  on  a  smaller  scale  to  give  energy  storage  capacity  to  a  group  of  smaller  buildings  or  one  large  building.    

1.1.    PURPOSE  Provide  an  overview  of  the  technical  aspects  of  the  CAES  process  and  analyze  its  viability  as  energy  storage  on  a  small  scale.  

1.2.    OBJECTIVES  •   Outline  the  full  process,  from  compression  to  expansion,  of  CAES  from  a  technical  and  

engineering  perspective.  This  includes  key  aspects  such  as  efficiency,  excess  heat  treatment  and  variations  due  to  chosen  storage  type.  

•   Investigate  whether  CAES  is  a  feasible  option  for  small  scale  energy  storage  to  balance  daily  energy  demand  fluctuations  and  increase  energy  independence.      

•   Evaluate  CAES,  from  an  environmental  viewpoint,  in  relation  to  other  energy  storage  options  and  identify  its  role  in  the  development  of  renewable  energies.  

   

Page 11: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  10  

2.  BACKGROUND  

2.1.    ELECTRICAL  ENERGY  STORAGE    The  electric  system  is  a  complex  configuration  of  power  generating  units,  transmission  and  energy  users  creating  supply  and  demand  within  the  system.  To  keep  the  system  stable,  equilibrium  has  to  exist  between  supply  and  demand  of  electricity  (Ibrahim  et  al.,  2008).  However,  the  electricity  demand  is  constantly  changing,  both  from  day  to  day  and  season  to  season,  all  depending  on  the  users  need  for  heating,  cooling,  lighting  etc.  (Denholm  et  al.,  2010).  The  integration  of  renewable  energies  with  variable  and  unpredictable  energy  output,  such  as  wind  and  solar  power,  into  the  grid  ads  yet  another  dimension  of  uncertainty  making  it  even  harder  to  maintain  equilibrium  (Ibrahim  et  al.,  2008).  The  amount  of  electricity  from  renewable  energy  sources  in  the  grid  has  increased  which  is  an  important  step  towards  a  more  sustainable  energy  system  and  a  way  to  lessen  the  overall  dependence  on  fossil  fuels  and  thereby  also  greenhouse  gas  emissions  (Denholm  et  al.,  2010,  Salvini  et  al.,  2017).  To  increase  the  chances  of  more  integration,  the  unreliability  of  renewable  energy  sources  must  be  tackled  to  make  it  easier  to  integrate  them  into  the  grid.  Electrical  energy  storage  (EES)  could  be  a  solution  since  it  could  be  a  way  to  regulate  the  electricity  supply  from  renewables  to  meet  the  changing  demand  and  thereby  maintain  equilibrium  (Ibrahim  et  al.,  2008).  EES  could  also  be  a  way  to  strengthen  reliability  of  the  existing  power  grid  as  well  as  boosting  integration  of  renewables  (Denholm  et  al.,  2010).  

2.1.1.   EES  IN  THE  ENERGY  SYSTEM  The  instability  of  variable  renewable  energies  can  be  observed  in  deregulated  electricity  markets  where  the  electricity  price  can  be  highly  volatile  and  change  drastically  during  the  day  because  of  the  changes  in  energy  output  from  renewable  energies  (Bullough  et  al.,  2004).  The  price  of  electricity  is  determined  by  a  balance  between  demand  for  electricity  and  the  supply  (Nordpool,  2018b)  and  a  variation  of  different  power  plants  is  used  to  meet  the  need  for  electricity  where  a  baseload  plant  handles  the  constant  demand  (Denholm  et  al.,  2010).  To  provide  baseload  power  a  technology  where  the  output  of  power  can  be  planned  regardless  of  weather  conditions  have  to  be  used  and  in  Sweden  it  consists  of  hydropower  and  nuclear  power  (Byman,  2016).  Baseload  power  plants  are  often  used  as  much  as  possible  and  in  some  cases,  e.g.  nuclear  power,  there  are  restrictions  preventing  rapid  changes  in  output  power  i.e.  this  type  of  power  plants  can  produce  a  constant  and  reliable  energy  output  but  if  the  electricity  demand  spikes  the  output  cannot  be  changed  fast  enough  to  meet  that  demand.  Usually  these  plants  have  a  large  capital  cost  and  low  variable  cost  (fuel)  which  encourage  constant  usage.  Consequently,  other  electricity  production  technologies  have  to  be  used  for  meeting  variations  in  load.  These  are  called  load-­‐following  plants,  and  some  can  be  classified  as  intermediate  meaning  they  meet  variations  in  load  from  day  to  day.  Then  there  are  ones  that  meet  unforeseen  peaks  in  demand,  peaking  units  (Denholm  et  al.,  2010).  Since  the  electricity  price  is  determined  by  supply  and  demand  the  off-­‐peak  electricity  is  cheaper.  

Electric  energy  storage  solutions  are  a  possible  addition  to  the  grid  which  may  have  potential  to  improve  the  electricity  system  in  a  multiple  of  ways  and  they  are  a  part  of  future  sustainable  energy  systems  (Lund  and  Salgi,  2009).  The  improvements  include  contributing  to  meet  the  variation  in  electricity  demand  since  EES  could  be  an  alternative  to  better  utilize  baseload  plant  and  reduce  need  for  plants  operating  with  less  efficiency.  EES  can  provide  load  leveling  effect,  meaning  it  uses  electricity  during  off  peak  and  storing  it  to  later  supply  electricity  during  high  peak  hours.  EES  also  has  

Page 12: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  11  

the  ability  to  provide  backup  in  case  of  temporary  loss  of  other  electricity  production.  Intermittent  power  generation  from  renewable  resources  and  other  variations  in  demand  also  cause  frequency  variations  in  the  grid,  meaning  there  is  a  need  for  frequency  regulation  which  EES  can  provide  by  charging  or  discharging  in  response  to  increase  or  decrease  in  frequency  (Denholm  et  al.,  2010,  ABB,  2016).    

2.1.2.   ELECTRICAL  ENERGY  STORAGE  SOLUTIONS    There  are  a  number  of  different  technologies  for  storing  electrical  energy.  Which  one  that  should  be  used  depends  on  the  intended  application,  meaning  the  characteristics  of  different  alternatives  should  be  evaluated  and  compared  to  the  needs  of  the  system.  Efficiency,  lifetime,  discharge  time,  weight  and  mobility  are  examples  of  characteristics  that  could  be  relevant  to  considered  when  choosing  an  EES  technology.  Categorizing  the  different  storage  technologies  in  terms  of  their  function  can  be  helpful  for  deciding  which  one  to  use  and  it  is  common  to  divide  them  into  energy  applications,  i.e.  medium  to  long-­‐term  storage,  and  power  applications  which  requires  rapid  response  time  (Zhao  et  al.,  2016a,  Cho  et  al.,  2015).  The  later  application  includes  providing  services  such  as  frequency  regulation  and  contingency  reserves  where  the  storage  technology  must  be  able  to  respond  fast  to  the  change  in  demand.  Longer  term  storage  could  possibly  also  provide  these  services  and  in  addition  also  provide  load  leveling  (Denholm  et  al.,  2010,  Drury  et  al.,  2011).  Some  electrical  energy  storage  solutions  to  consider  are  pumped  hydroelectric  storage  (PHS),  compressed  air  energy  storage  (CAES)  and  different  battery  technologies  which  all  possess  potential  to  provide  energy  management  during  a  longer  time  span  (Denholm  et  al.,  2010).  

Energy  is  stored  with  pumped  hydroelectric  storage  by  using  electricity  during  off-­‐peak  hours  to  pump  water  from  a  lower  located  reservoir  to  one  located  higher  up.  During  peaking  hours,  the  water  is  released  from  the  upper  reservoir  to  flow  through  turbines,  generating  electricity  to  satisfy  the  increasing  demand  (Ibrahim  et  al.,  2008).  PHS  provides  large  storage  capacity  and  long-­‐term  storage  with  a  long  lifetime  and  low  unit  cost  (cost  per  kWh)  with  an  efficiency  of  about  70  -­‐  80%  (Drury  et  al.,  2011,  Molina,  2017).  Another  often  mentioned  advantage  of  PHS  is  the  maturity  of  the  technology,  meaning  it  is  readily  available  and  already  being  used  (Molina,  2017,  Ibrahim  et  al.,  2008).  There  are  three  plants  in  Sweden  using  the  technology  with  effects  ranging  from  600  kW  to  36  MW  (Byman,  2016).  However,  PHS  suffers  from  geographical  constraints  which  limits  the  possibility  of  increased  development,  especially  in  developed  countries.  There  is  also  a  large  capital  cost  and  some  environmental  issues  (Bullough  et  al.,  2004,  Molina,  2017).  

Compressed  air  energy  storage  is  the  only  other  commercially  available  storage  alternative,  besides  PHS,  with  very  large  capacity  but  CAES  offers  less  geographical  constraints  than  PHS  (Bullough  et  al.,  2004,  Cho  et  al.,  2015).  Since  the  subject  of  this  paper  is  CAES,  the  process  is  explained  in  more  detail  in  the  methodology,  but  in  short  CAES,  like  PHS,  uses  off-­‐peak  electricity  to  store  energy  but  in  the  form  of  compressed  air  instead  of  water.  Two  plants  are  in  existence  at  present  time  (March  2018),  one  in  Huntorf,  Germany  and  one  in  Macintosh,  Alabama  in  the  USA.  CAES  can  be  used  for  both  small-­‐scale  and  large-­‐scale  applications.  The  storage  capacity  will  of  course  depend  on  the  volume  available  for  air  storage  which  also  creates  geographical  constraints  since  underground  caverns  can  be  used  as  storage.  However,  artificial  storage  is  a  possibility  which  eliminates  geographical  problems  but  also  limits  capacity  to  some  extent  as  the  material  costs  of  storage  become  high  (Ibrahim  et  al.,  2008).  Like  PHS,  CAES  also  has  long  lifetime  and  low  unit  cost.  However,  depending  on  the  type  of  CAES  technology  being  used  there  may  be  environmental  issues  in  the  form  of  greenhouse  gas  emissions.  

Page 13: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  12  

The  type  of  technology  also  affects  the  efficiency  of  the  process  which  therefore  range  from  45  -­‐  70  %  (Molina,  2017).    

Batteries  are  another  type  of  storage  alternative  and  there  are  many  different  kinds.  The  most  promising  scalable  technology  for  applications  such  as  storing  energy  generated  from  renewable  resources  is  redox  flow  batteries  (RFB).  RFB  are  suitable  for  large  scale  and  long-­‐term  storage.  Just  like  PHS  and  CAES  they  also  have  long  life  time  and  the  efficiency  is  about  70  -­‐  85%.  There  are  however  problems  with  low  energy  density  and  complicated  system  requirements  (Molina,  2017).  

