composition and structure of mantle lithosphere in the russian far east according to xenolths...

1
Composition and structure of mantle lithosphere in the Russian Far East according to xenolths study.. V Prikhodko (1), I. Ashchepkov (2), T. Ntaflos (3), A. Barkar (4), S Vysotsky (1), S Esin (2), V Kutolin (2), A. Prussevich (2) (1) Institute of Tectonics and Geophysics (Far-Eastern Branch, RAS), Khabarovsk, Russia , (2) Institute of Geology and Mineralogy, Geodynamics, Novosibirsk, Russian Federation, (3) Vienna University, A-1090Vienna, Austria, (4) Far East Geological Institute F-EB RAS, Khabarovsk, Russia,Vladivistok, Russia regions (plateaus) show spatial -temporal variations of thee mineral chemistry determined for 550 xenoliths and TRE in IGM Novosibirsk but rather similar bulk rock compositions. In the N Eastern volcanic zone in Sovgavan plateau the xenoliths bearing basalts occur in late stages of the Miocen - Pleocene basalt plateau (Tuttochi), in the late extrusions (necks) and dykes and the post erosion enclosed valley flows (Sunku and Kamky) scoria cones (MountKurgan) where amphiboles occurred in hybrid websterites. In Southern Sikhote Alin in Shkotkov plteau Fe- lherzolites with amphiboles and mica dominate in the basement lavas. The Pliocene Pogelbanochny neck and lava flow contain y large xenoliths (to 1 m) (Scheka , 1981) sapphires and some other gems (Vysotsky et al ., 2009). The xenolith in the western volcanic zones – Lesozovoskaya, Medvezhy contains kelyphites after garnets and Phl veins The Cr- diopsides in Tuttochi are more (Na, Al , Ti) depleted and dispersed, in Kamky flow Fe-rich trends is found similar to relation for CPx in Sunku flow and Mount Kurgan. The early stage Nelma and Shkotov palateu Cr-Di show high dispersion and Fe-metasomatism. Mesozoic Anyui Cpx are less Na-Ti-Al riched. The Sp refer to most Al rich OSMA part with are Cr-picotites equilibrated with garnets (16-24% Cr2O3). Calculated PT geotherms 90 mWm-2 everywhere starts near Gar stability at18kabrs. The Western fields show lower mantle thermal gradients. In basaltic plateau P-Fe# trends show percolation trends increasing P-Fe# with Cpx pressure lower then Opx. Those from latest scoria cones demonstrates sub adiabatic PT trajectories (MountKurgan) or Fe# rising to bottom (Medvezhy) formed by melt interaction. The basement plateau Shkotov xenolith reveal first thermal plum impact and subvertical magma channel trend TRE determined by LAMICP IGM for Sovgavan Cr- diopsides (Sanky-Koppy rivers and Mount Kurgan) show that in lava plateau stage Cpx in spinel facies have LREE Zr, Hf, Nb, Ta depleted patterns common for subduction related mantle melts. The Pliocene post erosion lava xenoliths’s CPX reveal humped REE patterns, small depletions in Zr deeper in Ta corresponding to minor garnet in source. Clinopyroxenes from Amph- bearing websteritis are closer in TRE to to melts burn in garnet- bearing lherzolites (HFSE enriched U, Th spidergrams indication carbonatite metasomatism. Cpx in Podgelbanochny xenoliths (Ionov, 1995) reveal LREE - Th, U, Nb, Ta enriched content probably related to carbonatitic metasomatism or melts formed after decomposition of Amph – Phl measomaic association. The small Zr and Pb minima suppose sulfide and minor rutile precipitation. The host plume of Pliocene basalts are close to derived from primitive mantle source deviating in Sr (peak) small fluctuations in Zr- Hf. Reconstructed with KD parental liquids for websterites from MountKurgan are close to erupted lavas in La/Ybn . Melts parental for Cr- Di in the xenoliths from Podgelbanochny are more enriched. The sequence of xenolths show the sequent enrichment of the mantle columns beneath basaltic plateaus with the melts of subduction related to plume source. RBRF grant 11-05-00060. 