commentary to assessment and improvement of unreinforced masonry buildings for earthquake resistance

Upload: juan-carlos-jimenez-pacheco

Post on 13-Apr-2018

224 views

Category:

Documents


2 download

TRANSCRIPT

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    1/315

    FacultyofEngineering,TheUniversityofAuckland

    Commentaryto

    AssessmentandImprovementof

    Unreinforced

    MasonryBuildingsforEarthquake

    ResistanceSupplementtoAssessmentandImprovementoftheStructuralPerformanceof

    BuildingsinEarthquakes

    Draft

    12/2011

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    2/315

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    3/315

    i

    Contents

    SectionC1 HistoryandPrevalenceofUnreinforcedMasonryBuildingsinNewZealand..........11

    C1.1Introduction.......................................................................................................................11

    C1.3URMPerformanceinPastEarthquakes............................................................................13

    C1.4NewZealandURMBuildingStock.....................................................................................18

    C1.5NewZealandBuildingCodesPertainingtoURMConstruction......................................113

    C1.6Acknowledgements.........................................................................................................118

    C1.7References.......................................................................................................................118

    SectionC2 MaterialPropertiesofMasonryWalls......................................................................21

    C2.1Notation............................................................................................................................21

    C2.3InsituandExtractedSampleTesting................................................................................21

    C2.4BrickandMortarFieldAssessmentProcedure.................................................................25

    C2.5AdditionalInformation......................................................................................................26

    C2.7MasonryStressBlockParameters...................................................................................222

    C2.8WorkedExamples............................................................................................................223

    C2.9References.......................................................................................................................227

    SectionC3 MaterialPropertiesofFlexibleTimberFloorDiaphragms........................................31

    C3.3Timberproperties..............................................................................................................31

    C3.4Classification......................................................................................................................33

    C3.5ConfigurationandConditionAssessment.........................................................................33

    C3.6CharacteristicValues.........................................................................................................35

    C3.7DiaphragmStiffness........................................................................................................314

    C3.8WorkedExample1..........................................................................................................315

    C3.9WorkedExample2..........................................................................................................317

    C3.10WorkedExample3........................................................................................................319

    C3.11References.....................................................................................................................321

    SectionC4 DesignActionsonInplaneLoadedUnreinforcedMasonryWalls............................41

    C4.1Notation............................................................................................................................41

    C4.2Scope.................................................................................................................................41

    C4.3AnalysisProcedures...........................................................................................................41

    C4.4DesignExample...............................................................................................................416

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    4/315

    ii

    C4.5References......................................................................................................................424

    SectionC5 DeterminationofDiaphragmDesignActions...........................................................51

    C5.2Scope.................................................................................................................................51

    C5.3LoadDistribution..............................................................................................................51

    C5.4DesignActions...................................................................................................................51

    C5.5WorkedExample...............................................................................................................51

    C5.6References........................................................................................................................53

    SectionC6 DesignActionsonURMWallsandParapetsloadedoutofplane...........................61

    C6.1Notations..........................................................................................................................61

    C6.2Scope.................................................................................................................................61

    C6.3DesignLateralForceonWallsloadedoutofplane..........................................................63

    C6.4DesignExample.................................................................................................................63

    C6.5References........................................................................................................................67

    SectionC7 DesignActionsonWallDiaphragmAnchorages.......................................................71

    C7.1Notation............................................................................................................................71

    C7.2Scope.................................................................................................................................71

    C7.3DesignShearforInplaneLoadedConnections................................................................71

    C7.4DesignTensionforOutofplaneLoadedConnections.....................................................71

    C7.5DesignExample.................................................................................................................72

    C7.6References........................................................................................................................74

    SectionC8 Responseofwallsloadedinplane...........................................................................81

    C8.1Notation............................................................................................................................81

    C8.2Scope.................................................................................................................................81

    C8.3Propertiesofwallsloadedinplane..................................................................................83

    C8.4NominalShearCapacityofwallsloadedinplane............................................................84

    C8.5DeformationLimits...........................................................................................................89

    C8.6WorkedExamples...........................................................................................................810

    References..............................................................................................................................817

    SectionC9 StrengthandDeformationAssessmentofFlexibleTimberFloorDiaphragms........91

    C9.3LateralDeformation..........................................................................................................91

    C9.4Strength............................................................................................................................91

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    5/315

    iii

    C9.5WorkedExample1............................................................................................................92

    C9.6WorkedExample2............................................................................................................93

    C9.7WorkedExample3............................................................................................................94

    C9.8References.........................................................................................................................95

    SectionC10 StrengthandDeformationAssessmentofTimberRoofDiaphragms...................101

    C10.2Scope.............................................................................................................................101

    C10.3MaterialProperties.......................................................................................................102

    C10.4LateralDeformation......................................................................................................102

    C10.5Strength.........................................................................................................................102

    C10.6References.....................................................................................................................102

    SectionC11 OutofplaneWallandParapetResponse.............................................................111

    C11.2Scope.............................................................................................................................111

    C11.3WallThickness,Height,andSlendernessRatio.............................................................112

    C11.4Loadbearingwalls.........................................................................................................113

    C11.5Assessment....................................................................................................................113

    C11.6Workedexample...........................................................................................................117

    C11.7References...................................................................................................................1113

    SectionC12 WalldiaphragmAnchorages.................................................................................121

    C12.1Notation........................................................................................................................121

    C12.2Scope.............................................................................................................................121

    C12.3DiaphragmJoistSeating................................................................................................123

    C12.4MasonryAnchorageFailures.........................................................................................123

    C12.5SteelAnchorageFailures...............................................................................................124

    C12.6TimberAnchorageFailures...........................................................................................125

    C12.7Examples........................................................................................................................127

    C12.8References.....................................................................................................................129

    Section C13 Heritage Characteristics of URM Buildings and the Impacts of Seismic

    Improvements.............................................................................................................................131

    C13.1Introduction...................................................................................................................131

    C13.2HeritageandConservation............................................................................................132

    C13.3ArchitecturalCharacter.................................................................................................137

    C13.4InitialConsiderationsforSeismicImprovement.........................................................1315

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    6/315

    iv

    C13.5StabilisationforSeismicImprovement.......................................................................1317