2.2.  THE  CAES  PROCESS  The  basic  principle  of  compressed  air  energy  storage  is  very  simple:  compress  air  during  periods  of  off-­‐peak  electricity  and  expand  it  during  periods  of  peak  electricity.  The  CAES  process  can  be  divided  into  three  main  stages:  compression,  air  storage  and  expansion.  Depending  on  the  point  of  view  and  system  configuration,  thermal  storage  can  also  be  considered  a  stage  in  the  process  but  bear  in  mind  that  it  is  not  critical  to  the  process,  but  an  addition  for  improving  overall  performance.  The  setup  of  the  system  used  for  this  report  is  shown  in  figure  1,  where  thermal  storage  is  included  and  compression/expansion  performed  in  two  stages.    

For  each  of  these  stages  there  are  different  critical  aspects  for  obtaining  optimal  performance  of  the  system.  An  aspect  that  greatly  defines  configuration  of  the  entire  CAES  system  is  whether  it  is  adiabatic  or  diabatic.  During  the  CAES  process  heat  loss  occurs  during  all  stages,  and  minimizing  it  has  for  a  long  time  been  one  of  the  main  focuses  of  CAES  research  (Hartmann  et  al.,  2012).  During  the  CAES  cycle  heat  is  produced  when  compressing  air  and  used  when  expanding  it,  so  for  an  ideal  process  with  perfect  heat  storage  there  would  be  no  need  to  add  heat  as  the  same  amount  is  needed  for  expansion  as  gained  from  compression.  However,  storing  heat  is  difficult  and  expensive,  which  could  be  why  the  only  existing  plants  are  diabatic.    

 

Figure  1.  Schematic  image  of  CAES  system.  Note  that  thermal  storage  is  optional  as  is  the  number  of  compressors  and  turbines.  

   

Page 14: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  13  

2.2.1.   COMPRESSION  The  compressor  is  motor-­‐driven  (Huang  et  al.,  2018)  and,  depending  on  the  dimensioning  of  the  system,  have  different  sizes  and  power  output  and  has  the  main  objective  to  compress  the  air  going  into  the  air  storage  cavity.  For  small-­‐scale  CAES  it  is  possible  to  use  compressors  which  also  function  as  generators  during  the  discharge  process  (Ibrahim  et  al.,  2008),  but  this  results  in  lower  efficiencies  and  is  not  common  procedure.    

During  the  compression  stage  the  main  losses  are  mechanical  conversion  loss  and  heat  loss  that  occurs  due  to  the  pressure  increase.  Referring  to  the  ideal  gas  law,  there  is  a  direct  connection  between  pressure  increase  and  temperature  increase,  which  is  why  (depending  on  pressure  ratio)  the  temperature  after  the  compressor  can  be  several  hundred  degrees  Celsius.  These  kinds  of  temperatures  are  highly  destructive  for  most  storage  cavity  material,  which  is  why  the  air  needs  to  be  cooled  by  passing  through  a  heat  exchanger  before  entering  the  air  storage  (Donadei  and  Schneider,  2016).  If  the  CAES  system  uses  thermal  energy  storage  (TES),  compressing  the  air  in  one  stage  (aptly  named  single-­‐stage  compression)  requires  a  TES  that  can  withstand  high  pressures  and  high  temperature,  making  it  quite  a  costly  affair.  Instead  it  can  be  more  efficient  using  multi-­‐stage  compression,  where  the  air  is  compressed  and  cooled  several  times  before  reaching  the  air  storage.  Cooling  the  air  between  compression  or  expansion  stages  is  called  interim  cooling  or  heating  and  lessens  the  requirements  for  the  TES  material  as  the  heat  which  is  transferred  from  the  air  has  a  lower  temperature.  For  each  interim  cooling  stage  added  to  the  compression  process  the  heat  loss  and  material  requirements  will  lower  but  the  effect  of  each  added  stage  will  also  decrease,  meaning  that  there  will  be  a  cost-­‐benefit  equilibrium  between  the  number  of  compressors  and  the  gain  in  decreased  losses.  To  avoid  thermal  degradation,  (Huang  et  al.,  2018)  suggests  that  the  temperature  must  not  exceed  300°C  and  (Hartmann  et  al.,  2012)  found  that  two  stage  compression  gives  highest  efficiency  in  relation  to  amount  of  stages  used.  Most  research  papers  concern  adiabatic  and  semi-­‐adiabatic  CAES  which  always  include  some  form  of  heat  storage,  but  it  is  of  course  possible  to  completely  ignore  the  thermal  aspects  and  release  the  heat  into  the  ambient  air.  This  would  require  no  heat  recuperator  or  TES,  but  the  losses  would  be  large,  and  efficiency  be  so  low  as  not  to  be  cost  efficient.  It  would  also  require  some  other  heat  source,  such  as  burning  natural  gas.    

The  compressor  efficiency  depends  on  the  pressure  ratio  between  inlet  and  outlet  and  with  values  between  70-­‐90%  (Garvey  and  Pimm,  2016).  In  published  work  the  compressor  efficiency  is  generally  approximated  as  a  fixed  value,  but  in  reality,  the  pressure  ratio  varies  as  more  and  more  air  is  injected  into  the  system  which  indicate  that  the  efficiency  also  varies  (Salvini  et  al.,  2017).  The  fact  that  the  pressure  ratio  varies  during  the  compression  (and  by  the  same  logic  for  the  expander)  creates  some  technical  difficulties  as  both  compressor  and  expander  obtain  optimal  efficiency  when  the  pressure  ratio  is  constant,  and  a  pressure  regulator  is  needed,  creating  energy  losses  (Pimm  and  Garvey,  2016).  

2.2.2.   STORAGE  The  next  step  in  the  CAES  cycle  is  the  storage.  The  storage  must  able  to  store  large  quantities  of  air  at  high  pressure,  something  that  is  not  easily  found  and  leads  to  one  of  CAES  great  weaknesses:  it  is  highly  location  specific  (Garvey  and  Pimm,  2016).  Storage  systems  can  be  either  isobaric  or  isochoric,  isochoric  being  more  common  while  isobaric  gives  better  performance  but  is  harder  to  achieve.  There  are  three  main  ways  of  dividing  storage  types:  underground,  underwater  and  aboveground  with  each  type  having  its  own  set  of  advantages  and  disadvantages.    

Page 15: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  14  

UNDERGROUND  Storing  the  air  below  ground  is  the  most  common  storage  type  and  both  of  the  existing  plants  use  this  method.  The  advantages  of  underground  storage  are  that  it  is  cost  efficient  in  relation  to  the  high  storage  capacity,  is  protected  from  external  impacts  and  has  a  low  ecological  footprint  (Donadei  and  Schneider,  2016).  There  are  two  main  disadvantages,  the  first  being  that  underground  storages  have  fixed  volumes  and  compression  and  expansion  process  are  thereby  not  isobaric  as  pressure  inside  the  cave  varies  during  charge  and  discharge,  impairing  overall  efficiency.  The  other  main  disadvantage  is  that  suitable  underground  storage  can  be  hard  to  find  and  requires  extensive  geological  investigation  before  constructing  a  plant.    

There  are  five  kinds  of  underground  cavities  that  can  be  used  for  air  storage:  depleted  oil  and  gas  fields,  aquifers,  salt  caverns,  rock  caverns  and  abandoned  mines.  The  air  in  the  only  two  existing  plants,  McIntosh  and  Huntorf  plants,  is  stored  in  large  salt  caverns  which  have  the  benefit  of  the  salts  low  reactivity  with  air  and  low  pre-­‐investigation  work.  Even  if  salt  caverns  are  the  only  storage  cavity  used  today,  research  focuses  more  on  underground  formations  as  the  salt  caverns  are  location  specific  and  have  already  been  investigated.  While  aquifers  have  been  proved  appropriate  for  storing  natural  gas  they  have  high  reactivity  and  require  extensive  pre-­‐investigation  due  to  its  more  intricate  nature.  The  depleted  oil  and  gas  field  have  already  been  proven  fit  to  store  gas  and  fluids  but  residuals  from  the  previous  oil  or  gas  can  cause  problems  for  CAES  and  no  fields  have  been  used  so  far.  Rock  caverns  are  similar  to  salt  caverns  but  need  to  be  sealed  to  minimize  self-­‐discharge  and  could  be  an  option  where  salt  cavern  construction  is  not  possible  but  the  rock  is  hard  enough  to  be  adequate  for  storage.  Finally  abandoned  mines  could  also  be  an  option  but  just  as  for  rock  caverns  eventual  cracks  need  to  be  sealed  and  making  the  mine  fit  for  CAES  can  be  costly.    

UNDERWATER  A  less  explored  storage  form  is  underwater  CAES  whose  characteristics  are  primarily  defined  by  its  isobaric  properties.  For  underground  CAES  air  is  stored  is  large  cavities  but  for  underwater  CAES  the  researched  vessels  are  generally  much  smaller,  flexible  and  made  from  durable  fabric.  As  the  air  is  stored  under  water  the  pressure  is  high  and  by  using  flexible  vessels  the  volume  adjusts  automatically,  improving  overall  performance.  Underwater  CAES  has  the  advantages  of  having  low  cost  of  installation;  applicable  both  for  oceans,  seas  and  lakes;  air  can  be  stored  at  hydrostatic  pressure  which  occurs  naturally.  However,  the  energy  density  is  lower  than  that  of  underground  CAES,  no  assessment  has  been  done  for  impact  of  the  local  marine  ecosystem  and  just  as  for  underground  CAES  it  is  location  specific.  Underwater  CAES  is  suitable  for  locations  where  a  large  water  depth  can  be  found  relatively  close  to  the  shore  which  simplifies  the  installation  and  maintenance.  It  is  also  possible  to  install  far  from  shore  plants  but  then  it  would  also  be  necessary  to  have  an  offshore  platform  with  connecting  transmission  lines  and  TES  on  the  platform  if  the  plant  is  adiabatic  (Pimm  and  Garvey,  2016).  