6 8 10 12 FeO % 0 1 2 3 4 CaO % 6 8 10 12 FeO % 0 0.1 0.2 0.3 0.4 TiO 2 % 6 8 10 12 14 16 0.1 0.2 0.3 0.4 0.5 Na 2 O % 6 8 10 12 FeO % 2 4 6 8 Al 2 O 3 % 6 8 10 12 FeO % 40 42 44 46 48 S iO 2 % 6 8 10 12 14 16 0.1 0.2 0.3 MnO % Mount Kurgan S anku Nelma Barkhotny Bulk Rocks 2 4 6 FeO % 0 0.4 0.8 1.2 1.6 2 Cr 2 O 3 % 2 4 6 FeO % 0 0.2 0.4 0.6 0.8 1 TiO 2 % 2 4 6 1 2 3 Na 2 O % 2 4 6 FeO % 4 8 12 Al 2 O 3 % Anyui 2 4 6 FeO % 0 0.4 0.8 1.2 1.6 2 Cr 2 O 3 % 2 4 6 FeO % 0 0.2 0.4 0.6 0.8 1 TiO 2 % 2 4 6 1 2 3 Na 2 O % 2 4 6 FeO % 4 8 12 Al 2 O 3 % Nelma 2 4 6 FeO % 0 0.4 0.8 1.2 1.6 2 Cr 2 O 3 % 2 4 6 FeO % 0 0.2 0.4 0.6 0.8 1 T iO 2 % 2 4 6 1 2 3 Na 2 O % 2 4 6 FeO % 4 8 12 Al 2 O 3 % S anku 2 4 6 FeO % 0 0.4 0.8 1.2 1.6 2 Cr 2 O 3 % 2 4 6 FeO % 0 0.2 0.4 0.6 0.8 1 T iO 2 % 2 4 6 1 2 3 Na 2 O % 2 4 6 FeO % 4 8 12 Al 2 O 3 % Shkotovsky 2 4 6 FeO % 0 0.4 0.8 1.2 1.6 2 Cr 2 O 3 % 2 4 6 FeO % 0 0.2 0.4 0.6 0.8 1 TiO 2 % 2 4 6 1 2 3 Na 2 O % 2 4 6 FeO % 4 8 12 Al 2 O 3 % Podgelbanochny 2 4 6 FeO % 0 0.4 0.8 1.2 1.6 2 Cr 2 O 3 % 2 4 6 FeO % 0 0.2 0.4 0.6 0.8 1 TiO 2 % 2 4 6 1 2 3 Na 2 O % 2 4 6 FeO % 4 8 12 Al 2 O 3 % Mount Kurgan 2 4 6 FeO % 0 0.4 0.8 1.2 1.6 2 Cr 2 O 3 % 2 4 6 FeO % 0 0.2 0.4 0.6 0.8 1 T iO 2 % 2 4 6 1 2 3 Na 2 O % 2 4 6 FeO % 4 8 12 Al 2 O 3 % Kamku 2 4 6 FeO % 0 0.4 0.8 1.2 1.6 2 Cr 2 O 3 % 2 4 6 FeO % 0 0.2 0.4 0.6 0.8 1 T iO 2 % 2 4 6 1 2 3 Na 2 O % 2 4 6 FeO % 4 8 12 Al 2 O 3 % Tuttocha 2 4 6 FeO % 0 0.4 0.8 1.2 1.6 2 Cr 2 O 3 % 2 4 6 FeO % 0 0.2 0.4 0.6 0.8 1 TiO 2 % 2 4 6 1 2 3 Na 2 O % 2 4 6 FeO % 4 8 12 Al 2 O 3 % Medvezhy 2 4 6 FeO % 0 0.4 0.8 1.2 1.6 2 Cr 2 O 3 % 2 4 6 FeO % 0 0.2 0.4 0.6 0.8 1 T iO 2 % 2 4 6 1 2 3 Na 2 O % 2 4 6 FeO % 4 8 12 Al 2 O 3 % Lesozovodskaya 0 10 20 30 0.0 0.1 0.2 0.3 0.4 V 2 O 5 % 0 10 20 30 0.0 0.2 0.4 0.6 0.8 1.0 T iO 2 % 0 10 20 30 Cr 2 O 3 % 0.0 0.2 0.4 0.6 NiO % 0 10 20 30 40.0 50.0 60.0 Al 2 O 3 % K am ku 94 92 90 88 86 Fo 0.0 0.2 0.4 0.6 0.8 1.0 Cr # % 0 10 20 30 0.0 0.1 0.2 0.3 0.4 V 2 O 5 % 0 10 20 30 0.0 0.2 0.4 0.6 0.8 1.0 T iO 2 % 0 10 20 30 Cr 2 O 3 % 0.0 0.2 0.4 0.6 NiO % 0 10 20 30 40.0 50.0 60.0 Al 2 O 3 % Podgelbanochny 94 92 90 88 86 Fo 0.0 0.2 0.4 0.6 0.8 1.0 Cr # % 0 10 20 30 0.0 0.1 0.2 0.3 0.4 V 2 O 5 % 0 10 20 30 0.0 0.2 0.4 0.6 0.8 1.0 T iO 2 % 0 10 20 30 Cr 2 O 3 % 0.0 0.2 0.4 0.6 NiO % 0 10 20 30 40.0 50.0 60.0 Al 2 O 3 % T u ttoch a 94 92 90 88 86 Fo 0.0 0.2 0.4 0.6 0.8 1.0 Cr # % 0 10 20 30 0.0 0.1 0.2 0.3 0.4 V 2 O 5 % 0 10 20 30 0.0 0.2 0.4 0.6 0.8 1.0 T iO 2 % 0 10 20 30 Cr 2 O 3 % 0.0 0.2 0.4 0.6 NiO % 0 10 20 30 40.0 50.0 60.0 Al 2 O 3 % M edvezhy 94 92 90 88 86 Fo 0.0 0.2 0.4 0.6 0.8 1.0 Cr # % 0 10 20 30 Cr 2 O 3 % 0.0 0.2 0.4 0.6 0.8 1.0 T iO 2 % 0 10 20 30 40.0 50.0 60.0 Al 2 O 3 % L esozovodskaya 94 92 90 88 86 Fo 0.0 0.2 0.4 0.6 0.8 1.0 Cr # % 0 10 20 30 0.0 0.2 0.4 0.6 0.8 1.0 T iO 2 % 0 10 20 30 40.0 50.0 60.0 Al 2 O 3 % Sanku 94 92 90 88 86 Fo 0.0 0.2 0.4 0.6 0.8 1.0 Cr # % 0 10 20 30 Cr 2 O 3 % 0.0 0.2 0.4 0.6 0.8 1.0 TiO 2 % 0 10 20 30 40.0 50.0 60.0 Al 2 O 3 % Nelma 94 92 90 88 86 Fo 0.0 0.2 0.4 0.6 0.8 1.0 Cr # % 0.0 5 0 .10 0.15 0.2 0 0.25 0 .30 0 .35 40 30 20 10 600 800 1000 1200 1400 40 30 20 10 0 P(kbar) Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 