    C13.6EnhancingExistingWalls.............................................................................................1321

    C13.7NewBuildingStrengtheningSystems.........................................................................1325

    C13.8ReductionofForces....................................................................................................1331

    C13.9ApproachestoSeismicImprovement.........................................................................1332

    C13.10Conclusions...............................................................................................................1335

    C13.11References................................................................................................................1336

    Section C14 Methods for Stiffening and Strengthening of Flexible Timber Floor and Roof

    Diaphragms.................................................................................................................................141

    C14.2Scope.............................................................................................................................141

    C14.3RetrofitSelection..........................................................................................................141

    C14.4RevisedDiaphragmAssessment...................................................................................145

    C14.5DiaphragmChordDesign..............................................................................................145

    C14.6SubdiaphragmDesign...................................................................................................148

    C14.7DiaphragmPenetrations...............................................................................................149

    C14.8WorkedExample.........................................................................................................1410

    C14.9References..................................................................................................................1410

    SectionC15 MethodsforImprovingWallDiaphragmConnections.........................................151

    SectionC16 UnbondedPosttensioning...................................................................................161

    C16.1Notation........................................................................................................................161

    C16.2Scope.............................................................................................................................162

    C16.3PosttensioningTendonTypes,StressesandSpacing..................................................165

    C16.4InplaneWallBehaviour................................................................................................166

    C16.5OutofplaneWallBehaviour......................................................................................1610

    C16.6DesignExample...........................................................................................................1615

    C16.7References..................................................................................................................1619

    SectionC17 SurfaceBondedFibreReinforcedPolymerSystems.............................................171

    C17.2Notation........................................................................................................................171

    C17.2Scope.............................................................................................................................172

    C17.3GeneralDesignInformation..........................................................................................172

    C17.4ShearStrengthProvidedbyFibreReinforcedPolymer................................................172

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    7/315

    v

    Relatively little data is available for shear strengthenhancement usingvertical FRP systems,

    andhenceaconstanteffectivestrainvalueisproposed......................................................1711

    C17.5DesignExamples..........................................................................................................1711

    C17.6References...................................................................................................................1716

    SectionC18 NearSurfaceMounted(NSM)FibreReinforcedPolymerSystems.......................181

    C18.1Notation........................................................................................................................181

    C18.2Scope.............................................................................................................................182

    C18.3RetrofitParameters.......................................................................................................183

    C18.4InplaneDesign..............................................................................................................183

    C18.5OutofplaneDesign......................................................................................................183

    C18.6OtherConsiderations....................................................................................................187

    C18.7Designexamples............................................................................................................189

    C18.8References...................................................................................................................1813

    SectionC19 FibreReinforcedShotcrete(FRS)..........................................................................191

    C19.1Notation........................................................................................................................191

    C19.2Scope.............................................................................................................................192

    C19.3InplaneGeneralDesignInformation............................................................................193

    C19.4OutofplaneGeneralDesignInformation....................................................................196

    C19.5References...................................................................................................................1913

    SectionC20 NearSurfaceMountedSteelReinforcement........................................................201

    SectionC21 TextileReinforcedMortars....................................................................................211

    SectionC22 RestrainingParapetsandChimneys......................................................................221

    SectionC23 Pounding................................................................................................................231

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    8/315

    vi

    ListofFigures

    FigureC11:Raupowhare(house)atWairauPa,ca.1880(AlexanderTurnbullLibrary)............11

    FigureC12:RaupoandtimberwharesofaMaorivillageatMaketu,Kawhia,1895(Alexander

    TurnbullLibrary)............................................................................................................................11

    FigureC13: NewZealandtotalpopulationdata,18582007......................................................12

    FigureC14:ShopsonQueenStreet,Auckland,1859(AlexanderTurnbullLibrary)....................13

    FigureC15:QueenStreetandQueenStreetWharf,Auckland,in1882(AlexanderTurnbull

    Library)..........................................................................................................................................13

    FigureC16:GroupphotographoftheconstructionworkersthatbuilttheStratfordPublic

    Hospitalduring19061907(AlexanderTurnbullLibrary).............................................................14

    FigureC17:Brickbuildingunderconstruction,ca1920(AlexanderTurnbullLibrary)................14

    FigureC18:The1833StoneStoreatKerikeriwasbuiltbytheChurchMissionarySociety.(AP

    GodberCollection,AlexanderTurnbullLibrary)...........................................................................14

    FigureC19:TwoChineseminersinfrontofastonecottageincentralOtago,ca1860(Alexander

    TurnbullLibrary)............................................................................................................................14

    FigureC110:Collapseofanewmasonryauctionmarketbuilding,QueenStreet,1865

    (AlexanderTurnbullLibrary).........................................................................................................15

    FigureC111:LookingalongarowofcommercialbuildingsonQueenStreet,Auckland,ca1910

    (AlexanderTurnbullLibrary).........................................................................................................15

    FigureC112:VictorianChristchurchin1885(Coxhead1885).....................................................15

    FigureC113:Christchurchsfirstskyscraper,photocirca1910(BrittendenCollection1910)..15

    FigureC114:Generalstoredamagedbythe1929Murchisonearthquake(AlexanderTurnbull

    Library)..........................................................................................................................................16

    FigureC115:Damagedbusinesspremisesaftertheearthquakeof17June1929(Alexander

    TurnbullLibrary)............................................................................................................................16

    FigureC116:HastingsStreet,Napier,circa1914(AlexanderTurnbullLibrary)..........................16

    FigureC117:ViewdownHastingsStreet,Napierafterthe1931earthquake(AlexanderTurnbull

    Library)..........................................................................................................................................16

    FigureC118:LookingoverNapieratthebuildingsruinedbythe1931earthquakeandthefires

    (AlexanderTurnbullLibrary).........................................................................................................17

    FigureC119:RuinsoftheNapierAnglicanCathedralafterthe1931Napierearthquake

    (AlexanderTurnbullLibrary).........................................................................................................17

    FigureC120:Toppledparapetinthe2007Gisborneearthquake...............................................18

    FigureC121Outofplanefailureofagablewallinthe2007Gisborneearthquake...................18