Most  research  paper  concern  large  scale  CAES  (Salvini  et  al.,  2017),  but  due  to  the  low  energy  density  implementing  underwater  CAES  on  large  scale  would  be  problematic  because  of  the  amount  of  anchoring  weight  needed.  To  fix  the  flexible  vessels  to  the  ocean  floor,  gravity-­‐based  anchors  is  the  most  viable  option,  but  the  amount  of  weight  needed  is  immense  (  Pimm  and  Garvey  (2016)  mention  that  for  a  plant  of  1  GWh  capacity  the  volume  of  concrete  needed  would  be  a  quarter  of  a  million  cubic  meters).  Despite  this  difficulty  and  thanks  to  the  isobaric  properties  there  is  still  interest  for  underwater  CAES,  (Sheng  et  al.,  2017)  conducted  a  study  on  combining  a  wind  plant  and  underwater  

Page 16: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  15  

CAES  to  supply  a  small  stand-­‐alone  island,  concluding  that  it  could  indeed  be  a  viable  power  supply  option.  

ARTIFICIAL    As  discussed  both  underground  and  underwater  CAES  have  the  problem  of  being  location  specific  as  they  depend  on  naturally  occurring  geologies.  A  way  to  avoid  this  would  be  to  construct  artificial  storages,  which  has  been  investigated  by  (Liu  et  al.,  2014)  among  others.  There  are  three  different  kinds  of  storage  devices:  gas  storage  pipelines,  gas  cylinders  and  storage  tanks.  Liu  et  al.  (2014)  conclude  that  gas  storage  pipelines  normally  have  a  lower  cost,  while  air  storage  tanks  are  the  only  option  without  pressure  constraints.  Artificial  storage  has  a  high  initial  cost  due  to  expensive  storage  materials  and  a  lower  continuous  maintenance  cost.  Comparing  artificial  storage  with  underground  storage  shows  that  artificial  CAES  is  more  expensive,  but  as  mentioned  with  the  advantage  of  being  non-­‐location  specific.    

2.2.3.   EXPANSION  After  the  air  has  been  compressed  and  stored  it  is  time  to  extract  the  energy  by  passing  it  through  the  expander.  Just  as  heat  needed  to  be  removed  during  the  compression,  heat  needs  to  be  added  during  the  expansion.  In  order  to  not  cause  harm  to  the  expander  as  a  result  of  frozen  particles  in  the  air,  the  air  needs  to  be  kept  above  freezing  temperatures.  For  an  ideal  process,  the  energy  created  during  the  compression  could  be  used  for  expansion  and  no  heat  would  need  to  be  removed  or  added  to  the  system.  However,  due  to  heat  storage  difficulties,  the  two  existing  CAES  plants  need  to  burn  fuel  to  provide  heat  during  the  expansion.  The  fuel  most  commonly  used  is  natural  gas  (Drury  et  al.,  2011)  which  contributes  to  global  warming,  but  as  heat  storage  technology  has  developed,  future  plants  will  likely  include  some  form  of  energy  management  where  heat  from  the  compression  is  used  which  will  decrease  environmental  impact.  

There  are  different  kinds  of  turbines  that  can  be  used  and  an  important  requirement  for  CAES  is  that  the  turbine  must  be  able  to  handle  the  large  variations  in  mass  flow.  The  range  of  inlet  pressure  and  pressure  ratio  requirements  may  vary  and  therefore  it  can  be  useful  to  have  multi-­‐stage  expansion  and/or  expansion  valves  to  maximize  efficiency.  The  expander  needs  to  be  connected  to  a  generator  in  order  to  extract  electrical  energy,  and  this  connection  can  also  be  structured  in  different  ways  (Zhao  et  al.,  2016b).  

2.2.4.   THERMAL  STORAGE    In  terms  of  overall  efficiency,  it  is  beneficial  to  store  the  produced  heat  from  the  compression  stage  to  use  it  later  on,  either  for  expansion  or  other  application.  To  increase  overall  efficiency  of  the  system  it  is  important  that  the  losses  from  the  thermal  storage  are  as  low  as  possible.  For  the  heat  to  travel  to  the  storage,  heat  exchangers  are  needed,  but  which  specific  type  will  depend  of  the  kind  of  storage  and  storage  medium  used.  For  CAES  a  favorable  configuration  of  a  TES  system  is  having  one  hot  storage  and  one  cold,  albeit  interconnected.  The  cold  fluid  will  flow  pass  the  compressor,  cooling  it  and  heating  the  fluid,  which  is  then  stored  and  later  on  will  flow  pass  the  expander,  heating  the  air  and  turning  the  fluid  cold  yet  again  (Huang  et  al.,  2018).  

   

Page 17: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  16  

3.  METHODOLOGY  

3.1.    CASE  STUDY  A  hypothetical  scenario  is  created  where  10  average  families  in  Sweden  are  interested  in  using  a  CAES  system  to  cover  the  peaks  in  their  electricity  load  profile.  The  motivation  is  to  save  money  on  electricity  cost  and  to  become  more  independent  from  the  electricity  grid  with  its  varying  electricity  prices.  The  families  all  live  in  the  same  building  and  will  use  one  single  CAES  plant.  The  plant  should  be  designed  to  supply  electricity  to  the  families  during  hours  of  high  demand  and  charge  by  using  electricity  from  the  grid  during  low  demand,  all  in  accordance  to  the  families’  total  load  profile.  The  design  should  be  a  balance  between  covering  the  families’  entire  electricity  demand  during  high  demand  and  an  economic  and  physically  possible  plant  design.  The  design  involves  establishing  the  setup  of  the  CAES  system,  dimensioning  the  components  and  determining  their  characteristics  such  as  pressure  ratios  etc.  The  CAES  system  should  be  economically  evaluated  by  investigating  if  there  is  any  arbitrage  savings  or  possibility  of  revenue  being  made  of  selling  electricity  back  to  the  grid  and  also  considering  the  cost  of  the  initial  investment.    

3.2.    LOAD  PROFILE    In  order  to  dimension  the  CAES  system  the  first  thing  investigated  is  the  demand  that  the  system  must  be  able  to  satisfy.  The  load  profile  is  developed  for  an  arbitrary  family  of  four  which  is  multiplied  with  10  to  simulate  an  apartment  building.  Note  that  the  CAES  system  is  only  be  used  to  derive  electrical  energy  (not  for  heating/cooling  purposes).  After  finalizing  the  load  profile,  using  data  mainly  from  the  energy  company  (E.ON,  2007)  the  periods  of  most  intense  energy  use  are  identified  and  so  the  periods  of  charge  and  discharge  are  decided.    

The  model  is  divided  into  time-­‐steps  of  one  hour  and  spans  over  one  week.  For  weekdays  the  energy  intensive  periods  are  estimated  from  6AM  to  9AM  in  the  morning  and  from  16PM  to  22PM  in  the  evening.  For  weekends  the  energy  intensive  period  is  estimated  from  8AM  to  22PM.  The  shortest  consecutive  time  span  between  the  energy  intensive  periods  is  seven  hours,  therefore  the  compression  period  is  said  to  be  constant  of  seven  hours  at  all  charge  periods.  To  avoid  self-­‐discharge  the  end  of  the  charge  period  is  always  at  the  start  of  a  discharge  period.  During  periods  of  lower  energy  usage,  the  CAES  system  is  not  providing  any  energy  as  the  price  of  electricity  generally  is  lower  during  these  periods.  If  there  is  a  period  where  all  the  mass  in  not  extracted  during  peak  hours,  potential  surplus  energy  will  be  sold  during  this  period.    

3.3.  CALCULATIONS  FOR  SYSTEM  DIMENSIONING  The  calculations  for  system  dimensioning  are  performed  from  expansion  backwards  toward  compression,  since  the  goal  of  the  system  is  to  supply  the  energy  demand  of  the  apartment  building.  The  first  step  is  calculating  how  much  mass  needs  to  be  expanded  to  provide  the  required  amount  of  energy.  For  this,  a  number  of  assumptions  must  be  made.    

•   The  compression/expansion  can  be  approximated  with  isentropic  expansion  and  corresponding  coefficient  

•   The  ideal  gas  law  is  applicable  •   Specific  heat  capacities  are  constant  for  each  step  of  the  process  

The  total  amount  of  energy  that  can  be  generated  by  the  expansion  is:    

Page 18: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  17  

𝐸= = 𝜂?𝜂= ∫ �̇�A𝑤A𝑑𝑡CD               (1)  

For  an  open  system  the  work  generated  by  expansion  comes  from  pressure  difference  and  for  two-­‐stage  expansion  the  work  can  be  divided  into  two  parts,  one  for  each  pressure  decrease.  

𝑤A = 𝑤E +𝑤G = −∫ 𝑣  𝑑𝑝IJIK

− ∫ 𝑣  𝑑𝑝ILMNIJ

        (2)  

Using  the  assumption  of  isentropic  expansion  where  𝑃𝑣P = 𝑐  is  constant  and  that  the  ideal  gas  law  is  applicable  the  work  for  the  first  expansion  can  be  expressed  as:  

                   𝑤E = R 𝑣  𝑑𝑝IK

IJ= 𝑐

EP  R

𝑑𝑝

𝑝EP

IK

IJ=  

𝜅𝜅 − 1 S𝑝T

𝑐𝑝U

EPV  IJIK =  

𝜅𝜅 − 1

(𝑝E𝑣E − 𝑝G𝑣G) =  

YZY[YZ\Y[]YZ^

𝑝E𝑣E _1 −IJ`JIK`K

a = 𝑐I𝑇E b1 − (IJIK)cdKc e           (3)  

Applying  the  exact  same  theory  for  the  second  expansion  gives  the  total  work:    

𝑤A = 𝑐IE𝑇E b1 − (IJIK)cdKc e + 𝑐IG𝑇G b1 − (

ILMNIJ)cdKc e         (4)  

Inserting  equation  (4)  into  equation  (1)  gives:  

𝐸= = 𝜂?𝜂= ∫ �̇�A(𝑐IE𝑇E b1 − (IJIK)cdKc e + 𝑐IG𝑇G b1 − (

ILMNIJ)cdKc e)  𝑑𝑡C

D     (5)  

As  the  air  is  to  be  stored  in  a  tank  with  fixed  volume  the  pressure  inside  the  tank  will  vary  in  proportion  to  the  mass  inserted  or  extracted.  For  each  time  step  the  difference  in  mass  inside  the  tank  can  be  expressed  as:    

∆𝑚 = ghIhJiAhJ

− ghIhKiAhK

= ghiA(𝑝jG − 𝑝jE)         (6)  

The  total  work  for  one  time  step,  denoting  equation  (4)  as  𝛽  and  applying  equation  (6)  to  pressure  changes  during  that  one  time  step,  then  becomes    

𝐸= = 𝜂?𝜂=𝛽∆𝑚           (7)  

This  expression  shows  that  if  the  demand  and  turbine  and  compressor  properties  are  known,  the  mass  needed  to  meet  this  demand  can  be  determined.  