8.0 40 30 20 10 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 40 30 20 10 - LogF O 2 1.C aO in G ar 2. Al2O 3 in Opx 3. Cr2O 3 in Cpx 4. TiO 2 in C hr 5.Cr2O 3 in Ilm SEA T o C 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 S h k otov p latea u basem ent G raphite D iamond 0.0 5 0.10 0.1 5 0.2 0 0 .25 0 .30 0.35 40 30 20 10 600 800 1000 1200 1400 40 30 20 10 0 P(kbar) Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.0 8.0 40 30 20 10 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 40 30 20 10 - LogF O 2 SEA T o C 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 1. O pxB rM c 2.C pxA s 3. C P x N T00 4.C hrA s T uttocha G rap hite Diamond 0.05 0.1 0 0.15 0.2 0 0.25 0 .30 0.3 5 40 30 20 10 600 800 1000 1200 1400 40 30 20 10 0 P(kbar) Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 8.0 40 30 20 10 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 40 30 20 10 - LogF O 2 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in Cpx 4. TiO2 in Chr 5.Cr2O3 in Ilm SEA T o C 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 Sanku G raphite Diamond 0 .05 0 .10 0 .15 0.20 0.25 0.3 0 0.3 5 40 30 20 10 600 800 1000 1200 1400 40 30 20 10 0 P(kbar) Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 8.0 40 30 20 10 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 40 30 20 10 - LogF O 2 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. T iO 2 in C hr 5.Cr2O3 in Ilm SEA T o C 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 Nelma G raphite Diamond 0.05 0.10 0.15 0.20 0.25 0.30 0.35 40 30 20 10 600 800 1000 1200 1400 40 30 20 10 0 P(kbar) Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.0 8.0 40 30 20 10 Variationa of C px, O px, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 40 30 20 10 - LogF O 2 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in Cpx 4. TiO 2 in C hr 5.Cr2O3 in Ilm SEA T o C 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 K urgan G rap hite Diamond 0 .05 0.1 0 0.15 0.20 0.25 0.30 0.35 40 30 20 10 600 800 1000 1200 1400 40 30 20 10 0 P(kbar) Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 8.0 40 30 20 10 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 40 30 20 10 - LogF O 2 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O3 in C px 4. TiO 2 in Chr 5.Cr2O3 in Ilm SEA T o C 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 L esozovodskaya Graphit e Diamond 0.0 5 0 .10 0.15 0.2 0 0.25 0 .30 0 .35 40 30 20 10 600 800 1000 1200 1400 40 30 20 10 0 P(kbar) Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 8.0 40 30 20 10 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 40 30 20 10 - LogF O 2 1.C aO in G ar 2. Al2O 3 in Opx 3. Cr2O 3 in Cpx 4. TiO 2 in C hr 5.Cr2O 3 in Ilm SEA T o C 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 M edvezhy Graph ite D iamond 0.05 0.1 0 0 .15 0.20 0.2 5 0.30 0.3 5 40 30 20 10 600 800 1000 1200 1400 40 30 20 10 0 P(kbar) Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.0 8.0 40 30 20 10 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 40 30 20 10 - LogF O 2 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O3 in C px 4. TiO 2 in C hr 5.Cr2O3 in Ilm SEA T o C 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 P o d g elb a n o ch n y G raphite Diamond 0 .05 0.10 0 .15 0.20 0.25 0.3 0 0.35 40 30 20 10 600 800 1000 1200 1400 40 30 20 10 0 P(kbar) Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.0 8.0 40 30 20 10 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 40 30 20 10 - LogF O 