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    9/315

    vii

    FigureC122:OutofplanewallfailureatthecornerofWorcesterandManchesterstreetsinthe

    2010Darfieldearthquake..............................................................................................................18

    FigureC123:Outofplanewallfailureat118ManchesterStreetinthe2010Darfield

    earthquake....................................................................................................................................18

    FigureC124:PhotographicexamplesofNewZealandURMtypologies......................................19

    FigureC125:Estimated%NBSofURMbuildingsinProvincesthroughoutNewZealand.........112

    FigureC21:Stepstodeterminebrickproperties.........................................................................22

    FigureC22:Determinationofmortarcompressionstrength......................................................23

    FigureC23:Preparationforprismcompressiontest...................................................................23

    FigureC24:Masonryflexuralbondtest.......................................................................................24

    FigureC25:Insituandlaboratorybedjointsheartest...............................................................24

    FigureC26:Differencebetweenexposedandunexposedbricksurface.....................................26

    FigureC27:Colourspectrumintensityvs.compressivestrengthplot........................................28

    FigureC28:Brickcompressivestrengthvs.visiblecolourplot....................................................28

    FigureC29:Plotofbrickcompressivestrengthvs.scratchindex..............................................210

    FigureC210:PlotofMortarcompressivestrengthvs.scratchindex........................................211

    FigureC211PlotofbrickModulusofRupturevs.brickcompressivestrength.........................212

    FigureC212:Plotofmortarcompressivestrengthvs.h/tratio................................................213

    FigureC213:3Dplotrelatingthebrick,mortarandmasonrycompressivestrengths.............215

    FigureC214:PlotofmasonryModulusofElasticityvs.compressivestrengthplot..................215

    FigureC215:Unreinforcedmasonrymodulefordensityapproximation..................................216

    FigureC216:Plotofmasonryflexuralbondstrengthvs.masonrycompressivestrength........217

    FigureC217:Differenttypesofbondfailure.............................................................................218

    FigureC218:Plotofmasonryflexuralbondstrengthvs.mortarcompressivestrength...........218

    FigureC219:Plotofshearstressvs.axialcompressionforlaboratorymanufacturedsamples220

    FigureC220:Plotofshearstressvs.axialcompressionforfieldsamples.................................220

    FigureC221:Plotofcohesionvs.masonrycompressivestrength.............................................221

    FigureC222:Plotofcohesionvs.mortarcompressivestrength...............................................221

    FigureC223:CampbellFreeKindergarten.................................................................................223

    FigureC224:TwostoreyIrishPub.............................................................................................225

    FigureC225:Twostoreycommercialbuilding...........................................................................226

    FigureC31:Testpieceforembeddedstrengthtests...................................................................32

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    10/315

    viii

    FigureC32:Testsetupforembeddedstrengthtests..................................................................32

    FigureC33:Pureblocktestsetuptodeterminecompressionstrengthofwood.......................33

    FigureC34:Diaphragmconfigurationdetails..............................................................................34

    FigureC35:Fullscalediaphragmtestingresults.........................................................................39

    FigureC36:Idealisedbilinearresponsecurve...........................................................................310

    FigureC37:Bilinearcurvesfromfullscalediaphragmtesting..................................................313

    FigureC41:Modaltestingandsystemidentificationprocedure................................................47

    FigureC42:PlotsofForcedisplacementresponseofURMassemblages.................................411

    FigureC43:SeismichazardzonationfortheNorthIslandofNewZealandforgroundmotion

    recordselection..........................................................................................................................414

    FigureC44:Layoutofexamplebuilding....................................................................................417

    FigureC61:FlowchartforOutofplaneSeismicDesignofURMbuildingswithFlexible

    Diaphragms...................................................................................................................................62

    FigureC62:Definitionofheights.................................................................................................63

    FigureC63:Buildingcrosssection...............................................................................................64

    FigureC81:Effectivepiermodel(Yietal.2008).........................................................................82

    FigureC82:Shearstressdistributioninarectangularwall.........................................................83

    FigureC83:Tributaryareasfordeterminingnormalforceoneachwall(Russell2010).............84

    FigureC84:DiagonalTensionfailuremode.................................................................................85

    FigureC85:Rocking/toecrushingfailuremode..........................................................................88

    FigureC86:Bedjointslidingfailuremode..................................................................................89

    FigureC87: Equivalentbilinearapproximation(MagenesandCalvi1997)..............................810

    FigureC88:Planlayoutofbuilding............................................................................................810

    FigureC101:Examplesofroofconfigurations...........................................................................101

    FigureC111:ProcedureforseismicassessmentofoutofplaneloadedURMwalls................115

    FigureC112:ZonationmapfortheNorthIsland.......................................................................116

    FigureC113:ZonationmapfortheSouthIsland.......................................................................116

    FigureC114:SummaryofNorthIslandparametricstudyresults(singlestorey2leafwall

    Shallowsoil)................................................................................................................................117

    FigureC121:Photographsofdamageinthe2010Darfield(Canterbury)earthquakedueto

    deficientorabsentdiagramanchorages....................................................................................122

    FigureC122: Examplesofwalldiaphragmanchoragesthatwerepartiallyorfullysuccessfulduringthe2010Darfieldearthquake.........................................................................................124

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    11/315

    ix

    FigureC123:Examplesoffailedanchorageswheresteelshowsnoindicationoffailure.........125

    FigureC124:JoistorientedparalleltoURMwall.......................................................................126

    FigureC125:JoistorientedperpendiculartoURMwall............................................................126

    FigureC126:Observedrowfailuremodesfortimberconnectionsloadedparalleltograin....127

    FigureC127:Assumedfailureplainforpunchingshearfailure.................................................128

    FigureC131:TheBirdcagehotelpriortoseismicimprovementandbeingmoved...................132

    FigureC132:NapierSchoolofMusicbeforeandafterretrofit.(reproducedfromRobinsonand

    Bowman2000)............................................................................................................................137

    FigureC133:BeforeandaftercrosssectionsthroughCranmerSquareNormalSchool,

    Christchurch(reproducedfromWilby,1983).Showingchangedinteriorlayoutsandsurfacesand

    removedalargeamountofthehistoricmaterial.......................................................................137

    FigureC134:PrimaryformofaURMbuildinginAuckland.Atthisstagethebasicshapeandthe

    broadgesturesthatmakeupthebuildingarenoted.Inthiscasethebuildinghasareasonably

    simpleformanddisplaysatypical3partverticalhierarchy.......................................................139

    FigureC135:Astudyofthebuildingsopeningsintwodimensions.Thishasbeendonefirstlyas

    thephysicalopeningsintheURM,andsecondlyastheformssurroundingtheopenings.