The  process  can  be  divided  into  several  stages  where  the  ideal  gas  law  along  with  isentropic  pressure-­‐temperature  equation,  equation  (9),  are  applied  to  find  the  connections  between  temperature,  volume  and  pressure  for  each  stage.  The  calculations  are  performed  in  Microsoft®  Excel  where  for  each  time  step  temperature,  volume  and  pressure  are  given  for  each  stage.  As  each  time  step  corresponds  to  a  certain  mass  and  air  is  assumed  to  be  an  ideal  gas,  equation  (8)  can  be  used  for  each  stage.  A  schematic  of  how  the  properties  are  derived  is  shown  in  Figure  2.  

𝑝𝑉 = 𝑅j𝑚𝑇             (8)  

   

Page 19: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  18  

 

 

 

 

 

 

Figure  2.  Detailed  description  of  equations  used  for  deciding  changes  in  temperature,  pressure  and  volume  for  all  22  different  stages  in  the  CAES  process.  Isentropic  process  relation  is  abbreviated  as  IPE  and  ideal  gas  law  as  IGL,  both  used  to  denote  how  the  value  of  the  concerned  property  is  derived.    

   

Low  pressure  compressor  inlet

•T  =  298,15  K•P  =  1  bar•V  =  IGL

Low  pressure  compressor  outlet

•T  =  IPE•P  =  7  bar•V  =  IGL

1st  intercooler  inlet

•Same as  highpressure  turbine  outlet

1st  intercooler  outlet

•T  =  298,15  K•P  =  7  bar•V  =  IGL

High  pressure  compressor  inlet

•Same  as  previous  state

High  pressure  compressor  outlet

•T  =  IPE•P  =  49  bar•V  =  IGL

2nd  intercooler  inlet

•Same as  previous  state  

2nd  intercooler  outlet

•T  =  298,15  K•P  =  49  bar•V  =  IGL

Invisibleexpansion  inlet

•Same  as  previous  state

Isenthalpic Invisible  expansion  outlet

•Same  as  next  stage

Storage  inlet

•T  =  298,15  K•P  =  IGL  (based  on  constant  storage  volume)•V  =  IGL

New  mass  flow

Storage  outlet

•T  =  298,15  K•P  =  IGL  (based  on  constant  storage  volume•V  =  IGL

Throttle  inlet

•Same  as  previous  state

Isenthalpic Throttle  outlet

•T  =  298,15  K•P  =  25  bar•V  =  IGL

1st  interheater  inlet

•Same  as  previous  stage

1st  interheater  outlet

•T  =  IPE  •P  =  25  bar•V  =  IGL

High  pressure  turbine  inlet

•Same  as  previous  state

High  pressure  turbine  outlet

•T  =  298,15  K•P  =  5  bar•V  =  IGL

2nd  interheater  inlet

•Same as  previous  state  

2nd  interheater  outlet

•T  =  IPE•P  =  5  bar•V  =  IGL

Low  pressure  turbine  inlet

•Same  as  previous  state

Low  pressure  turbine  outlet

•T  =  298,15  K•P  =  1  bar•V  =  IGL

Page 20: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  19  

3.4.    HEAT  TREATMENT  During  compression  heat  is  produced  which  ideally  will  be  transferred  to  a  heat  storage  by  installing  heat  exchangers.  This  heat  will  later  be  used  for  heating  during  the  expansion.  Since  the  storage  is  characterized  by  constant  volume  and  varying  losses,  the  storage  needs  to  be  filled  to  a  greater  pressure  than  what  is  later  released,  i.e.  the  outlet  pressure  of  the  last  compressor  is  greater  than  the  inlet  pressure  of  the  first  turbine.  Since  the  air  is  compressed  more  than  it  is  later  expanded  the  temperature  increase  during  compression  is  greater  than  the  decrease  during  expansion  and  more  heat  is  generated  during  compression.  This  is  beneficial  for  the  system  in  a  way,  as  is  accommodates  for  losses  of  heat  during  storage  and  transfer.      

The  heat  that  needs  to  be  stored  from  the  compression  is  the  heat  needed  to  lower  the  temperature  from  the  temperature  increase  due  to  compression  to  the  desired  temperature  to  enter  the  next  compressor  or  storage.  The  temperature  and  pressure  relation  for  isentropic  process  is:  

AJAK= (IK

IJ)cdKc         (9)  

Assuming  that  the  air  should  be  cooled  to  the  inlet  temperature  the  heat  flow  which  needs  to  be  removed  is:  

�̇� = �̇�𝑐I(𝑇G − 𝑇E)         (10)  

This  heat  flow  must  be  equal  to  the  heat  the  heat  exchangers  is  able  to  transfer.  

�̇� = 𝑈𝐴∆𝑇mn             (11)  

It  is  not  within  the  scope  of  the  report  to  investigate  specific  components  but  if  it  were  so  the  values  of  overall  heat  coefficient,  area  and  temperature  difference  need  to  adhere  to  the  relationship  in  equation  (11).    

3.5.  EFFICIENCIES    An  issue  when  measuring  the  efficiency  of  a  CAES  system  is  the  combination  of  energy  sources  used  (Succar  and  Williams,  2008).  In  the  two  existing  plants  fuel  is  burned  to  provide  heat  during  expansion  and  electricity  to  power  the  compressor.  These  two  sources  need  to  be  combined  for  a  total  energy  input  which  can  be  used  to  define  the  efficiency.  In  addition  to  combining  heat  and  electricity  they  can  be  expressed  separately  as  heat  rate  and  charging  electricity  ration.  The  heat  rate  is  defined  as  consumed  fuel  (Joule)  per  kWh  and  is  mainly  affected  by  whether  it  exist  a  heat  recuperation  system  or  not.  The  charging  electricity  ratio  is  defined  as  generator  output  by  compressor  motor  input  and  as  mainly  affected  by  piping  and  throttling  losses  and  efficiencies  of  compressors  and  expanders  (Succar  and  Williams,  2008).  

Returning  to  the  combined  performance  index  of  CAES  there  are  several  methods.  The  simplest  way  is  expressing  the  efficiency,  𝜂,  as  a  ratio  between  energy  generated  by  turbine  and  sum  of  the  energy  input  to  compressor  and  heating  energy.  This  can  be  misleading  as  the  energy  qualities  of  the  electric  and  thermal  energy  differs  substantially.  Typical  values  of  heat  rate  and  charging  electricity  ratio  gives  efficiency  of  54%  (Succar  and  Williams,  2008).  

Page 21: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  20  

𝜂 = opoqros

          (12)  

When  combining  CAES  with  nuclear  plants,  fossil  fuel  power  plants,  combined  heat-­‐power  plants  (CHP),  CAES  can  convert  baseload  thermal  power  into  peaking  power  and  thereby  contributing  to  the  stability  of  the  electrical  grid.  For  these  cases  it  is  relevant  to  use  primary  energy  efficiency,  𝜂𝑃𝐸,  which  reflects  both  the  CAES  system  and  the  grid.  This  is  done  by  incorporating  the  thermal  efficiency  of  the  baseload  plant.  Here,  typical  efficiency  values  are  around  35-­‐40%  (Succar  and  Williams,  2008).  

𝜂𝑃𝐸 =op

tqu𝑇ros           (13)  

An  efficiency  that  is  widespread  when  discussing  energy  storage  solutions  is  the  round-­‐trip  efficiency,  𝜂𝑅𝑇.  It  is  defined  in  the  same  way  as  in  equation  (12)  but  the  energy  used  for  heating  is  adjusted  with  a  second  efficiency,  𝜂𝑁𝐺,  describing  the  amount  of  electricity  that  could  have  been  produced  from  the  same  amount  of  natural  gas  in  stand-­‐alone  power  plant.  The  round-­‐trip  has  the  advantage  of  dealing  only  with  electricity  inputs  and  outputs,  but  the  slight  disadvantage  that  𝜂𝑁𝐺  can  be  chosen  is  different  ways.  The  adjusted  thermal  energy  can  be  placed  either  as  an  added  input,  or  as  a  decreased  output,  described  in  equation  (14).  Depending  on  the  approach  round-­‐trip  efficiencies  range  between  66  to  88%  (Succar  and  Williams,  2008).    

𝜂𝑅𝑇,1 =op

oqrosw𝑁𝐺  or  𝜂𝑅𝑇,2 = op−osw𝑁𝐺

oq       (14)  

As  previously  it  is  beneficial  for  the  system  is  the  heat  produced  during  compression  is  enough  to  cover  losses  for  transfer  and  storage  to  provide  enough  heat  during  expansion.  This  will  reduce  all  of  the  efficiency  equations  to  the  same  expression  (ratio  between  input  electricity  and  output  electricity).    

3.6.  CONSTANTS  Various  constant  values  are  used  in  the  calculation,  both  universally  accepted  constants,  various  component  constants  and  values  approximated  as  constant.    

During  all  applications  of  the  ideal  gas  law  the  gas  constant  has  been  set  to  𝑅 = 8.3143 |}~m  �

 and  for  

air  the  molar  mass  has  been  set  to  𝑀 = 29 �}~m

 making  the  specific  gas  constant  𝑅j = 286.7 |��  �

.    

Constant  values  that  have  been  set  are  efficiencies  for  compressors  and  turbine,  isentropic  efficiency  to  compensate  for  the  error  of  using  isentropic  expansion.  The  pressure  ratios  have  been  set  to  be  seven  for  compression  and  five  for  expansion  and  the  tank  volume  to  15  m3.  There  is  also  a  constant  inlet  pressure  at  which  the  expansion  is  working  at  since  this  will  reduce  stress  on  the  system  and  it  is  also  the  method  used  by  the  already  operating  CAES  plats  (Huang  et  al.,  2018,  Succar  and  Williams,  2008).  These  four  values  can  be  varied  but  as  it  is  not  within  the  scope  of  the  report  to  perform  complicated  optimization  they  were  chosen  to  be  set.    

As  the  system  is  working  at  various  pressures  and  temperatures  the  specific  heat  capacity  varies  accordingly.  The  values  are  extracted  using  (Peace  Software)  and  where  the  specific  heat  capacity  spans  over  a  process  with  different  inlet  and  outlet  properties  and  average  between  inlet  and  average  

Page 22: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  21  

is  used.  Similarly,  the  heat  capacity  ratio  or  isentropic  exponent  is  assumed  to  be  the  constant  value  𝜅 = 1,4.    