2 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in Cpx 4. TiO2 in C hr 5.Cr2O3 in Ilm SEA T o C 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 A nyui G raphite Diamond Mz stage Lava plateau basement Lava plateau basement Top of lava plateau Enclosed lava flow Latest cinder cone 0.0 5 0.10 0.15 0 .20 0.2 5 0.30 0.3 5 40 30 20 10 600 800 1000 1200 1400 40 30 20 10 0 P(kbar) Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 8.0 40 30 20 10 V ariationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 40 30 20 10 - LogF O 2 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O 3 in C px 4. TiO2 in C hr 5.Cr2O 3 in Ilm SEA T o C 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 K am ku G raphite Diamond 1. O pxB rK o90P eN e 2.C pxA s10 3. C P x N T00 4.C hrA s 0 50 100 150 200км 50 44° 48° 52° 56° 138° 132° 126° 126° 120° 144° 138° 132° 148° 44° 52° 56° 48° м. Поворотный м . А ле к с анд р а м . Не ве ль с кого м.Сю р к у м м. П ес ч ан ы й м .Зол от ой Алд ан Т ын да Ни ко лае в ск - н а - Аму ре Ко мс ом о ль ск-н а-Ам у ре С ов е т с ка я Га в а нь ХАБАРОВС К З ея БЛАГОВЕЩ Е Н С К Хэй хэ Б ел ого рск Св обо дны й И звестковы й Биробиджан Ц зям усы Сып и н Ш энь я н Ц ицик ар Х АРБ ИН Г И РИ Н Ч анч у н ь Ч хон джин М удань цзян С пасск-Дальний Уссурийск Д аль негорск ВЛАДИВОСТОК ОХОТС К ОЕ Ма я С е в. У й Аим У ч у р А л да н Гы н ым Ид ю м Ал га м а З е я Ма я Уда У да Н о р а Г и лю й Н ю к жа Ш илка Ам у р Ам у эр хэ А р г ун ь О лек ма Т у нг и р К ал ар Ч а р а О л е к м а Алд ан Г онам Зе йс кое вд хр . Хум а эрх э Зея Том ь Т ы рм а У р м и К у р Гу р А ню й К п о п и С а ма рга Х ор Х ор Б ик ин У с с ури Гэнь хэ Г а нь хэ Ну н ьц з я н Но м и н ь х э Чо л Ял у хэ Н у н ь ц з я н Х у л а н ь х э Су н г а ри Л а л ин ьх э М у д а н ь ц з я н М ул инх э оз.Ханка У ссур и Б о л . У с с у р к а Ту м ы н ь ц з я н Ял у ц з ян Хой ф а х э С у н г а ри в д х р.С у н г ари С у нг ар и А м ур Та в а н ьх э Н ао лихэ Бур е я Б у р ея о з.Чу кчаги рско е Б ич и о з д ыл ь А м у р Амг унь з а л . А ка д е м и и Т у г у рск и й з ал и в У д скаяг уб а Уч у р С у та м Т и мп то н Амг унь Г о рю н С е л е м дж а Ту м н и н Я П О Н С КО Е М О Р Е М ОР Е Ш АН ТА РСК ИЕ О СТР ОВА о .Фек лист ова о. Б.Ш ант ар о. М анта р о .Бел ичи й о . И о н ы О.СА Х АЛИН О ОКК АЙ Д О . Х о . Ре б у н о . Рис ир и О О Н СЮ . Х 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Japan See 1. red circle Possible to rich with car or train; 2 blue circle – access with helicopter; 3. blue quadralateral – with helicopter not vsitited; 4 red quadralateral – possible to go by car, unvisited 1.- Tokinsky Stanovic (papers from Ionov). There are two more localities with large xenoliths unvisited by Ionov 1. February volcanoe not large but within craton 3. Bolonsky volcanoe. Leucite basalts. Xenoliths are small 4. Innokenteivsky volcanoe. Spinel peridotites highly variabl in Fe#. 5. Barhatny volcanoe. 1.5 ours from Khabarovsk by car. 6. Alchansky volcanoe 7. Mukhensky volcanoe 8. Anyui volcanoe group (3 volcanoes) 9. Samartginskoe field (>10 volcanoes) 10. 2 volcanoes with xenoliths 11. Granfather and Granmather volcanoes 12. Bikin volcanoe group. 13. Volcanoe near the deposit Vostok -2. 14. Medvezhy (Baer) volcanoe. 15. Volcanoes Kirovs highlands. 16. Sviayaga volcanoe (several cones) 17. Mareevsky volcanoe 18. Podgelbanochny volcanoe. 19. Starikov creek 20. Tuttochi volcanoe in Sovgavan fiels. 21. Gatka volcanoe 22. Kurgan montain 23. Lachama volcanoe.

