communication systems lab record

Upload: rohit-pentapati

Post on 02-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Communication Systems Lab record.

    1/33

    ECE F311 COMMUNICATION SYSTEMS LAB REPORT

    Batch: MONDAY (7-8)

    Author : MANINDRA KANDEPU (2011B1A3742H)

    Experiment 1: Study of Analog Filters Using Matlab

    A. Simple RC Filters:

    1,2.

    Lowpass:y=tf([0 1000],[1 1000]);bodeplot(y);

  • 8/10/2019 Communication Systems Lab record.

    2/33

    3.

    High pass:

    y=tf([1 0],[1 1000]);bodeplot(y);

  • 8/10/2019 Communication Systems Lab record.

    3/33

    4.

    Bandpass

    y=tf([1000 0],[1 2000 1000000]);bodeplot(y);

  • 8/10/2019 Communication Systems Lab record.

    4/33

    B.

    Higher order Filters:

    Low Pass filter

    3dB bandwidth=1.13 rad/s

    Pass band ripple=0.97

    Stop band ripple=0

    Roll off=-19.6 dB/octave

    Non-linear.

    -150

    -100

    -50

    0

    50

    Magnitude(dB)

    10-2

    10-1

    100

    101

    102

    -270

    -180

    -90

    0

    Phase(deg)

    Bode Diagram

    Frequency (rad/s)

  • 8/10/2019 Communication Systems Lab record.

    5/33

    Low pass filter

    Pass band ripple=0.94

    3dB band width=1.01 rad/s

    Stop band ripple=220rad/s

    Roll off=infinite

    Non linear.

    -400

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0

    Magnitude(dB)

    10

    -2

    10

    -1

    10

    0

    10

    1

    10

    2

    0

    90

    180

    270

    360

    Phase(deg)

    Bode Diagram

    Frequency (rad/s)

  • 8/10/2019 Communication Systems Lab record.

    6/33

    C.

    Butterworth and Chebyshev Filters:2.

    CHEBYSHEV n=1

  • 8/10/2019 Communication Systems Lab record.

    7/33

    Chebyshev n=2

    Chebyshev n=4

  • 8/10/2019 Communication Systems Lab record.

    8/33

    Chebyshev n=7

    Chebyshev n=10

  • 8/10/2019 Communication Systems Lab record.

    9/33

    2. butterworth

    clear allclcnum1=[1];den1=[1 1];sys1= tf(num1,den1);

    num2=[1];den2=[1.3827 1.3614 1];sys2= tf(num2,den2);

    num41=[1];den41=[3.4341 2.6282 1];sys41= tf(num41,den41);

    num42=[1];den42=[1.1509 0.3648 1];sys42= tf(num42,den42);sys4=sys41*sys42;

    num71=[1];den71=[4.0211 1];sys71= tf(num71,den71);

    num72=[1];den72=[4.1795 1.8729 1];sys72= tf(num72,den72);

    num73=[1];den73=[1.5676 0.4861 1];sys73= tf(num73,den73);

    num74=[1];den74=[1.0443 0.1156 1];sys74= tf(num74,den74);sys7=sys71*sys72*sys73*sys74;

    num101=[1];den101=[18.369 6.3648 1];sys101= tf(num101,den101);

    num102=[1];den102=[4.3453 1.3582 1];sys102= tf(num102,den102);

    num103=[1];den103=[1.9440 0.4822 1];sys103= tf(num103,den103);

  • 8/10/2019 Communication Systems Lab record.

    10/33

    num104=[1];den104=[1.2520 0.1994 1];sys104= tf(num104,den104);

    num105=[1];den105=[1.0263 0.0563 1];sys105= tf(num105,den105);

    sys10=sys101*sys102*sys103*sys104*sys105;bode (sys1)hold onbode(sys2)hold onbode(sys4)hold onbode(sys7)hold onbode(sys10)

    3.

    n 3dB frequency Max pass band

    ripple

    Max stop band

    ripple

    Roll off Phase linearity

    1 1.02 0 0 -4.15 Linear

    2 0.707 0 0 -4.73 Linear

    4 1.01 0 0 -21.4 Linear

    7 0.997 0 0 -58.9 Linear

    10 1.03 8.57 0 -41.7 Linear

  • 8/10/2019 Communication Systems Lab record.