Table  1.  Efficiencies  for  various  components  and  processes.    

EFFICIENCIES   COMPRESSOR   TURBINE  (MECHANICAL)   TURBINE  (GENERATOR)   ISENTROPIC  

VALUE   80%   »1   »1   90%  SOURCE   (Zhang  et  al.,  

2014)  (Salvini  et  al.,  2017)   (Salvini  et  al.,  2017)   (Salvini  et  

al.,  2017)    

Table  2.  Specific  heat  capacities  used  during  calculations.    

SPECIFIC  HEAT  CAPACITY   TEMPERATURE(S)  [K]   PRESSURE  [BAR]   CP  (OR  AVERAGE)  [J/KG×K]  

BEFORE  LPC   298     1     1007    1ST  INTERCOOLER   520à298     7     1027,5  BEFORE  HPC   298   7   1017  

2ND  INTERCOOLER     520à298   49   1070  1ST  INTERHEATER   298à472   25   1043  BEFORE  HPT   472   25   1037  

2ND  INTERHEATER   298à472   5   1021  BEFORE  LPT   472   5   1028  

3.7.  ECONOMIC  EVALUATION  The  economic  aspects  of  CAES  is  evaluated  for  the  specific  conditions  and  size  specified  by  the  case  and  dimensioning.  The  created  model  is  used  to  calculate  possible  savings  and  revenues  that  arise  from  installing  the  CAES  system.  The  conclusive  cost  of  electricity  is  then  compared  to  the  cost  deduced  with  the  same  model  but  without  the  CAES  system  to  determine  if  the  system  is  financially  beneficial.  The  result  from  the  comparison  is  used  to  examine  if  the  investment  cost  of  the  CAES  system  to  find  out  if  it  is  profitable.  

3.8.  ELECTRICITY  PRICES  To  calculate  arbitrage  savings  hourly  electricity  prices  are  needed.  Using  statistical  data  from  Nord  Pool  for  the  year  2017  the  average  of  each  hour  for  weekdays  and  weekends  is  calculated  to  match  each  time  step.  Added  to  the  price  is  also  the  current  Swedish  electricity  tax  including  VAT.  Using  the  electricity  prices,  the  cost  of  electricity  with  and  without  the  CAES  system  is  calculated  to  determine  if  CAES  gives  an  income  in  terms  of  arbitrage  or  not.  

3.9.    INVESTMENTS  The  necessary  initial  investments  are  part  of  the  economic  evaluation  of  the  CAES  system.  These  investments  consist  of  all  the  components  needed  to  run  the  system.  The  main  part  of  the  total  capital  cost  is  assumed  to  include  the  capital  cost  of  the  compressors,  turbines,  storage  tank  and  TES.  The  cost  of  components  beyond  the  main  part  is  neglected  due  to  the  assumptions  that  the  cost  of  the  main  part  far  exceeds  the  cost  of  the  remaining  components  such  as  piping  etc.  To  define  the  total  capital  cost  of  the  investments,  the  individual  capital  costs  of  the  main  components  is  approximated  

Page 23: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  22  

by  analyzing  a  range  of  published  literature  which  include  economical  results  of  different  CAES  constructions.  Note  that  a  similar  approach  is  adopted  in  some  of  the  reviewed  literatures.    

The  specific  capital  cost  of  the  components  is  calculated  by  using  information  about  the  cost  and  size  of  the  components  found  in  the  reviewed  literature.  Where  possible,  an  average  value  is  calculated  by  reviewing  several  published  works  and  the  specific  capital  cost  is  then  multiplied  with  the  size  of  the  ingoing  component  in  the  proposed  system.  The  size  of  the  turbine  is  set  to  the  highest  power  the  turbine  need  to  achieve  to  satisfy  the  demand  while  the  size  of  the  compressor  is  set  to  the  hourly  charging  rate  for  the  compression.  Finally,  the  size  of  the  TES-­‐system  is  set  to  the  largest  amount  of  energy  the  system  needs  to  extract  or  supply.  

All  the  costs  have  been  converted  to  2018  SEK  by  firstly  converting  the  currency  in  the  literature  to  SEK  using  an  average  exchange  rate  for  the  year  evaluated  (acquired  using  Oanda  Average  Exchange  Rates  (Oanda))  and  then  using  the  inflation  rate  of  SEK  from  the  evaluated  year  to  2018  to  convert  the  cost  to  SEK  in  2018  (acquired  using  Prisomräknaren  (SCB)).  To  get  an  estimate  of  the  value  of  the  investment  a  net  present  value  (NPV)  is  also  calculated  on  the  premise  that  the  electricity  used  to  compress  air  during  charging  is  obtained  free  of  charge.  The  annual  revenue  is  consequently  the  total  savings  in  electricity  cost  and  income  from  selling  electricity  stored  by  the  energy  storage.  The  NPV  is  calculated  using  Microsoft®  Excel  which  uses  equation  (15)  (Microsoft,  2017).    

𝑁𝑃𝑉 = ∑ g�m��j�(Er��C�)�

n��E         (15)  

In  equation  (15),  n  is  taken  to  be  the  life  expectancy  of  the  system  which  is  set  to  25  years  since  this  is  the  lowest  value  found  in  reviewed  literature  (Huang  et  al.,  2018).  The  discount  rate  is  also  found  in  literature  to  be  around  8-­‐10%  (Eyer  and  Corey,  2010  cited  in  Drury  et  al.,  2011,  Huang  et  al.,  2018)  which  is  why  10%  is  chosen  to  represent  a  worst-­‐case  scenario.  The  NPV  is  also  calculated  for  successively  increasing  electricity  prices  until  the  value  is  positive.    

4.  RESULTS  

4.1.  SYSTEM  PROPERTIES  

4.1.1.   LOAD  PROFILE    For  the  purpose  of  deciding  the  demand  of  the  households,  the  following  load  profiles  are  developed  and  shown  in  figure  3.  Note  that  the  values  of  the  y-­‐axes  are  for  one  household  and  are  later  multiplied  by  ten  to  accommodate  ten  households.  For  weekdays  the  system  is  set  to  be  discharged  between  6:00-­‐9:00  and  16:00-­‐22:00.  As  the  charge  period  is  seven  hours  is  it  set  to  be  charged  between  9:00-­‐16:00  and  23:00-­‐6:00.  For  weekends  the  need  is  greater  (note  that  the  y-­‐axis  is  twice  as  long  during  weekend)  and  therefore  calculations  shows  that  the  system  can  only  supply  electricity  for  a  few  hours.  Therefore,  discharge  hours  are  set  to  be  8:00-­‐12:00  and  15:00-­‐22:00  to  be  charged  between  12:00-­‐15:00  as  well  as  01:00-­‐08:00.  

Page 24: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  23  

 

Figure  3.  Load  profiles  for  one  household  during  Monday-­‐Friday  and  Saturday-­‐Sunday.  

4.1.2.   COMPRESSION  AND  EXPANSION  WORK  During  the  charging  phase  the  two  compressors,  both  working  with  pressure  ratios  of  seven,  using  equation  (4)  demand  449  KJ  to  compress  one  kilogram  air.  Here  it  is  assumed  that  there  are  no  pressure  losses  between  the  two  compressors.  During  the  discharge  phase  the  two  expanders,  working  with  pressure  ratios  of  five,  again  using  equation  (4)  provide  359  KJ  per  kilogram  expanded  air.  The  ratio  between  these  two  is  80%  i.e.  for  the  ideal  case  of  no  losses  it  is  only  possible  to  extract  80%  of  the  input  work  using  these  pressure  ratios.    

4.1.3.   CHARGE  AND  DISCHARGE  Due  to  the  chosen  pressure  ratios  the  storage  functions  between  a  maximum  pressure  of  49  bar  (high  pressure  compressor  outlet)  and  a  minimum  pressure  of  25  bar  (high  pressure  turbine  inlet).  As  it  is  assumed  that  the  ambient  temperature  cancels  out  any  temperature  variation  from  pressure  changes  within  the  storage  the  ideal  gas  law  is  used  to  decide  how  much  mass  these  two  pressures  represent.  The  volume  of  the  storage  is  set  to  15  m3.  The  pressure  variation  between  49  Bar  to  25  Bar  corresponds  to  a  mass  variation  between  860  kg  to  440  kg.  Figure  4  and  figure  5  show  that  there  are  periods  where  the  system  cannot  be  used  as  there  is  no  more  mass  that  can  be  extracted  from  the  storage.  This  is  clarified  in  figure  6  where  it  can  be  observed  that  for  certain  hours  that  maximum  amount  of  mass  that  the  storage  can  provide  during  an  entire  charge  period  is  not  enough  for  one  single  hour.    

0

500

1000

1500

2000

2500

3000

350000:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

Electricity

 use    [Wh]

Hour  of  the  day

LOAD  PROF I LE   FOR  ONE  HOUSEHOLD   -­‐ WEEKDAY

0

1000

2000

3000

4000

5000

6000

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

Electricity

 use    [Wh]

Hour  of  the  day

LOAD  PROF I LE   FOR  ONE  HOUSEHOLD   -­‐ WEEKEND

Page 25: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  24  

 

Figure  4.  The  blue  and  orange  staples  show  variations  in  pressure  during  charge  phase,  discharge  phase  and  the  grey  lines  follows  the  pressure  in  the  storage.  During  periods  where  only  the  grey  line  is  present  the  storage  has  been  emptied  to  

minimum  pressure  and  the  system  is  at  rest.  This  figure  is  true  for  Monday  to  Friday.  

 

Figure  5.  The  blue  and  orange  staples  show  variations  in  pressure  during  charge  phase,  discharge  phase  and  the  grey  lines  follows  the  pressure  in  the  storage.  During  periods  where  only  the  grey  line  is  present  the  storage  has  been  emptied  to  

minimum  pressure  and  the  system  is  at  rest.  This  figure  is  true  for  Saturday  and  Sunday  except  for  the  small  detail  that  for  the  last  hour  of  Sunday  the  pressure  increases  like  in  figure  4  to  accommodate  the  seven-­‐hour  charge  period  for  Monday.  