Upload: annice-dortha-mccarthy

Post on 17-Jan-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Composition and structure of mantle lithosphere in the Russian Far East according to xenolths study.. V Prikhodko (1), I. Ashchepkov (2), T. Ntaflos (3),

Composition and structure of mantle lithosphere in the Russian Far Eastaccording to xenolths study..

V Prikhodko (1), I. Ashchepkov (2), T. Ntaflos (3), A. Barkar (4), S Vysotsky (1), S Esin (2), V Kutolin (2), A. Prussevich (2)(1) Institute of Tectonics and Geophysics (Far-Eastern Branch, RAS), Khabarovsk, Russia , (2) Institute of Geology and Mineralogy, Geodynamics, Novosibirsk, Russian Federation, (3) Vienna

University, A-1090Vienna, Austria, (4) Far East Geological Institute F-EB RAS, Khabarovsk, Russia,Vladivistok, Russia

regions (plateaus) show spatial -temporal variations of thee mineral chemistry determined for 550 xenoliths and TRE in IGM Novosibirsk but rather similar bulk rock compositions.In the N Eastern volcanic zone in Sovgavan plateau the xenoliths bearing basalts occur in late stages of the Miocen - Pleocene basalt plateau (Tuttochi), in the late extrusions (necks) and dykes and the post erosion enclosed valley flows (Sunku and Kamky) scoria cones (MountKurgan) where amphiboles occurred in hybrid websterites. In Southern Sikhote Alin in Shkotkov plteau Fe- lherzolites with amphiboles and mica dominate in the basement lavas. The Pliocene Pogelbanochny neck and lava flow contain y large xenoliths (to 1 m) (Scheka , 1981) sapphires and some other gems (Vysotsky et al ., 2009). The xenolith in the western volcanic zones – Lesozovoskaya, Medvezhy contains kelyphites after garnets and Phl veins The Cr- diopsides in Tuttochi are more (Na, Al , Ti) depleted and dispersed, in Kamky flow Fe-rich trends is found similar to relation for CPx in Sunku flow and Mount Kurgan. The early stage Nelma and Shkotov palateu Cr-Di show high dispersion and Fe-metasomatism. Mesozoic Anyui Cpx are less Na-Ti-Al riched. The Sp refer to most Al rich OSMA part with are Cr-picotites equilibrated with garnets (16-24% Cr2O3). Calculated PT geotherms 90 mWm-2 everywhere starts near Gar stability at18kabrs. The Western fields show lower mantle thermal gradients. In basaltic plateau P-Fe# trends show percolation trends increasing P-Fe# with Cpx pressure lower then Opx. Those from latest scoria cones demonstrates sub adiabatic PT trajectories (MountKurgan) or Fe# rising to bottom (Medvezhy) formed by melt interaction. The basement plateau Shkotov xenolith reveal first thermal plum impact and subvertical magma channel trend TRE determined by LAMICP IGM for Sovgavan Cr- diopsides (Sanky-Koppy rivers and Mount Kurgan) show that in lava plateau stage Cpx in spinel facies have LREE Zr, Hf, Nb, Ta depleted patterns common for subduction related mantle melts. The Pliocene post erosion lava xenoliths’s CPX reveal humped REE patterns, small depletions in Zr deeper in Ta corresponding to minor garnet in source. Clinopyroxenes from Amph- bearing websteritis are closer in TRE to to melts burn in garnet- bearing lherzolites (HFSE enriched U, Th spidergrams indication carbonatite metasomatism. Cpx in Podgelbanochny xenoliths (Ionov, 1995) reveal LREE - Th, U, Nb, Ta enriched content probably related to carbonatitic metasomatism or melts formed after decomposition of Amph – Phl measomaic association. The small Zr and Pb minima suppose sulfide and minor rutile precipitation. The host plume of Pliocene basalts are close to derived from primitive mantle source deviating in Sr (peak) small fluctuations in Zr- Hf. Reconstructed with KD parental liquids for websterites from MountKurgan are close to erupted lavas in La/Ybn . Melts parental for Cr- Di in the xenoliths from Podgelbanochny are more enriched. The sequence of xenolths show the sequent enrichment of the mantle columns beneath basaltic plateaus with the melts of subduction related to plume source. RBRF grant 11-05-00060.