    Interferingwiththesepatternswillchangethewaythatthebuildingreads;somethingassimple

    aschangingthecolourofthewindowframeswillbringtheseforwardandmaketheopenings

    smallerandlessdistinct............................................................................................................1310

    FigureC136:Shed13ontheWellingtonwaterfrontfeaturesadistinctiveroofthatisintegralwithitscharacter.......................................................................................................................1311

    FigureC137:Aparapetthatisintegralwiththedesignoftherestofthefacadeandwhich

    contributeshistoricinformation...............................................................................................1311

    FigureC138:TheAucklandFerryBuildingisintegralwithitswaterfrontsettingandalteringthis

    relationshipwouldremovehistoricmeaning...........................................................................1311

    FigureC139:Detailsofopenings.Thingstotakenoteofherearethebondpatternand

    techniqueusedforlayingbricks,colouring,strikingofmortar,changesinsurface,recessesand

    depressions,andproportionsofwindowsandothercomponents..........................................1312

    FigureC1310:ArcadesinAucklandwithcomplexspatialrelationshipswhereblockinglinesof

    sightbetweenspacesorimpedingestablishedpedestrianrouteswillhavesignificantnegative

    effects........................................................................................................................................1314

    FigureC1311:Severelydegradedbrickandmortarduetomoisture......................................1318

    FigureC1312:ParapetsstrengthenedusingnearsurfacemountedFRPstrips......................1319

    FigureC1313:Anextremecaseinthe2010Darfieldearthquakewhereinadequateconnections

    haveresultedinwallcollapse...................................................................................................1319

    FigureC1314:Anassortmentofdiaphragmfixings.................................................................1320

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    12/315

    x

    FigureC1315:Spiralthreadedrodsbeinginstalledtosecureanouterlayerofbricks...........1321

    FigureC1316:Strutsfromthefloorabovetoimproveoutofplaneperformance................1323

    FigureC1317:PosttensioningbarsusedintheBirdcagehotelwithconcreteloadspreaderscut

    intothebrick.............................................................................................................................1324

    FigureC1318:Simpleandvisuallyinterestinginplanestrengthening...................................1325

    FigureC1319:PierdamagebetweenopeningsintheDarfieldEarthquake............................1326

    FigureC1320:AconcretemomentframeinsidethefaadeofalargeURMbuildingin

    Wellington(DunningThorntonConsultants)............................................................................1327

    FigureC1321:Eccentricbracinginawalkway(DunningThorntonConsultants)....................1327

    FigureC1322:Aneccentricallybracedcore(DunningThorntonConsultants).......................1327

    FigureC1323:Shotcretewallsontherearofthebirdcagehotel............................................1329

    FigureC1324:FRPappliedtoawall(DunningThorntonConsultants)...................................1329

    FigureC1325:Itispossibletomakediaphragmimprovementsvisiblyinteresting,aswiththis

    recentlyinstalledfloor..............................................................................................................1330

    FigureC1326:Aroofbracingsystemwhichclasheswiththeexistingstructure,resultingina

    confusedceilingspace..............................................................................................................1333

    FigureC1327:Theornatefaadeofthisbuildingmadeexteriorstrengtheningdifficult.......1334

    FigureC1328:Thesolutionwastoinnovativelystrengthentheinterior,whichallowedretention

    ofitsmostimportantvisualelements......................................................................................1334

    FigureC1329:OpeningsinthisChristchurchcafallowedplacementofframeswhich

    complimentsthespace.............................................................................................................1334

    FigureC1330:Steelstructureinstalledinanintrusivewaywhichisvisuallydistracting........1334

    FigureC1331:Noattempthasbeenmadetoconcealthisnewshearwall,rathertheaestheticis

    celebratedbytherestofthearchitecture................................................................................1335

    FigureC1332:Excessivefloorandwalltiessomehowworkwiththisfaade.........................1335

    FigureC141:Diaphragmretrofitexamples...............................................................................144

    FigureC142:Photographsoftestedretrofitteddiaphragms....................................................146

    FigureC143:Fullscaleretrofitteddiaphragmtestresults........................................................147

    FigureC144:Diaphragmchordschematic.................................................................................147

    FigureC145:Subdiaphragmexample(fromOliver2010).........................................................149

    FigureC146:TypicalOutofPlaneWallSupportDetailatDiaphragmOpening(fromOliver2010)

    ..................................................................................................................................................1410

    FigureC161:PosttensioningRetrofitTechnique......................................................................163

    FigureC162:DefinitionofLimitStates......................................................................................163

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    13/315

    xi

    FigureC163:FlowchartforPosttensioningSeismicRetrofitDesign.........................................164

    FigureC164:TypicalStressStrainPlots.....................................................................................165

    FigureC165:PosttensionedInplanePierDefinitionandStressProfileatInitialState...........166

    FigureC166:PosttensionedInplanePierEquilibriumatNominalStrengthLimitState.........167

    FigureC167:PosttensionedInplanePierEquilibriumatFirstCrackingLimitState................168

    FigureC168:PosttensionedInplanePierEquilibriumatHingeFormationLimitState...........169

    FigureC169:TestFrameDimensions.......................................................................................1610

    FigureC1610:CalculatedVsExperimentalValues...................................................................1610

    FigureC1611:PosttensionedOutofplaneWallDefinitionandStressProfileatInitialState...16

    11

    FigureC1612:PosttensionedOutofplaneWallatNominalStrengthLimitState................1611

    FigureC1613:CalculatedVsExperimentalValues...................................................................1614

    FigureC1614:URMWallDetails..............................................................................................1616

    FigureC171:ExamplesofFRPsystems......................................................................................172

    FigureC172:ExamplesofnonverticalFRPretrofitsystems.....................................................174