    11/33

    4. case 1

    clear allclc

    num1=[1];den1=[1 1];sys1= tf(num1,den1);

    num2=[1];den2=[1.7775 1.1813 1];sys2= tf(num2,den2);

    num41=[1];den41=[4.9862 2.4025 1];sys41= tf(num41,den41);

    num41=[1];

    den42=[1.1896 0.2374 1];sys42= tf(num41,den42);sys4=sys41*sys42;

    num71=[1];den71=[6.4760 1];sys71= tf(num71,den71);

    num72=[1];den72=[4.7649 1.3258 1];sys72= tf(num72,den72);

    num73=[1];

    den73=[1.5927 0.3067 1];sys73= tf(num73,den73);

    num74=[1];den74=[1.0384 0.0714 1];sys74= tf(num74,den74);sys7=sys71*sys72*sys73*sys74;

    num101=[1];den101=[28.037 5.9618 1];sys101= tf(num101,den101);

    num102=[1];

    den102=[4.6644 0.8947 1];sys102= tf(num102,den102);

    num103=[1];den103=[1.9858 0.3023 1];sys103= tf(num103,den103);

    num104=[1];den104=[1.2614 0.1233 1];

  • 8/10/2019 Communication Systems Lab record.

    12/33

    sys104= tf(num104,den104);

    num105=[1];den105=[1.0294 0.0347 1];sys105= tf(num105,den105);

    sys10=sys101*sys102*sys103*sys104*sys105;

    bode (sys1)hold onbode(sys2)hold onbode(sys4)hold onbode(sys7)hold onbode(sys10)

    n 3dB frequency Max pass band

    ripple

    Max stop band

    ripple

    Roll off Phase linearity

    1 0.988 0 0 -6.058 Linear

    2 0.887 2 - -8.08 Linear

    4 0.968 1.9082 - -33.23 Linear

    7 0.990 -1.8837 - -66.5 Linear

    10 0.993 1.94 - -104 Linear

  • 8/10/2019 Communication Systems Lab record.

    13/33

    Case 2

    clear allclcnum1=[1];den1=[1 1];

    sys1= tf(num1,den1);

    num2=[1];den2=[1.3827 1.3614 1];sys2= tf(num2,den2);

    num41=[1];den41=[3.4341 2.6282 1];sys41= tf(num41,den41);

    num42=[1];den42=[1.1509 0.3648 1];sys42= tf(num42,den42);

    sys4=sys41*sys42;

    num71=[1];den71=[4.0211 1];sys71= tf(num71,den71);

    num72=[1];den72=[4.1795 1.8729 1];sys72= tf(num72,den72);

    num73=[1];den73=[1.5676 0.4861 1];sys73= tf(num73,den73);

    num74=[1];den74=[1.0443 0.1156 1];sys74= tf(num74,den74);sys7=sys71*sys72*sys73*sys74;

    num101=[1];den101=[18.369 6.3648 1];sys101= tf(num101,den101);

    num102=[1];den102=[4.3453 1.3582 1];sys102= tf(num102,den102);

    num103=[1];den103=[1.9440 0.4822 1];sys103= tf(num103,den103);

    num104=[1];den104=[1.2520 0.1994 1];sys104= tf(num104,den104);

  • 8/10/2019 Communication Systems Lab record.

    14/33

    num105=[1];den105=[1.0263 0.0563 1];sys105= tf(num105,den105);

    sys10=sys101*sys102*sys103*sys104*sys105;

    bode (sys1)hold onbode(sys2)hold onbode(sys4)hold onbode(sys7)hold onbode(sys10)

    n 3dB frequency Max pass band

    ripple

    Max stop band

    ripple

    Roll off Phase linearity

    1 1 0 0 -66.3 Linear

    2 0.995 0.495 0 -11.1 Linear4 0.999 0 0 -28.4 Linear

    7 0.998 0 0 -64 Linear

    10 0.998 0 0 -97 Linear

  • 8/10/2019 Communication Systems Lab record.

    15/33

    Experiment 2: Study of Analog Filters Using RLC components

    A. Filter 1.

    1.Band pass filter

    3dB1=2.86*10^-5 rad/sec, 3dB2=3.5*10^-5 rad/sec

    Bandwidth=0.64*10^-5 rad/sec

    normalized power gain Vs frequency (semilog scale)

  • 8/10/2019 Communication Systems Lab record.

    16/33

    B.

    Filter 2.

    Band pass filter

    3dB1=2.86*10^4 rad/sec, 3dB2=3.6*10^4 rad/sec

    Bandwidth=0.64*10^4 rad/sec

  • 8/10/2019 Communication Systems Lab record.

    17/33

    normalized power gain Vs frequency (semilog scale)

    C. Filter 3.

    Band stop filter

    3dB1=31.3 rad/sec, 3dB2=31.9 rad/sec

    Bandwidth=0.6 rad/sec

  • 8/10/2019 Communication Systems Lab record.