6 8 10 12FeO %

0

1

2

3

4

CaO

%

6 8 10 12FeO %

0

0.1

0.2

0.3

0.4

TiO

2 %

6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5N

a 2O

%

6 8 10 12FeO %

2

4

6

8

Al 2

O3

%

6 8 10 12FeO %

40

42

44

46

48

SiO

2 %

6 8 10 12 14 16

0.1

0.2

0.3

MnO

%

Mount KurganSankuNelmaBarkhotny

Bulk Rocks

2 4 6FeO %

0

0.4

0.8

1.2

1.6

2

Cr 2

O3

%

2 4 6FeO %

0

0.2

0.4

0.6

0.8

1

TiO

2 %

2 4 6

1

2

3

Na 2

O %

2 4 6FeO %

4

8

12

Al 2

O3

%

Anyui

2 4 6FeO %

0

0.4

0.8

1.2

1.6

2

Cr 2

O3

%

2 4 6FeO %

0

0.2

0.4

0.6

0.8

1

TiO

2 %

2 4 6

1

2

3

Na 2

O %

2 4 6FeO %

4

8

12

Al 2

O3

%

Nelma

2 4 6FeO %

0

0.4

0.8

1.2

1.6

2

Cr 2

O3

%

2 4 6FeO %

0

0.2

0.4

0.6

0.8

1

TiO

2 %

2 4 6

1

2

3

Na 2

O %

2 4 6FeO %

4

8

12

Al 2

O3

%

Sanku

2 4 6FeO %

0

0.4

0.8

1.2

1.6

2

Cr 2

O3

%

2 4 6FeO %

0

0.2

0.4

0.6

0.8

1

TiO

2 %

2 4 6

1

2

3

Na 2

O %

2 4 6FeO %

4

8

12

Al 2

O3

%

Shkotovsky

2 4 6FeO %

0

0.4

0.8

1.2

1.6

2

Cr 2

O3

%

2 4 6FeO %

0

0.2

0.4

0.6

0.8

1

TiO

2 %

2 4 6

1

2

3

Na 2

O %

2 4 6FeO %

4

8

12

Al 2

O3

%

Podgelbanochny

2 4 6FeO %

0

0.4

0.8

1.2

1.6

2

Cr 2

O3

%

2 4 6FeO %

0

0.2

0.4

0.6

0.8

1

TiO

2 %

2 4 6

1

2

3

Na 2

O %

2 4 6FeO %

4

8

12

Al 2

O3

%

Mount Kurgan

2 4 6FeO %

0

0.4

0.8

1.2

1.6

2

Cr 2

O3

%

2 4 6FeO %

0

0.2

0.4

0.6

0.8

1

TiO

2 %

2 4 6

1

2

3

Na 2

O %

2 4 6FeO %

4

8

12

Al 2

O3

%

Kam ku

2 4 6FeO %

0

0.4

0.8

1.2

1.6

2

Cr 2

O3

%

2 4 6FeO %

0

0.2

0.4

0.6

0.8

1

TiO

2 %

2 4 6

1

2

3

Na 2

O %

2 4 6FeO %

4

8

12

Al 2

O3

%Tuttocha

2 4 6FeO %

0

0.4

0.8

1.2

1.6

2

Cr 2

O3

%

2 4 6FeO %

0

0.2

0.4

0.6

0.8

1

TiO

2 %

2 4 6

1

2

3

Na 2

O %

2 4 6FeO %

4

8

12

Al 2

O3

%

Medvezhy

2 4 6FeO %

0

0.4

0.8

1.2

1.6

2

Cr 2

O3

%

2 4 6FeO %

0

0.2

0.4

0.6

0.8

1

TiO

2 %

2 4 6

1

2

3

Na 2

O %

2 4 6FeO %

4

8

12

Al 2

O3

%

Lesozovodskaya

0 10 20 300.0

0.1

0.2

0.3

0.4

V 2O 5 %

0 10 20 300.0

0.2

0.4

0.6

0.8

1.0

T iO 2 %

0 10 20 30C r2O 3 %

0.0

0.2

0.4

0.6

N iO %

0 10 20 30

40.0

50.0

60.0A l2O 3 %

K am k u

94 92 90 88 86F o

0.0

0.2

0.4

0.6

0.8

1.0C r# %

0 10 20 300.0

0.1

0.2

0.3

0.4

V 2O 5 %

0 10 20 300.0

0.2

0.4

0.6

0.8

1.0

T iO 2 %

0 10 20 30C r2O 3 %

0.0

0.2

0.4

0.6

N iO %

0 10 20 30

40.0

50.0

60.0A l2O 3 %

P o d g e lb a n o ch n y

94 92 90 88 86F o

0.0

0.2

0.4

0.6

0.8

1.0C r# %

0 10 20 300.0

0.1

0.2

0.3

0.4

V 2 O 5 %

0 10 20 300.0

0.2

0.4

0.6

0.8

1.0

T iO 2 %

0 10 20 30C r2O 3 %

0.0

0.2

0.4

0.6

N iO %

0 10 20 30

40.0

50.0

60.0A l2O 3 %

T u ttoch a

94 92 90 88 86F o

0.0

0.2

0.4

0.6

0.8

1.0C r# %

0 10 20 300.0

0.1

0.2

0.3

0.4

V 2O 5 %

0 10 20 300.0

0.2

0.4

0.6

0.8

1.0

T iO 2 %

0 10 20 30C r2 O 3 %

0.0

0.2

0.4

0.6

N iO %

0 10 20 30

40.0

50.0

60.0A l2 O 3 %

M ed ve zh y

94 92 90 88 86F o

0.0

0.2

0.4

0.6

0.8

1.0C r# %

0 10 20 30C r2 O 3 %

0.0

0.2

0.4

0.6

0.8

1.0

T iO 2 %

0 10 20 30

40.0

50.0

60.0A l2O 3 %

L eso zo v o d sk a y a

94 92 90 88 86F o

0.0

0.2

0.4

0.6

0.8

1.0C r# %

0 10 20 300.0

0.2

0.4

0.6

0.8

1.0

T iO 2 %

0 10 20 30

40.0

50.0

60.0A l2O 3 %

S an k u

94 92 90 88 86F o

0.0

0.2

0.4

0.6

0.8

1.0C r# %

0 10 20 30C r2O 3 %

0.0

0.2

0.4

0.6

0.8

1.0

T iO 2 %

0 10 20 30

40.0

50.0

60.0A l2O 3 %

N elm a

94 92 90 88 86F o

0.0

0.2

0.4

0.6

0.8

1.0C r# %

0.05 0.10 0.15 0.20 0.25 0.30 0.35

40

30

20

10

600 800 1000 1200 1400

40

30

20

10

0

P(kbar)

Fe# Ol in equilibrium with Cpx, Opx, Gar, Chr, Ilm

0.0 8.0

40

30

20

10

Variationa of Cpx, Opx, Gar, Chr, Ilm

-6.0 -4.0 -2.0 0.0

40

30

20

10

-LogFO 2

1. CaO in G ar2. Al2O 3 in Opx3. Cr2O 3 in Cpx4. TiO 2 in Chr5. Cr2O 3 in Ilm

SEA

T oC

45 m w /m 2

35 m w /m 2

Sp

Gr

40 m w /m 2

S h k o to v p la tea u b a sem en t

GraphiteDiamond

0.05 0.10 0.15 0.20 0.25 0.30 0.35

40

30

20

10

600 800 1000 1200 1400

40

30

20

10

0

P(kbar)