    FigureC173:ExamplesofverticalFRPretrofitsystems.............................................................174

    FigureC174:FRPcontinuousfabricsystemextendedldbeyondthetopofthedoors.Thevertical

    FRPsystemwasdesignedforthepierbetweenthetwodoors..................................................176

    FigureC175:FRPdesignflowchart.............................................................................................177

    FigureC176:TrussanalogyforFRPretrofittedURMwall.........................................................178

    FigureC177:Plotshowingtherelationshipbetweenfeand..............................................1710

    FigureC178:FRPretrofitforwallinExample15.1..................................................................1713

    FigureC179:FRPretrofitforbuildinginExample15.2............................................................1714

    FigureC181:NSMCFRPretrofitapplication..............................................................................183

    FigureC182:Stressandstrainprofile........................................................................................184

    FigureC184:Typicalwallfailuremechanisms...........................................................................187

    FigureC183:Outofplanedesignprocedure.............................................................................187

    FigureC185:Experimentalprogram..........................................................................................188

    FigureC186:ExperimentalresultsofNSMCFRPwalltesting....................................................189

    FigureC187:CFRPwallretrofitforExampleC18.7.2...............................................................1813

    FigureC191:SequenceofFRSstrengtheningprocedures.........................................................193

    FigureC192:InplaneFRSdesignprocedure.............................................................................194

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    14/315

    xii

    FigureC193:Distancesofxtandxcwithrespecttoaxialload...................................................196

    FigureC194:OutofplaneFRSdesignprocedure.....................................................................197

    FigureC195:NSMreinforcement..............................................................................................198

    FigureC196:IllustrationofFRSeffectivedepth........................................................................198

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    15/315

    xiii

    ListofTables

    TableC11:NewZealandURMtypologies..................................................................................110

    TableC12:NumberofURMbuildingsfromQVaccordingtoconstructiondecade..................111

    TableC13:EstimatednumberofpotentiallyearthquakeproneandearthquakeriskURM

    buildings......................................................................................................................................113

    TableC21:Heighttothicknessratiocorrectionfactorformortarcompressivestrength...........22

    TableC22:ParametersusedintheNZSEE(2006)guideline........................................................27

    TableC23:Mohshardnessscale..................................................................................................29

    TableC24:Mortardividingfactorsbasedonh/tratio...............................................................214

    TableC25:Listoff'mvaluesfrompublications........................................................................223

    TableC31:Fullscalediaphragmtestingsummary......................................................................38

    TableC32:Examplebackboneforcedisplacementdatafortimehistoryanalysis...................310

    TableC41:Modalparameterextractionmethods.......................................................................48

    TableC42:Recommendedsuiteprofileforeachseismiczone.................................................415

    TableC81:WallSchematics.........................................................................................................86

    TableC82:WallSpecifications(Russelletal.2012).....................................................................86

    TableC83:Comparisonofpredictedstrengthaccountingforandneglectingflanges(Russellet

    al.2012).........................................................................................................................................86

    TableC111:Estimatedwalldimensions.....................................................................................118

    TableC112:%NBS.Zforslendernessratioof17.1,lowerstorey...............................................119

    TableC113:%NBS.Zforslendernessratioof19.6,topstorey..................................................119

    TableC114:Estimatedparapetdimensions.............................................................................1110

    TableC115:Calculating%NBSforregionsexcludingnearfaulteffect....................................1110

    TableC116:Calculating%NBSforregionsincludingnearfaulteffect.....................................1110

    TableC117:Calculatingsheardemand....................................................................................1111

    TableC118:Calculatingshearcapacity....................................................................................1111

    TableC119:Oneleafwallassessment.....................................................................................1112

    TableC1110:Oneleafwallassessment...................................................................................1113

    TableC161:kValueforMomentCapacityEvaluationatHingeFormationLimitState............169

    TableC162:PosttensionedWallDimensionsandPosttensioningDetails............................1613

    TableC163:MasonryMaterials...............................................................................................1615

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    16/315

    xiv

    TableC164:InputParameters.................................................................................................1615

    TableC171:TypicalvaluesofFRPthickness,designrupturestrainandmodulusofelasticity...17

    11

    Table181:TypicalvaluesofmaterialpropertiesforCFRP........................................................183

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    17/315

    CommentarytoAssessmentandImprovementofUnreinforcedMasonryBuildingsfor

    EarthquakeResistance

    12/2011

    C11

    SectionC1HistoryandPrevalenceofUnreinforced

    MasonryBuildingsinNewZealand

    C1.1Introduction

    NewZealandsmasonryconstructionheritageiscomparativelyyoung,spanningfrom1833until

    the present time a period of less than 200 years. Furthermore, the majority of URM

    construction inNewZealandoccurredbetween1880and1935.Consequently,astudyofNew

    ZealandsURMbuildingstockhasanarrowscope incomparisonwith internationalnorms(see

    for instanceBindaandSaisi (2005),Loureno (2006)andMagenes (2006)).Thiscomparatively

    narrowtimeperiodhastheadvantageoffacilitatingthedocumentationandreportingofNew

    ZealandURMconstructionpracticewithagreaterdegreeofaccuracythan isoftenpossible in

    countrieswithanolderandmorediversehistoryofURMconstruction(Binda2006).

    C1.2.1EarlySettlement

    The first inhabitants of Aotearoa New Zealand were groups of Polynesian explorers who

    discoveredandsettledtheislandsintheperiodA.D.8001000(King2003).Thesepeopledidnot

    develop a tradition of building in masonry, but instead built using timber, earth and most

    commonlyraupo (bulrush).Therearehowever,numerousstonerelatedarchaeologicalsites in

    NewZealandattributedtoMaorisociety,themajorityofwhicharegardenwallsorassociated

    withfortifications.ExamplesofMaoriconstructionareshowninFigureC11andFigureC12.

    FigureC11:Raupowhare(house)atWairau

    Pa,ca.1880(AlexanderTurnbullLibrary).

    FigureC12:Raupoandtimberwharesofa

    MaorivillageatMaketu,Kawhia,1895

    (AlexanderTurnbullLibrary).