    18/33

    normalized power gain Vs frequency (semilog scale)

    D. Filter 4.

    Band pass filter

    3dB1=1.9*10^4 rad/sec, 3dB2=7.61*10^4 rad/sec

    Bandwidth=5.7*10^4 rad/sec

  • 8/10/2019 Communication Systems Lab record.

    19/33

    normalized power gain Vs frequency (semilog scale)

  • 8/10/2019 Communication Systems Lab record.

    20/33

    Experiment 3: Signal and Noise Experiments

    With Emona Telecom Trainer Kit

    A) GENERATION OF SIGNALS

    a) sine signal of 100khz,pk-pk voltage 4.12

    b) Table 1: Time and Frequency Domain Measurements with DSO

    Sl.

    No

    SignalTime Domain Frequency Domain Level of other spectral

    components

    Amplitude Peak

    to Peak

    Period

    (us)

    Frequency

    (KHz)

    Amplitude

    (dB)

    Frequency

    (KHz)

    1. 4 10 100 64.8 100 8

    2. 2.2 10.2 100 64 100 8.8

    3. 5.8 10 100 68 100 8

    4. 8.24 10 100 64 100 -

  • 8/10/2019 Communication Systems Lab record.

    21/33

    c)FFT spectra of sine signal

    B. Generation of Noise:

    a) noise at 0db

  • 8/10/2019 Communication Systems Lab record.

    22/33

    b)fft spectra of noise

    c) NO, PSD of noise depends on frequency.

    d) & e) Table 2: Noise Generation and Measurements with DSO

    Sl.

    No

    Time Domain Frequency Domain

    Maximum

    Amplitude

    (in V)

    Minimum

    Amplitude

    (in V)

    Maximum

    Amplitude

    (in dB)

    Average

    Amplitude

    (in dB)

    1. 10 -10.2 40 24

    2. 2.8 -2.6 39.2 19.2

    3. 1.6 -1.76 42.4 20

    4. 1.1 -1.2 41 195. 2.1 -2 41 19.5

  • 8/10/2019 Communication Systems Lab record.

    23/33

    C. Studies on Signal Plus Noise:

    a)Signal and noise:

    c)FFT spectra of signal plus noise:

    Table 3: Effect of Noise on Intelligibility of Audio

  • 8/10/2019 Communication Systems Lab record.

    24/33

    Sl.

    No

    Signal *

    (in dB)

    Signal Noise*

    (in dB)

    Noise S/N Very

    Clear

    Just

    Intelligible

    Not

    Intelligible

    1. 64 2.51X10^6 22 158.48 1.583X10^4 yes2. 64 2.51X10^6 32 1583.2 1.583X10^3 yes

    3. 64 2.51X10^6 40 10^4 2.51X10^2 yes

    D) Filtering of Noise:

    Sl.No

    Type of Filter Noise beforeFilter) * (dB)

    Pass bandNoise* (dB)

    Stop bandNoise* (dB)

    3 dBfrequencies

    (kHz)

    Roll off (dB /Octave)

    1 Baseband LPF 62.8 8.6 2.2 2.8 6.4

    2 Bandpass 62.8 39.8 28 5 15.4

    3 RC Low pass 62.8 14 10 160 11.2

    E) Conclusions:

    Gained experience on usage of Emona Kit.

  • 8/10/2019 Communication Systems Lab record.

    25/33

    Experiment 4: Amplitude Modulation and Demodulation

    A) Generation of AM with Carrier:

    A1) AM with carrier

    A2) FFT spectra

    A3) Table 1: Modulation indices and Efficiencies

  • 8/10/2019 Communication Systems Lab record.

    26/33

    A6) OVERMODULATION

    Sl. No Message

    Amplitude(Peak-peak)

    Carrier

    Amplitude(Peak-peak)

    DC Bias

    Value

    Modulation

    Index

    Efficiency Power in

    Carrier (FromSpectra)

    Power in Side

    Bands (FromSpectra)

    Efficiency

    1. 1 4 2 0.2421 0.0284 7.26 0.085 0.0201

    2. 2 4 2 0.4670 0.095 7.26 0.458 0.112

    3. 560m 4 2 0.101 5.13x10^-3 7.32 0.019 5.16x10^-3

  • 8/10/2019 Communication Systems Lab record.

    27/33

    B Demodulation of AM with Carrier:

    B1)&B2)

    B3)FFT SPECTRA OF DEMODULATED SIGNAL

  • 8/10/2019 Communication Systems Lab record.

    28/33

    B4) SPECTRA OF ORIGINAL SIGNAL

    B5)No distortion in the demodulated AM signal output compared to the original Message

    Signal.