0,00E+00

1,00E+06

2,00E+06

3,00E+06

4,00E+06

5,00E+06

6,00E+06

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

Pressure  in  storage  at  end

 of  h

our  [Pa

]

Hour  of  the  day  

PRESSURE  VAR IAT IONS   -­‐ WEEKDAY

Charge Discharge Storage

0,00E+00

1,00E+06

2,00E+06

3,00E+06

4,00E+06

5,00E+06

6,00E+06

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

Pressure  in  storage  [Pa]

Hour  of  the  day  

PRESSURE  VAR IAT IONS   -­‐ WEEKEND

Charge Discharge Storage

Page 26: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  25  

 

Figure  6.  The  blue  and  orange  staples  show  the  mass  that  needs  to  be  expanded  to  satisfy  the  demand  of  each  discharge  period.  The  grey  line  is  the  difference  between  maximum  and  minimum  mass.    

4.1.4.   EFFICIENCY    To  describe  the  performance  of  the  CAES  system  the  two  parameters  in  questions  are  the  total  energy  demanded  to  power  the  compression  and  the  total  energy  that  can  be  derived  from  the  expansion  process.  For  one  consecutive  week  the  energy  needed  to  power  the  compressors  is  3.00  MJ  and  the  energy  provided  by  the  expanders  is  1.7  MJ.  Using  equation  (12)  to  decide  efficiency  gives  a  rate  of  47%.    

4.1.5.   HEAT    As  the  pressure  ratios  are  larger  for  the  compression  than  the  expansion,  more  heat  is  created  during  compression  than  is  needed  by  the  expansion.  In  order  to  lower  the  temperature  back  to  inlet  temperature  during  compression  2.5  MJ  needs  to  be  removed  per  kilogram  of  air.  For  the  expansion  2.0  MJ  per  kilogram  of  air  needs  to  be  added,  giving  a  ratio  of  78%.  This  ratio  allows  for  heat  transfer/storage  losses  of  22%  without  having  to  add  external  heat  during  expansion,  which  will  be  assumed  to  be  a  realistic  value.    

4.1.6.   LOSS  DUE  TO  CONSTANT  VOLUME  STORAGE    As  mentioned  in  the  background  the  storage  can  be  designed  to  have  constant  volume  or  constant  pressure.  Due  to  practical  reasons  constant  volume  storage  (tank)  was  chosen  for  this  particular  report,  but  this  gives  greater  losses.  The  expansion  pressure  losses  occur  at  two  stages  during  each  cycle.  First  when  the  air  is  compressed  to  the  maximum  pressure  by  the  high-­‐pressure  compressor  and  then  expands  to  the  pressure  of  the  storage  tank.  Secondly  during  discharge  when  the  pressure  in  the  storage  goes  from  maximum  to  minimum  pressure  and  is  expanded  through  a  throttle  vault  to  enter  the  high-­‐pressure  turbine  at  constant  pressure.  The  losses  can  be  calculated  using  equation  (4)  and  multiplying  by  the  mass  passing  through  that  particular  stage.  For  the  charging  phase  equation  (4)  is  used  to  calculate  how  much  work  is  lost  going  from  49  bar  to  the  pressure  increase  in  the  tank.  For  

0

100

200

300

400

500

600

700

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

Mass  [kg]

Hour  of  the  day

MASS  NEEDED   TO  MEET  DEMAND   FOR   EACH  D I SCHARGE  PER IOD

Weekday Weekend Extractable  mass

Page 27: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  26  

the  discharge  phase  equation  (4)  is  used  to  calculate  how  much  work  is  lost  going  from  the  pressure  decrease  in  the  tank  to  25  bar.  These  losses  are  calculated  as  30.0  MJ.    

4.2.  FINANCIAL  RESULTS  

 

Figure  7.  Average  electricity  spot  price  for  each  hour  during  weekday  and  weekday  for  the  of  2017  (Nordpool,  2018a).  

To  determine  whether  the  system  can  give  any  form  of  revenue  in  terms  of  arbitrage  the  electricity  price  is  used  for  each  time  step.  Above  is  a  graph  of  how  the  electricity  price  varies  for  each  hour  during  weekday  and  weekend.  It  can  be  observed  that  the  load  profiles  correspond  well  to  the  electricity  price  variations  but  also  that  during  one  week  there  are  relatively  low  variations  in  relation  to  the  absolute  price.        

Table  3.  Economic  result  for  a  week  with  and  without  CAES.  

  COST  OF  COMPRESSION  [SEK]   INCOME  [SEK]   TOTAL  ELECTRICITY  COST  [SEK]  WITHOUT  CAES   0   0   1250  WITH  CAES   580     35   1570  

 

Table  4.  Capital  cost  and  characteristics  of  main  components.  

COMPONENT   SIZE     SPECIFIC  COST   CAPITAL  COST  [SEK]  

COMPRESSOR   9.3  [kW]   2700  [SEK/kW]   49  500  SOURCE     (Safaei  et  al.,  2012,  Huang  et  

al.,  2018,  Drury  et  al.,  2011,  Madlener  and  Latz,  2013)    

 

TURBINE   24.6  [kW]   2400  [SEK/kW]   117  000  

SOURCE     (Safaei  et  al.,  2012,  Huang  et  al.,  2018,  Drury  et  al.,  2011,  Madlener  and  Latz,  2013)  

 

0

50

100

150

200

250

300

350

400

0 0-­‐ 0

1

0 1-­‐ 0

2

0 2-­‐ 0

3

0 3-­‐ 0

4

0 4-­‐ 0

5

0 5-­‐ 0

6

0 6-­‐ 0

7

0 7-­‐ 0

8

0 8-­‐ 0

9

0 9-­‐ 1

0

1 0-­‐ 1

1

1 1-­‐ 1

2

1 2-­‐ 1

3

1 3-­‐ 1

4

1 4-­‐ 1

5

1 5-­‐ 1

6

1 6-­‐ 1

7

1 7-­‐ 1

8

1 8-­‐ 1

9

1 9-­‐ 2

0

2 0-­‐ 2

1

2 1-­‐ 2

2

2 2-­‐ 2

3

2 3-­‐ 0

0

SEK/MWH

E LECTRICITY  PRICE  AVERAGES  ON  WEEKDAY  VS.  WEEKEND  2017  

Weekday Weekend

Page 28: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  27  

STORAGE  TANK   15  [m3]   1750  [SEK/m3]   26  000  

SOURCE     (Liu  et  al.,  2014)    TES   390  [MJ]  *   72.5  [SEK/MJ]  **   28  500  SOURCE     (Huang  et  al.,  2018)    

TOTAL           221  000  *  refers  to  the  largest  amount  of  energy  needed  to  be  extracted  during  charging  **  calculated  by  using  information  about  energy  needed  during  a  charging    

Table  5.  Net  present  value  for  two  scenarios.  

SCENARIO   CONDITION   NPV  

1   Zero  cost  charging  electricity   -­‐79  000  2   Zero  cost  charging  electricity  and  Higher  electricity  

price    5  500  

 

It  can  be  observed  from  table  3  that  the  electricity  cost  will  actually  increase  after  installing  the  CAES  system.  The  total  electricity  cost  for  the  observed  week  is  over  25%  higher  with  CAES  compared  to  without.  The  reasons  behind  this  will  be  discussed  in  later  section.  Following  this  conclusion  is  the  fact  that  the  investment  won’t  be  profitable  without  even  considering  the  initial  investment  cost  of                                220  745  SEK  that  is  shown  in  table  4.  Consequently  this  investment  will  never  yield  any  return  making  an  NPV-­‐calculation  obsolete.  However,  table  5  shows  the  NPV  calculations  for  two  other  scenarios.  The  scenario  shows  the  NPV  if  the  electricity  used  to  compress  the  air  could  be  obtained  free  of  cost,  but  this  value  is  negative.  The  second  scenario  includes  the  conditions  of  the  first  with  the  addition  of  a  higher  electricity  price.  The  price  that  yields  a  positive  NPV  is  approximately  120%  larger  than  the  current  price.    

5.  DISCUSSION  

5.1.    ASSUMPTIONS  Various  assumptions  were  made  in  the  model,  some  more  generally  used  than  others.  The  approximation  of  isentropic  process  is  adjusted  for  with  isentropic  efficiency,  which  is  deemed  sufficiently  accurate.  For  the  specific  heat  capacities,  the  upper  and  lower  value  used  do  not  vary  with  more  than  6%  so  even  if  an  average  had  been  used  it  would  have  been  quite  accurate.  Efficiencies  for  compressors  and  expanders  are  approximated  according  to  the  literature  review  and  can  also  be  subject  to  significant  uncertainties  as  they  are  described  to  vary  within  a  span  of  20  percentage  points.  Another  source  of  error  is  the  use  of  the  ideal  gas  law  as  this  is  not  always  the  case  for  air.  In  conclusion,  the  isentropic  efficiency,  specific  heat  capacity  approximations,  compressor/turbine  efficiencies  and  ideal  gas  law  all  each  have  a  level  of  uncertainty  which  should  be  considered  when  reviewing  the  results.    

The  roughest  approximation  made  is  that  the  wall  temperature  of  the  storage  tank  remains  constant.  If  the  tank  was  perfectly  isolated  the  temperature  would  vary  significantly  going  back  and  forth  between  25  bar  to  49  bar.  To  calculate  the  actual  temperature  variation  in  the  storage,  the  conducted  and  convected  heat  need  to  be  mapped  for  each  time  step.  Information  is  needed  about  the  material  

Page 29: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  28  

of  the  surroundings,  the  temperature  variations  of  the  ground,  various  heat  coefficients,  just  to  name  a  few  parameters.  Due  to  the  time  and  resource  limitations  of  this  project  this  was  deemed  too  complicated  to  investigate.  In  the  end  there  were  two  options  for  temperature  variation  in  the  storage:  assume  that  the  ambient  cancels  out  the  temperature  changes  due  to  pressure  variation  or  assume  perfectly  isolated  walls.  Of  these  two  the  former  was  deemed  more  realistic.    

Assumptions  were  also  made  in  the  economical  calculations.  The  capital  cost  of  the  components  is  calculated  from  economic  estimates  in  previous  published  works  on  the  subject.  The  systems  in  the  literature  come  in  a  large  range  of  sizes  and  the  costs  of  these  are  converted  to  a  specific  capital  cost  depending  on  the  size  of  the  component.  The  assumption  is  consequently  that  economies  of  scale  will  not  have  an  impact  on  the  price,  which  is  inaccurate  since  components  of  different  size  do  not  have  the  same  cost  per  unit  output,  but  due  to  the  complexity  of  setting  a  correct  sizing  factor  the  assumption  is  still  made.  Costs  of  labor,  maintenance,  and  components  necessary  for  installation  have  been  neglected.  This  is  due  to  lack  of  information  and  the  assumptions  that  the  cost  of  the  considered  components  will  be  much  larger  than  these  costs  which  will  place  these  costs  within  the  already  large  margin  of  errors  in  the  economical  calculations.  In  summary,  with  the  available  information  an  investment  calculation  that  represent  the  best-­‐case  scenario  is  established  which  is  important  to  have  in  mind.  In  future  studies,  using  a  sizing  factor  to  scale  up  the  cost  should  be  considered  to  more  accurately  assess  the  investment  cost,  if  not  more  accurate  information  about  the  cost  of  specific  components  can  be  attained.  The  uncertainty  of  the  economic  evaluation  makes  these  results  the  one  with  highest  probable  error  and  should  therefore  be  seen  as  guiding  values  rather  than  exact  values.    