    CaptainJamesCookanchoredoffthecoastofNewZealandon9October1769.Thiseventwas

    followedbyagradualhaphazard increase inthepopulationofEuropeans inNewZealandover

    the next 70 years, initially primarily associated with whaling, but also involving kauri timber

    extractionandgoldmining.Jacobs(1985)reportsthattheEuropeanpopulationofNewZealand

    in1830wasprobablyalittlemorethan300.By1839thenumberhadrisentopossibly2000,and

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    18/315

    SectionC1 HistoryandPrevalenceofUnreinforcedMasonryBuildingsinNewZealand

    C12

    atthebeginningofthe1850stherewas26,000EuropeansinNewZealand(seeFigureC13for

    recordedpopulationdata).ThesefirstEuropeansettlersfoundthemselveswithouttheirfamiliar

    building materials, so initially emulated the style and construction of Maori dwellings (Shaw

    2003). For the most significant early buildings, such as churches and assembly buildings,

    architectsfromAustraliaorEnglandwerecommissioned.

    FigureC13: NewZealandtotalpopulationdata,18582007.

    CaptainWilliamHobsonsarrivalin1840astheFirstGovernorGeneralofNewZealandmarked

    thebeginningofNewZealand asaBritishcolony.Construction during the1840sto1860swas

    primarilyoftimberforresidentialandsmallcommercialbuildings(seeFigureC14),butmasonry

    buildingsdidbegintoappearclosetoharbours(seeFigureC15)andincitycentres.Inthelate

    1850sChristchurchprosperedfromthewooltradeandthisallowedthetransitionfromwoodto

    stoneandclaybrickmasonryforpublicbuildings.InChristchurchthetownhallwasbuiltinstone

    in18621863,thefirststonebuildingofChristsCollegewasconstructedin1863,andthestone

    Provincial Council Chambers was completed in 1864 (Wilson 1984). Oliver (2006) reports that

    claybrickswerefirstmanufactured inAuckland in1852,withproductionofabout5,000bricks

    perday.InAucklandcentralcitytheconstructionoftimberbuildingswasnotrestricteduntilthe

    City of Auckland Building Act of 1856, with a fire in central Auckland in 1858 provided further

    impetusforthetransitionfromtimbertoclaybrickmasonryconstruction.Similarfiresinother

    city centres resulted in this transition from timber to masonry construction being mirrored

    throughout New Zealand, suchas fires in inner city Christchurch in 1861, 1864,and 1866.The

    centreofLytteltonwasalsodestroyedinafireonOctober24th,1870(ChristchurchCityLibraries

    2006; Wilson 1984). The combustibility of timber structures prompted the move to URM

    construction due to its fire resistant properties, with the high level of seismic activity in New

    Zealandnotinfluencingthedecision,asthepoorlateralforceresistingpropertiesofURMwere

    largelyunknownatthistimeofmassURMconstruction.Thefireproofnatureofmasonryledto

    itbeingreadilyadoptedastheappropriatebuildingmaterialforhighimportancestructuressuch

    asgovernmentbuildings,schools,andchurches.

    0

    1,000,000

    2,000,000

    3,000,000

    4,000,000

    5,000,000

    1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

    Population

    Year

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    19/315

    CommentarytoAssessmentandImprovementofUnreinforcedMasonryBuildingsfor

    EarthquakeResistance

    12/2011

    C13

    FigureC14:ShopsonQueenStreet,Auckland,

    1859(AlexanderTurnbullLibrary).

    FigureC15:QueenStreetandQueenStreet

    Wharf,Auckland,in1882(AlexanderTurnbull

    Library).

    FigureC16andFigureC17 illustratetypicalURMconstructionscenes (althoughdated fromaslightlylaterperiod).InotherpartsofNewZealandtherewasamoreplentifulsupplyofnatural

    stone,withNewZealandsearliestmasonrybuildinghavingbeenconstructedofstone in1833

    (see Figure C18). Figure C19 shows an example of early rural construction in parts of New

    Zealand where timber was scarce and natural stone was the primary construction material.

    Evident in several of these figures is a predisposition to emulate mother country British

    architecture. To some extent this emulation was due to the fact that there were very few

    architects inNewZealandprior to1880,withmanydistinctivebuildingsdesignedbyoverseas

    architects (Haarhoff2003). However Figure C110 shows that not all masonrybuildings were

    well constructed. Hodgson (1992) reports that inferior materials and uncertain ground

    conditionswerenotuncommon inbuildingprojectsof thisperiod.FigureC111 show thatby

    1910 central Auckland was composed almost entirely of unreinforced masonry buildings.

    Stacpoole and Beaven (1972) have similarly reported that Aucklandsearly wooden buildings

    datingfromthe1840swerebadlyinneedofreplacementbythe1860s.

    By1914 the centralareaofChristchurchhadbeen largely rebuilt, resulting inacity thatwas

    interesting for its architectural variety, pleasing for its scale and distinctively New Zealand

    (Wilson1984).FigureC112andFigureC113showphotosofhistoricalChristchurchfrom1885

    and1910respectively.TwoofthemanyinfluentialarchitectsofChristchurchwereJ.C.Maddison

    (18501923), whose design focus was inspired by the Italianate style, and J.J. Collins (18551933),whoinpartnershipwithR.D.Harman(18591927)chosebrickmasonryastheirmedium

    forlargecommercialandinstitutionalbuildings.Bythe1920swoodenstructuresinChristchurch

    wererare,andwereseenassmallirregularrelicsofthepast.

    C1.3URMPerformanceinPastEarthquakes

    C1.3.1Wairarapa,CanterburyandMurchisonEarthquakes

    TheWairarapaearthquakeoccurredonTuesday23January1855,hadanestimatedmagnitude

    of M8.2 (Grapes and Downes 1997) and is the largest earthquake to have occurred in New

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    20/315

    SectionC1HistoryandPrevalenceofUnreinforcedMasonryBuildingsinNewZealand

    C14

    ZealandsincethetimeofsystematicEuropeancolonisation(seeDowrickandRhoades(1998)for

    a catalogue of major New Zealand earthquakes from 19011993). The shock was felt across

    almostthewholecountry,washighlydestructiveinWellington,andalsocausedseveredamage

    inWanganuiandKaikoura.Betweensevenandninepeoplewerekilled intheearthquake,and

    fiveotherssustainedinjuriesthatrequiredhospitalisation.