    B6) MESSAGE SIGNAL AFTER PASSING THROUGH LOW PASS FILTER

  • 8/10/2019 Communication Systems Lab record.

    29/33

    OVERMODULATED SIGNAL

    C Conclusions:

    Learnings from the experiment:

    The experiment helped us to get a clearer picture of modulation of signal using DSB-SC.

    And also that, over and under modulation distort the message signal.

    We also learnt how to calculate spectra power, useful power, sideband power, concepts of modulation

    index and efficiency.

  • 8/10/2019 Communication Systems Lab record.

    30/33

  • 8/10/2019 Communication Systems Lab record.

    31/33

    B- DEMODULATION OF DSB-SC SIGNAL:

    B1 B2,B3

    Sl.

    No

    Message

    Amplitude

    (Peak-

    peak) (V)

    Message

    Power

    (From

    peak-to-

    peak)

    (W)

    Power in

    the

    Message

    (From

    Spectra)

    (dB)

    Carrier

    Amplitude

    (Peak-

    peak) (V)

    Carrier

    Power

    (From

    peak-

    to-

    peak)

    (W)

    Power

    in the

    Carrier

    (From

    Spectra)

    (dB)

    Power in

    USB (From

    Modulated

    Spectra)

    (dB)

    Power in

    LSB (From

    Modulated

    Spectra)

    (dB)

    Power in

    Carrier

    (From

    Modulated

    Spectra)

    (dB)

    Powe

    Demo

    Me

    (F

    Spect

    1 4 2 1.85 4 2 1.86 3.01 3.01 -10.2 7

    2 4.2 2.2 2.25 4 2 1.85 2.21 2.61 -21.8 7

    3 4.2 2.2 2.25 4.3 2.31 3.05 3.01 2.61 -21.8 9

    4 4.2 2.2 2.25 4.5 2.53 3.45 3.01 3.41 -20.6 1

  • 8/10/2019 Communication Systems Lab record.

    32/33

    C.

    Demodulation of DSB-SC Signal: Effect of LO Phase Errors

    C1

    Effect of Phase Offset of LO on DSB-SC Modulation

    Sl.

    No

    Phase Shift

    (degrees)

    Power in the Message

    (From Spectra) (dB)

    Power in the

    Demodulated

    Message

    (From Spectra) (dB)

    Audio Quality of the

    demodulated messag

    (Good / Moderate/

    Very bad )

    1 0 1.85 7.41 good

    2 30 1.85 2.95 moderate

    3 120 1.85 3.85 bad

    4 155 1.85 6.65 bad

    C2

    Effect of Frequency Offset of LO on DSB-SC Modulation

    Sl. No LO Frequency

    Deviation

    Hz

    Power in the

    Message (From

    Spectra)

    Power in the

    Demodulated Message

    (From Spectra)

    Audio Quality of the

    demodulated message (Good /

    Moderate/ Very bad )

    1 0 2.23dB -6.95dB moderate

    2 400 2.23dB -4.55dB good

    3 1200 2.23dB -32.1dB bad

  • 8/10/2019 Communication Systems Lab record.

    33/33

    D Generation and Demodulation of SSB-SC Signals

    Let the Message Signal be a 2 KHz Sinusoid and the Carrier be a 100 KHz Sinusoid. Let the peak to peak

    amplitudes be ~ 4V, respectively. Use the following connection diagram.

    D1. Adjust the phase shifter to provide 90 degree phase shift to the message. Use DSO features to

    measure the phase difference between the input and output signal of the phase shifter. Can we use the

    XY feature of the DSO to make sure that the phase difference between signals at X and Y is 90 degrees?

    Yes. If the display is a perfect circle, the phase difference is 90

    D2. How does the spectrum at the output of adder module look like? Is it truly and SSB spectrum? If not

    what could be the reasons? Check for the amplitudes of the signals at B and A, the adder inputs. Work

    with the gains of the adder to get a nearly perfect SSB signal.

    The LSB is not perfectly suppressed.

    D3. Measure the power of the SSB-SC signal in spectral domain. How does it compare with the either

    USB or LSB power in Part A this experiment?

    Power in SSB is 7.41dB

    D4. Adjust the phase shifter slightly and note the effect on the spectrum.

    Power in the suppressed sideband is getting increased. For phase value of 180, we get two sidebands.

    D5. Demodulate the SSB-SC signal, generated in D1 & D2 using the following circuit. Capture the time

    domain and spectra and comment on the nature of the demodulated message signal. Listen to thedemodulated message and comment on the quality of the audio.

    Conclusions:

    We have learnt the techniques of demodulation of DSB-SC and SSB-SC modulated signals