Fe# Ol in equilibrium with Cpx, Opx, Gar, Chr, Ilm

0.0 8.0

40

30

20

10

Variationa of Cpx, Opx, Gar, Chr, Ilm

-6.0 -4.0 -2.0 0.0

40

30

20

10

-LogFO 2

SEA

T oC

45 m w /m 2

35 m w /m 2

Sp

Gr

40 m w /m 2

1. OpxBrMc2.CpxAs3. CPx NT004.ChrAs

T u tto ch a

GraphiteDiamond

0.05 0.10 0.15 0.20 0.25 0.30 0.35

40

30

20

10

600 800 1000 1200 1400

40

30

20

10

0

P(kbar)

Fe# Ol in equilibrium with Cpx, Opx, Gar, Chr, Ilm

0.0 8.0

40

30

20

10

Variationa of Cpx, Opx, Gar, Chr, Ilm

-6.0 -4.0 -2.0 0.0

40

30

20

10

-LogFO 2

1. CaO in Gar2. Al2O3 in Opx3. Cr2O3 in Cpx4. TiO2 in Chr5. Cr2O3 in Ilm

SEA

T oC

45 m w/m 2

35 m w /m 2

Sp

Gr

40 m w /m 2

S an k u

GraphiteDiam ond

0.05 0.10 0.15 0.20 0.25 0.30 0.35

40

30

20

10

600 800 1000 1200 1400

40

30

20

10

0

P(kbar)

Fe# Ol in equilibrium w ith Cpx, Opx, Gar, Chr, Ilm

0.0 8.0

40

30

20

10

Variationa of Cpx, Opx, Gar, Chr, Ilm

-6.0 -4.0 -2.0 0.0

40

30

20

10

-LogFO 2

1. CaO in G ar2. Al2O3 in Opx3. Cr2O3 in Cpx4. TiO 2 in Chr5. Cr2O3 in Ilm

SEA

T oC

45 m w /m 2

35 m w/m 2

Sp

G r

40 m w /m 2

N elm a

GraphiteDiam ond

0.05 0.10 0.15 0.20 0.25 0.30 0.35

40

30

20

10

600 800 1000 1200 1400

40

30

20

10

0

P(kbar)

Fe# Ol in equilibrium with Cpx, Opx, Gar, Chr, Ilm

0.0 8.0

40

30

20

10

Variationa of Cpx, Opx, Gar, Chr, Ilm

-6.0 -4.0 -2.0 0.0

40

30

20

10

-LogFO 2

1. CaO in Gar2. Al2O3 in Opx3. Cr2O3 in Cpx4. TiO2 in Chr5. C r2O3 in Ilm

SEA

T oC

45 m w /m 2

35 m w/m 2

Sp

Gr

40 m w/m 2

K u rg a n

GraphiteDiamond

0.05 0.10 0.15 0.20 0.25 0.30 0.35

40

30

20

10

600 800 1000 1200 1400

40

30

20

10

0

P(kbar)

Fe# Ol in equilibrium with Cpx, Opx, Gar, Chr, Ilm

0.0 8.0

40

30

20

10

Variationa of Cpx, Opx, Gar, Chr, Ilm

-6.0 -4.0 -2.0 0.0

40

30

20

10

-LogFO2

1. CaO in Gar2. Al2O 3 in Opx3. Cr2O3 in Cpx4. TiO 2 in Chr5. Cr2O3 in Ilm

SEA

T oC

45 m w /m 2

35 m w /m 2

Sp

Gr

40 m w /m 2

L esozo v od sk ay a

GraphiteDiamond

0.05 0.10 0.15 0.20 0.25 0.30 0.35

40

30

20

10

600 800 1000 1200 1400

40

30

20

10

0

P(kbar)

Fe# Ol in equilibrium with Cpx, Opx, Gar, Chr, Ilm

0.0 8.0

40

30

20

10

Variationa of Cpx, Opx, Gar, Chr, Ilm

-6.0 -4.0 -2.0 0.0

40

30

20

10

-LogFO 2

1. CaO in G ar2. Al2O 3 in Opx3. Cr2O 3 in Cpx4. TiO 2 in Chr5. Cr2O 3 in Ilm

SEA

T oC

45 m w /m 2

35 m w /m 2

Sp

Gr

40 m w /m 2

M ed vezh y

GraphiteDiamond

0.05 0.10 0.15 0.20 0.25 0.30 0.35

40

30

20

10

600 800 1000 1200 1400

40

30

20

10

0

P(kbar)

Fe# Ol in equilibrium with Cpx, Opx, Gar, Chr, Ilm

0.0 8.0

40

30

20

10

Variationa of Cpx, Opx, Gar, Chr, Ilm

-6.0 -4.0 -2.0 0.0

40

30

20

10

-LogFO 2

1. CaO in Gar2. Al2O 3 in Opx3. Cr2O3 in Cpx4. TiO 2 in Chr5. Cr2O3 in Ilm

S EA

T oC

45 m w /m 2

35 m w /m 2

Sp

G r

40 m w /m 2

P od g elb an o ch n y

GraphiteDiamond

0.05 0.10 0.15 0.20 0.25 0.30 0.35

40

30

20

10

600 800 1000 1200 1400

40

30

20

10

0

P(kbar)