    FigureC16:Groupphotographofthe

    constructionworkersthatbuilttheStratford

    PublicHospitalduring19061907(Alexander

    TurnbullLibrary).

    FigureC17:Brickbuildingunder

    construction,ca1920(AlexanderTurnbull

    Library).

    FigureC18:The1833StoneStoreatKerikeri

    wasbuiltbytheChurchMissionarySociety.(A

    PGodberCollection,AlexanderTurnbull

    Library).

    FigureC19:TwoChineseminersinfrontof

    astonecottageincentralOtago,ca1860

    (AlexanderTurnbullLibrary).

    TheM7.1NorthCanterburyearthquake in1888(Stirlingetal.2008)causedseveredamageto

    buildingsmadeofcobandstonemasonryandcausedminordamagetobuildingsinChristchurch

    (PapersPast 2010). A later earthquake in 1901 centred in Cheviot damaged the spire on the

    CanterburyCathedralforthethirdtimeinitsshortlifeandledtoreconstructionofthespireintimber.FurtherdetailsarereportedinDizhuretal.(2010).

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    21/315

    CommentarytoAssessmentandImprovementofUnreinforcedMasonryBuildingsfor

    EarthquakeResistance

    12/2011

    C15

    FigureC110:Collapseofanewmasonry

    auctionmarketbuilding,QueenStreet,

    1865(AlexanderTurnbullLibrary).

    FigureC111:Lookingalongarowof

    commercialbuildingsonQueenStreet,

    Auckland,ca1910(AlexanderTurnbull

    Library).

    FigureC112:VictorianChristchurchin1885

    (Coxhead1885)

    FigureC113:Christchurchsfirst

    skyscraper,photocirca1910

    (BrittendenCollection1910)

    TheM7.8earthquakethatstruckMurchisononthe17thofJune1929wasfeltthroughoutNew

    Zealand(Dowrick1994).Fortunately,themost intenseshakingoccurred inamountainousand

    denselywoodedareathatwassparselypopulated.Casualtieswerethereforecomparativelylight

    andthedamagewasmostlyconfinedtothesurroundinglandscape,wheretheshakingtriggered

    extensivelandslidesoverthousandsofsquarekilometres.Nonetheless,theshockimpactedwith

    damagingintensitiesasfarawayasGreymouth,CapeFarewellandNelson(seeFigureC114and

    FigureC115).FifteenpeoplewerekilledintheMurchisonearthquake.

    C1.3.2The1931HawkesBayEarthquake,Napier

    As reported above, itwas the combustibilityof timber construction thatprompted the focus

    towardsbuilding inclaybrickunreinforcedmasonry,andoccasionally in stonemasonry.Early

    earthquakes in theWellington region resulted in a slower adoptionofmasonry construction.

    Thiscautionproved tobewelljustified.On themorningof3February1931 theHawkesBay

    regionoftheeasternNorthIslandwasstruckbyanM7.8earthquakethatcompletelydestroyed

    muchofthecityofNapier(seeFigureC116toFigureC118).Firessweptthroughthewreckage,

    destroyingmuchofwhatwasleft.EightnursesdiedwhenthereinforcedconcreteNapiernurses

    home collapsed, and perhaps the largest brick masonry building to collapse was the NapierAnglican Cathedral (see Figure C119). The shaking resulted in damage from Taupo to

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    22/315

    SectionC1HistoryandPrevalenceofUnreinforcedMasonryBuildingsinNewZealand

    C16

    Wellington, and left 30,000 people homeless. The official death toll was 256, and the event

    remainstheworstdisasterofanytypetooccuronNewZealandsoil(DalleyandMcLean2005;

    Dowrick1998).

    FigureC114:Generalstoredamagedbythe

    1929Murchisonearthquake(Alexander

    TurnbullLibrary).

    FigureC115:Damagedbusinesspremises

    aftertheearthquakeof17June1929

    (AlexanderTurnbullLibrary).

    FigureC116:HastingsStreet,Napier,circa

    1914(AlexanderTurnbullLibrary).

    FigureC117:ViewdownHastingsStreet,

    Napierafterthe1931earthquake(Alexander

    TurnbullLibrary).

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    23/315

    CommentarytoAssessmentandImprovementofUnreinforcedMasonryBuildingsfor

    EarthquakeResistance

    12/2011

    C17

    FigureC118:LookingoverNapieratthe

    buildingsruinedbythe1931earthquakeandthe

    fires(AlexanderTurnbullLibrary).

    FigureC119:RuinsoftheNapierAnglican

    Cathedralafterthe1931Napier

    earthquake(AlexanderTurnbullLibrary).

    Following thedemonstratedpoor seismic responseofURMbuildingsduring theHawkesBay

    earthquaketherewasarapiddeclineintheuseofunreinforcedclaybrickmasonryconstruction,

    which was eventually prohibited in 1965 (New Zealand Standards Institute 1965a). The

    devastationof the1931HawkesBayearthquakeprompted theNewZealandGovernment to

    bantheuseofunreinforcedmasonryonpublicbuildings (Oliver2006)andalsoprompted the

    government todevelopanationalbuilding code, with the NewZealand Standards Institution

    formed in 1932. This institution has survived to the present day, and is now referred to as

    StandardsNewZealand.

    C1.3.3GisborneandDarfieldEarthquakes

    TheM6.82007Gisborneearthquake(FrancoisHoldenetal.2008)causeddamagetonumerous

    unreinforcedmasonrybuildings,includingthecollapseof22parapets(DaveyandBlaikie2010).

    Examplesofdamage toURMbuildings in the2007Gisborneearthquake are shown inFigure

    C120andFigureC121.The2010Darfieldearthquakecausedextensivedamagetoanumberof

    unreinforced masonry buildings (Dizhur et al. 2010; Ingham and Griffith 2011). Whilst this

    damagetoimportantheritagebuildingswasthelargestnaturaldisastertooccurinNewZealand

    since the1931HawkesBayearthquake, thedamagewas consistentwith projections for thescaleofthisearthquake,andindeedevengreaterdamagemighthavebeenexpected.Ingeneral,

    the nature of damage was consistent with observations previously made on the seismic

    performance of unreinforced masonry buildings in large earthquakes, with aspects such as

    toppledchimneysandparapets,failureofgablesandpoorlysecuredfaceloadedwalls,and in

    planedamagetomasonryframesallbeingextensivelydocumented(seeFigureC122andFigure

    C123).