5.2.  CONSTANT  VOLUME/VARYING  PRESSURE  VS.  CONSTANT  PRESSURE/VARYING  VOLUME  The  efficiency  for  a  constant  pressure,  varying  volume  system  is  higher  as  the  compression  work  and  expansion  work  would  be  the  same  if  the  system  is  adiabatic.  The  only  losses  would  be  efficiencies  of  various  components  and  losses  from  heat  transfer.  However,  if  work  is  the  same  for  compression  and  expansion  heat  would  have  to  be  added  to  expansion  to  keep  ambient  temperature  unless  the  system  is  perfectly  isolated.  Using  the  same  efficiencies  for  isentropic  process,  components  etc.  the  round-­‐trip  efficiency  of  such  a  system  would  be  70%,  a  significant  increase  from  47%  (note  however  that  TES  efficiency  needs  to  be  added).  However,  there  are  practical  difficulties  that  would  need  to  be  met,  such  as  how  to  create  a  storage  that  varies  in  volume.  A  solution  already  mentioned  is  underwater  storage,  another  solution  could  be  artificial  storage  with  some  sort  of  piston,  but  this  is  far  more  advanced  technology.    

5.3.  OPTIMIZATION    There  are  several  values  that  have  been  set  throughout  the  CAES  process,  starting  with  all  the  set  temperatures.  When  there  is  a  temperature  change  the  heat  exchangers  are  set  to  cancel  this  change  out  but  the  system  could  perhaps  be  made  more  efficiency  if  other  temperatures  are  set.  Examples  of  temperatures  that  need  to  be  optimized  are  whether  it  is  truly  necessary  to  lower  the  temperature  to  ambient  after  the  compressors.  For  the  expansion  side  of  the  process  it  could  perhaps  be  more  efficient  to  further  increase  the  temperature  at  the  inlets  to  be  able  to  extract  more  work.  However,  as  the  economic  results  are  subjected  to  a  large  error  margin  and  the  price  of  the  components  are  necessary  to  optimize  these  parameters  it  has  been  judged  to  be  too  time  demanding  for  the  report.      

As  was  already  mentioned  in  the  methodology  the  pressure  ratio  and  pressure  limitations  of  the  storage  can  be  varied  to  maximize  the  performance  of  the  system.  Higher  pressure  ratios  of  

Page 30: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  29  

compressors  and  expanders  are  larger  and  need  a  higher  power  rating  which  in  turn  makes  them  more  expensive,  so  there  is  a  trade-­‐off  between  performance  and  cost.  Working  between  a  larger  pressure  span  within  the  storage  will  increase  the  amount  of  air  that  can  be  extracted,  but  also  increase  losses.  Thus,  there  is  another  trade-­‐off  between  high  capacity  and  round-­‐trip  efficiency,  at  least  for  constant  volume  storage.  Another  way  to  increase  the  energy  storage  capacity  would  be  to  increase  the  size  of  the  tank.  The  size  is  however  limited  both  by  whether  there  is  enough  space  to  accommodate  it  and  also  additional  cost  of  larger  tanks.    

Regarding  pressure  ratios  for  both  compressor  and  turbine  something  that  could  solve  the  constant  volume  related  pressure  losses  would  be  varying  them.  However,  as  this  requires  more  advanced  technology,  it  was  decided  that  constant  pressure  ratios  are  more  realistic  for  smaller  systems.  This  is  how  the  already  functioning  plants  are  operating,  and  also  gives  advantages  in  terms  of  reducing  stress  with  a  constant  power  outlet.  Another  option  regarding  the  compressor  and  turbine  is  a  combined  machine  which  performs  both  compression  and  expansion.  This  would  not  change  the  efficiency,  but  it  could  lower  the  capital  cost  of  the  machines  since  only  one  machine  would  have  to  be  acquired  instead  of  two.  In  conclusion  that  system  could  with  all  likeliness  be  optimized  to  improve  performance,  but  this  would  require  detailed  information  on  components  and  costs,  which  are  unfortunately  not  available.    

5.4.  PROFITABILITY    One  of  the  possible  advantages  of  energy  storage  is  that  it  creates  a  situation  where  arbitrage  is  present.  The  system  could  use  the  fact  that  electricity  prices  varies  according  to  supply  and  demand  and  buy  low  priced  electricity  to  sell  it  at  a  higher  price.  The  results  show  that  this  is  not  the  case  for  this  system  as  the  electricity  purchased  to  power  the  compressor  is  greater  than  what  is  saved  by  buying  electricity  at  a  lower  price.  This  means  that  even  if  the  capital  costs  did  not  exist  the  system  would  still  cost  money.    

This  leads  to  the  conclusion  that  if  the  electricity  used  to  power  the  compressors  needs  to  be  bought  from  the  grid  there  is  no  profit  whatsoever  from  using  the  CAES  system.  There  are  two  options  to  make  the  system  profitable  in  terms  of  arbitrage:  if  that  energy  is  produced  by  the  consumer  or  if  that  energy  is  provided  free  of  charge  from  the  grid.  If,  for  example,  solar  panels  are  used  and  produce  a  surplus  that  would  otherwise  not  be  used  or  be  sold  to  the  grid  this  energy  could  be  used  to  charge  the  storage.  As  the  profits  for  selling  energy  to  the  grid  are  so  low  it  would  be  a  better  option  to  power  the  CAES  system,  despite  of  the  47%  round-­‐trip  efficiency.  The  other  option  would  be  if  the  electricity  providers  would  provide  the  electricity  to  power  the  system  free  of  charge.  The  reason  that  they  would  do  this  is  that  energy  storage  reduces  the  stress  on  the  system  for  supplying  electricity  during  high  demand  periods.    

An  underlying  problem  for  the  profitability  of  CAES  is  that  the  electricity  prices  are  so  low  that  even  if  the  CAES  can  give  a  large  percentage  savings  of  electricity  bought  from  the  grid,  the  price  is  still  too  low  for  the  savings  to  be  significant  in  absolute  terms.  If  the  electricity  prices  rise  or  the  vary  more  between  peak  and  off-­‐peak  hours  the  profitability  of  a  CAES  system  would  improve  in  terms  of  arbitrage.  

   

Page 31: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  30  

5.5.  LARGE  SCALE  OR  SMALL  SCALE    In  this  report  small  scale  CAES  has  been  investigated,  but  the  existing  solutions  are  all  large  scale.  As  mentioned  in  the  background  the  advantages  of  CAES  can  be  peak  shaving,  load  levelling,  frequency  regulation,  back-­‐up  energy  provision  and  possibly  arbitrage.  Out  of  these  the  only  one  who  has  the  potential  of  directly  affecting  the  end  consumer  is  arbitrage  and  as  it  has  already  been  established  this  is  not  present  in  the  current  system.  It  can  therefore  be  concluded  that  CAES  is  of  interest  to  the  grid  as  a  whole  and  not  the  end  consumer.  This,  in  combination  with  the  disadvantage  of  large  capital  costs,  points  to  large  scale  CAES  being  more  economically  efficient  and  is  likely  the  reason  that  the  only  existing  plants  are  large  scale.  However,  it  is  possible  that  smaller  CAES  plants  also  have  a  positive  impact  on  the  net  as  a  whole  as  could  help  avoid  bottlenecks  and  help  bring  the  supply  closer  to  the  user.      

5.6.  ENVIRONMENTAL  ASPECTS    CAES  has  the  potential  of  giving  a  large  positive  environmental  impact  as  it  could  help  stabilize  the  supply  of  renewable  energy.  If  the  energy  used  to  power  the  compressor  comes  from  a  surplus  of  renewable  energy,  using  CAES  would  make  sure  that  the  energy  still  is  used.  On  long  term  this  could  further  integrate  renewable  energy  into  the  energy  system.  Much  research  has  been  done  on  implementing  CAES  with  wind  power,  and  one  measure  that  could  be  taken  is  to  directly  connect  the  CAES  system  to  the  wind  turbines,  thereby  eliminating  the  need  to  first  produce  electrical  energy  to  be  used  for  compression.  This  leads  into  a  more  general  observation  that  improving  the  round-­‐trip  efficiency  would  also  of  course  decrease  the  environmental  impact  as  less  energy  is  needed  to  produce  the  same  amount  of  electricity.    

Further  implementing  energy  storage  solutions  into  the  grid  could  also  eliminate  the  need  for  burning  coal  to  supply  energy  during  peak  load  periods.  Just  as  the  main  cost  of  a  CAES  plant  is  capital  costs,  the  main  environmental  impacts  correspond  to  the  creating  of  a  storage  and  the  procuring  of  all  components  and  material  used  to  build  the  system.  To  maximize  the  environmental  potential  of  the  CAES  plant  it  is  therefore  important  that  the  system  is  built  in  a  resource-­‐efficient  and  sustainable  manner,  and  that  the  energy  later  used  during  the  systems  life-­‐cycle  is  clean  energy.    

5.7.    SOCIAL  ASPECTS    Of  the  so  called  “three  pillars  of  sustainability”  -­‐  environmental,  economic  and  social  –  the  smallest  overall  effect  is  likely  in  the  social  sphere.  While  its  potential  for  positive  environmental  effects  can  result  in  less  fossil  fuels  being  used  and  thereby  having  indirect  effects  on  human  health  and  wellbeing,  the  direct  social  effects  are  not  as  prominent.  It  could  however  provide  further  possibilities  to  obtain  energy  security  for  isolated  communities  with  none  or  reduced  access  to  the  grid.  An  example  of  this  is  remote  islands  combining  wave  and/or  solar  power  generation  with  energy  storage.  However,  isolated  communities  may  not  have  an  excess  of  available  capital  to  invest  in  a  CAES  facility.  Another  aspect  not  yet  considered  in  this  report  is  noise  pollution,  which  could  have  a  significant  effect  especially  since  the  facility  considered  in  this  report  is  meant  to  be  located  in  close  proximity  to  residential  areas.    