Fe# Ol in equilibrium with Cpx, Opx, Gar, Chr, Ilm

0.0 8.0

40

30

20

10

Variationa of Cpx, Opx, Gar, Chr, Ilm

-6.0 -4.0 -2.0 0.0

40

30

20

10

-LogFO2

1. CaO in Gar2. Al2O 3 in Opx3. Cr2O3 in Cpx4. TiO2 in Chr5. Cr2O3 in Ilm

SEA

T oC

45 m w/m 2

35 m w /m 2

Sp

Gr

40 m w /m 2

A n y u i

GraphiteDiamond

Mz stage

Lava plateau basementLava plateau basement

Top of lava plateau

Enclosed lava flow

Latest cinder cone

0.05 0.10 0.15 0.20 0.25 0.30 0.35

40

30

20

10

600 800 1000 1200 1400

40

30

20

10

0

P(kbar)

Fe# Ol in equilibrium with Cpx, Opx, Gar, Chr, Ilm

0.0 8.0

40

30

20

10

Variationa of Cpx, Opx, Gar, Chr, Ilm

-6.0 -4.0 -2.0 0.0

40

30

20

10

-LogFO 2

1. CaO in Gar2. Al2O3 in Opx3. Cr2O 3 in Cpx4. TiO2 in Chr5. Cr2O 3 in Ilm

SEA

T oC

45 m w /m 2

35 m w/m 2

Sp

Gr

40 m w /m 2

K a m k u

GraphiteDiamond

1. OpxBrKo90PeNe2.CpxAs103. CPx NT004.ChrAs

0 50 100 150 200км50

44°

48°

52°

56°

138°132°126°

126°120° 144°138°132° 148°

44°

52°

56°

48°

м. Поворотный

м. Александра

м. Невельского

м.Сюркум

м.Песчаный

м.Золотой

Алдан

Тында

Николаевск-

на-А мур е

Комсомольск-на-Амуре

Советска я Гавань

ХАБАРОВСК

Зея

БЛАГОВЕЩЕНСКХэйхэ

Белогорск

Свободный

Известковый Биробиджан

Цзямусы

Сыпин

Шэньян

Цицикар

ХАРБИН

ГИРИН

Чанчунь

Чхонджин

Муданьцзян

Спасск-Дальний

Уссурийск

Дальнегорск

ВЛАДИВОСТОК

О Х О Т С К О Е

Мая Сев.Уй

Аим

У чур

Алдан

Гыным

Идюм

Алгама

З ея

Мая

Уда

Уда

Но р

а

ГилюйНюкжа

Шилка

Амур

Амуэр

хэ

Аргунь

Оле

кма

Тунгир

Калар

Чара

Оле км

а

Алда

н

Гонам

Зейское вдхр.

Хумаэрхэ

Зея

Томь

Тырма

Урм и

Кур

Гур

Анюй

Кпо

пи

Самарга

Хор

Хор

Бикин

Уссу

ри

Гэньхэ

Гань хэ

Нун

ьцзя

н

Ном

инь х

э

Чол

Ялухэ

Нун ьцзян

Хул

а нь х

э

Сунгари

Лал иньхэ

Муд

а нь ц

зян

Мул

инхэ

оз.Ханка

Уссури

Бол . Ус с урк а

Тумыньцзя

н

Ялуцзян

Хойфахэ

Сунга ри

вдхр.Сунгари

Сунгари

АмурТаваньх э

Наолихэ

Бурея

Бурея

оз.ЧукчагирскоеБичи

оз.Удыль

АмурАмгунь

зал.

А кад

емии

Тугу

рски

й за

лив

Удская губа

Учур

Су т

ам

Т импто

н

Амгунь

Горюн

Сел емджа

Ту мнин

ЯП ОНС КОЕ

МОРЕ

М О Р Е

ШАН ТАРСКИЕ ОСТРОВА

о.Феклистова

о. Б. Шантар

о. М. Шанта р

о. Беличий

о. Ионы

О.САХАЛИН

О ОККАЙДО.Х

о. Ребун

о. Рисири

О ОНСЮ. Х

1

2

3 4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

212223

Japan See

1. red circle Possible to rich with car or train; 2 blue circle – access with helicopter; 3. blue quadralateral – with helicopter not vsitited; 4 red quadralateral – possible to go by car, unvisited 1.- Tokinsky Stanovic (papers from Ionov). There are two more localities with large xenoliths unvisited by Ionov 1. February volcanoe not large but within craton 3. Bolonsky volcanoe. Leucite basalts. Xenoliths are small 4. Innokenteivsky volcanoe. Spinel peridotites highly variabl in Fe#. 5. Barhatny volcanoe. 1.5 ours from Khabarovsk by car. 6. Alchansky volcanoe 7. Mukhensky volcanoe 8. Anyui volcanoe group (3 volcanoes) 9. Samartginskoe field (>10 volcanoes) 10. 2 volcanoes with xenoliths 11. Granfather and Granmather volcanoes 12. Bikin volcanoe group. 13. Volcanoe near the deposit Vostok -2. 14. Medvezhy (Baer) volcanoe. 15. Volcanoes Kirovs highlands. 16. Sviayaga volcanoe (several cones) 17. Mareevsky volcanoe 18. Podgelbanochny volcanoe. 19. Starikov creek 20. Tuttochi volcanoe in Sovgavan fiels. 21. Gatka volcanoe 22. Kurgan montain 23. Lachama volcanoe.