   

Page 32: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  31  

6.  CONCLUSIONS  AND  RECOMMENDATIONS  There  are  several  different  ways  of  designing  a  CAES  system  and  there  are  elements  in  the  entire  cycle  from  compression  to  expansion  that  are  of  interest  from  an  engineering  perspective.  This  report  proposes  one  system  set-­‐up  alternative  but  for  future  studies  an  important  objective  is  to  develop  an  optimization  model  that  could  vary  certain  properties  within  the  system  to  determine  optimal  values  to  improve  efficiency  and  economic  gains.  The  results  from  this  report  suggests  that  using  small  scale  CAES  is  not  economically  viable  if  the  electricity  used  for  charging  is  bought  at  today’s  electricity  price  and  without  any  other  economic  benefits.  It  could  however  be  made  feasible  during  other  circumstances  which  might  inspire  further  studies  on  the  subject  especially  since  CAES  have  potential  to  be  a  more  sustainable  alternative  to  fossil  fuels  in  the  energy  system.  The  results  show  that  the  positive  effects  of  CAES  concern  the  grid  as  a  whole  proposing  that  the  stakeholders  with  most  interest  in  CAES  should  be  the  energy  companies  and  grid  developers,  not  the  end  consumer.  For  developing  CAES  infrastructure  it  is  therefore  recommended  that  this  is  carried  out  by  the  main  benefitting  stakeholders,  rather  than  the  consumers  or  other  smaller  actors.      

   

Page 33: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  32  

7.  REFERENCES  ABB.  2016.  Frequency  regulation  [Online].  Available:  http://new.abb.com/substations/energy-­‐storage-­‐

applications/frequency-­‐regulation  [Accessed  2018-­‐04-­‐10].  BULLOUGH,  C.,  GATZEN,  C.,  JAKIEL,  C.,  KOLLER,  M.,  NOWI,  A.  &  ZUNFT,  S.  2004.  Advanced  Adiabatic  

Compressed  Air  Energy  Storage  for  the  Integration  of  Wind  Energy.  London  UK:  Proceedings  of  the  European  Wind  Energy  Conference    EWEC  2004.  

BYMAN,  K.  2016.  Electricity  production  in  Sweden.  IVA’s  Electricity  Crossroads  project.  Royal  Swedish  Academy  of  Engineering  Sciences,  IVA.  

CHO,  J.,  JEONG,  S.  &  KIM,  Y.  2015.  Commercial  and  research  battery  technologies  for  electrical  energy  storage  applications.  Progress  in  Energy  and  Combustion  Science,  48,  84-­‐101.  

DENHOLM,  P.,  ELA,  E.,  KIRBY,  B.  &  MILLIGAN,  M.  2010.  The  Role  of  Energy  Storage  with  Renewable  Electricity  Generation.  National  Renewable  Energy  Laboratory.  

DONADEI,  S.  &  SCHNEIDER,  G.  S.  2016.  Compressed  Air  Energy  Storage  in  Underground  Formations.  DRURY,  E.,  DENHOLM,  P.  &  SIOSHANSI,  R.  2011.  The  value  of  compressed  air  energy  storage  in  energy  

and  reserve  markets.  Energy,  36,  4959-­‐4973.  E.ON.  2007.  Lilla  Energisparboken  [Online].  Available:  

https://www.ystad.se/globalassets/dokument/lou/avd-­‐f-­‐strat-­‐miljoarb/lilla-­‐energisparboken.pdf  [Accessed  2018-­‐02-­‐20].  

GARVEY,  S.  D.  &  PIMM,  A.  2016.  Chapter  5  -­‐  Compressed  Air  Energy  Storage,  Elsevier  Inc.  HARTMANN,  N.,  VOHRINGER,  O.,  KRUCK,  C.  &  ELTROP,  L.  2012.  Simulation  and  analysis  of  different  

adiabatic  Compressed  Air  Energy  Storage  plant  configurations.  Applied  Energy,  93,  541-­‐548.  HUANG,  Y.,  KEATLEY,  P.,  CHEN,  H.  S.,  ZHANG,  X.  J.,  ROLFE,  A.  &  HEWITT,  N.  J.  2018.  Techno-­‐economic  

study  of  compressed  air  energy  storage  systems  for  the  grid  integration  of  wind  power.  International  Journal  of  Energy  Research,  42,  559-­‐569.  

IBRAHIM,  H.,  ILINCA,  A.  &  PERRON,  J.  2008.  Energy  storage  systems  -­‐  Characteristics  and  comparisons.  Renewable  &  Sustainable  Energy  Reviews,  12,  1221-­‐1250.  

IPCC  (INTERGOVERNMENTAL  PANEL  ON  CLIMATE  CHANGE)  2016.  Renewable  Energy  Sources  and  Climate  Change  Mitigation.  167.  

KUHLMAN,  T.  &  FARRINGTON,  J.  2010.  What  is  Sustainability?  Sustainability,  2,  3436.  LIU,  J.  C.,  ZHANG,  X.  J.,  XU,  Y.  J.,  CHEN,  Z.  Y.,  CHEN,  H.  S.  &  TAN,  C.  Q.  2014.  Economic  Analysis  of  using  

Above  Ground  Gas  Storage  Devices  for  Compressed  Air  Energy  Storage  System.  Journal  of  Thermal  Science,  23,  535-­‐543.  

LUND,  H.  &  SALGI,  G.  2009.  The  role  of  compressed  air  energy  storage  (CAES)  in  future  sustainable  energy  systems.  Energy  Conversion  and  Management,  50,  1172-­‐1179.  

MADLENER,  R.  &  LATZ,  J.  2013.  Economics  of  centralized  and  decentralized  compressed  air  energy  storage  for  enhanced  grid  integration  of  wind  power.  Applied  Energy,  101,  299-­‐309.  

MICROSOFT.  2017.  NPV  function  [Online].  Available:  https://support.office.com/en-­‐us/article/npv-­‐function-­‐8672cb67-­‐2576-­‐4d07-­‐b67b-­‐ac28acf2a568  [Accessed  2018-­‐04-­‐26].  

MOLINA,  M.  G.  2017.  Energy  Storage  and  Power  Electronics  Technologies:  A  Strong  Combination  to  Empower  the  Transformation  to  the  Smart  Grid.  Proceedings  of  the  Ieee,  105,  2191-­‐2219.  

NORDPOOL.  2018a.  Historical  Market  Data:  Consumption  SE  Areas  2017  Hourly  [Online].  Available:  https://www.nordpoolgroup.com/historical-­‐market-­‐data/  [Accessed  2018-­‐03-­‐15].  

NORDPOOL.  2018b.  The  power  market  [Online].  Available:  https://www.nordpoolgroup.com/the-­‐power-­‐market/  [Accessed  2018-­‐04-­‐30].  

OANDA.  Available:  https://www.oanda.com/currency/average  [Accessed  2018-­‐05-­‐01].  PEACE  SOFTWARE.  Available:  http://www.peacesoftware.de/einigewerte/luft_e.html  [Accessed  2018-­‐

05-­‐01].  PIMM,  A.  &  GARVEY,  S.  D.  2016.  Chapter  7  -­‐  Underwater  Compressed  Air  Energy  Storage,  Elsevier  Inc.  SAFAEI,  H.,  KEITH,  D.  W.  &  HUGO,  R.  J.  2012.  Compressed  air  energy  storage  (CAES)  with  compressors  

distributed  at  heat  loads  to  enable  waste  heat  utilization.  Applied  Energy.  

Page 34: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

  33  

SALVINI,  C.,  MARIOTTI,  P.  &  GIOVANNELLI,  A.  2017.  Compression  and  Air  Storage  Systems  for  Small  Size  CAES  Plants:  Design  and  Off-­‐design  Analysis.  In:  CAETANO,  N.  D.,  FELGUEIRAS,  M.  C.  &  FORMENT,  M.  A.  (eds.)  3rd  International  Conference  on  Energy  and  Environment  Research,  Iceer  2016.  

SCB.  Available:  https://www.scb.se/hitta-­‐statistik/sverige-­‐i-­‐siffror/prisomraknaren/  [Accessed  2018-­‐05-­‐01].  

SHENG,  L.,  ZHOU,  Z.,  CHARPENTIER,  J.  F.  &  BENBOUZID,  M.  E.  H.  2017.  Stand-­‐alone  island  daily  power  management  using  a  tidal  turbine  farm  and  an  ocean  compressed  air  energy  storage  system.  Renewable  Energy,  103,  286-­‐294.  

STOCKHOLM  RESILIENCE  CENTRE.  2018.  The  nine  planetary  boundaries  [Online].  Available:  http://www.stockholmresilience.org/research/planetary-­‐boundaries/planetary-­‐boundaries/about-­‐the-­‐research/the-­‐nine-­‐planetary-­‐boundaries.html  [Accessed  2018-­‐02-­‐09].  

SUCCAR,  S.  &  WILLIAMS,  R.  H.  2008.  Compressed  Air  Energy  Storage:  Theory,  Resources,  And  Applications  For  Wind  Power.  Princeton  Environmental  Institute,  Princeton  University.  

UN  (UNITED  NATIONS)  1987.  Our  Common  Future  -­‐  Brundtland  Report.  204.  UN  (UNITED  NATIONS)  2016.  The  Sustainable  Development  Goals  Report  2016.  24.  ZHANG,  Y.,  YANG,  K.,  LI,  X.  &  XU,  J.  2014.  Thermodynamic  analysis  of  energy  conversion  and  transfer  in  

hybrid  system  consisting  of  wind  turbine  and  advanced  adiabatic  compressed  air  energy  storage.  Energy,  77,  460-­‐477.  

ZHAO,  P.,  GAO,  L.,  WANG,  J.  &  DAI,  Y.  2016a.  Energy  efficiency  analysis  and  off-­‐design  analysis  of  two  different  discharge  modes  for  compressed  air  energy  storage  system  using  axial  turbines.  Renewable  Energy,  85,  1164-­‐1177.  

ZHAO,  P.,  GAO,  L.,  WANG,  J.  F.  &  DAI,  Y.  P.  2016b.  Energy  efficiency  analysis  and  off-­‐design  analysis  of  two  different  discharge  modes  for  compressed  air  energy  storage  system  using  axial  turbines.  Renewable  Energy,  85,  1164-­‐1177.  

 

Page 35: Compressed air energy storage - Diva1214933/...DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Compressed air energy storage Process review and case study

TRITA TRITA-ABE-MBT-18172

www.kth.se