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    24/315

    SectionC1HistoryandPrevalenceofUnreinforcedMasonryBuildingsinNewZealand

    C18

    FigureC120:Toppledparapetinthe2007

    Gisborneearthquake.

    FigureC121Outofplanefailureofagable

    wallinthe2007Gisborneearthquake.

    FigureC122:Outofplanewallfailureatthe

    cornerofWorcesterandManchesterstreetsin

    the2010Darfieldearthquake.

    FigureC123:Outofplanewallfailureat118

    ManchesterStreetinthe2010Darfield

    earthquake.

    C1.4NewZealandURMBuildingStock

    InordertofosterageneralunderstandingofthearchitecturalcharacterofNewZealandsURM

    building stock, a characterisation study was performed that identified the seven building

    typologiesshowninFigureC124andreportedinTableC11.Theintentofthetypologystudyis

    toassistininitialseismicassessment.FurtherdetailsarereportedinRussellandIngham(2010)

    andRussellandIngham(2011).

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    25/315

    CommentarytoAssessmentandImprovementofUnreinforcedMasonryBuildingsfor

    EarthquakeResistance

    12/2011

    C19

    TypologyAbuilding onestoreyisolated TypologyBbuilding onestoreyrow

    TypologyCbuilding twostoreyisolated TypologyDbuilding twostoreyrow

    TypologyEbuilding three+storeyisolated TypologyFbuilding three+storeyrow

    TypologyGbuilding religious TypologyGbuilding institutional

    FigureC124:PhotographicexamplesofNewZealandURMtypologies

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    26/315

    SectionC1 HistoryandPrevalenceofUnreinforcedMasonryBuildingsinNewZealand

    C110

    TableC11:NewZealandURMtypologies

    Type Description

    Importance

    level

    (from

    NZS1170.0)

    Details

    A Onestorey,

    isolated

    2,4 OnestoreyURMbuildings. Examplesinclude

    conveniencestoresinsuburbanareas,andsmall

    officesinaruraltown.

    B Onestorey,

    row

    2,4 OnestoreyURMbuildingswithmultipleoccupancies,

    joinedwithcommonwallsinarow. Typicalinmain

    commercialdistricts,especiallyalongthemainstreet

    inasmalltown.

    C Twostorey,

    isolated

    2,4 TwostoreyURMbuildings,oftenwithanopenfront.

    Examplesincludesmallcinemas,aprofessionaloffice

    inaruraltownandpostoffices.

    D Twostorey,

    row

    2,4 TwostoreyURMbuildingswithmultipleoccupancies,

    joinedwithcommonwallsinarow. Typicalin

    commercialdistricts.

    E Three+

    storey,

    isolated

    2,4 Three+storeyURMbuildings,forexampleoffice

    buildingsinolderpartsofAucklandandWellington.

    F Three+

    storey,row

    2,4 Three+storeyURMbuildingswithmultiple

    occupancies,joinedwithcommonwallsinarow.

    Typicalinindustrialdistricts,especiallyclosetoaport

    (orhistoricport).

    G Institutional,

    Religious,

    Industrial

    2,3,4 Churches(withsteeples,belltowersetc),water

    towers,chimneys,warehouses. Prevalent

    throughoutNewZealand.

    C1.4.1EstimationofURMPopulationandValue

    In order to better understand the aggregated seismic performance of the nationwide URM

    buildingstock,twoparallelexercises wereperformed toestimatethenumberanddistribution

    ofURMbuildingsthroughoutNewZealand.ThefirstmethodinvolvedanassumptionthatURM

    buildingswereconstructedapproximately inproportiontothenationalpopulationdistribution

    oftheera,andthesecondmethodwasbasedupondatapurchasedfromQuotableValue(QV)

    regardingtheexteriorbuildingfabricintheQVdatabase.Bothmethodsareestimatesonly,but

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    27/315

    CommentarytoAssessmentandImprovementofUnreinforcedMasonryBuildingsfor

    EarthquakeResistance

    12/2011

    C111

    provided similar findings, with further details reported in Russell and Ingham (2010). The QV

    databasewasanalysedaccordingtoconstructiondate,buildingheightandfinancialvalue,with

    TableC12reportingthedecadeinwhicheachURMbuildingwasconstructed.

    TableC12:NumberofURMbuildingsfromQVaccordingto

    constructiondecade

    Decade URMBuildings

    18701880 43

    18801890 23

    18901900 71

    19001910 469

    19101920 646

    19201930 878

    19301940 514

    19401950 218

    Mixed 726

    Total 3590

    TableC12clearlyshowsatrendwherethenumberofURMbuildingsinitiallyincreaseduntilthe

    endofthe1920s,andsubsequentlydeclined.ThistrendfollowstheincreasingrateofEuropean

    immigration and associated infrastructure development in New Zealand in the early 20th

    Century (seeFigureC13),untilthe1931M7.8HawkesBayearthquake,after whichURMwas

    nolongerconsideredafavourablebuildingmaterial.

    A report prepared for the Department of Internal Affairs in 2002 (Hopkins 2002; Hopkins and

    Stuart2003)showedthatthetotalfloorareaofbuildingsin32citiesandtownsthroughoutNew

    Zealandwasapproximately27,200,000m2.ThetotalfloorareaofURMbuildingsextractedfrom

    the QV database was approximately 2,100,000m2, suggesting that URM buildings make up

    approximately 8% of the total New Zealand commercial building stock in terms of floor area.

    FromtheQVdatabaseitwasalsopossibletoestablishthat86%ofthenationwideURMbuilding

    stock is either a one or two storey building, and that the aggregated value of these buildings

    (based on an assessment period between July 2005 and September 2008) is approximately

    NZ$1.5billion. However, it must berecognisedthatmanybuildings havea worth greater than

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    28/315

    SectionC1HistoryandPrevalenceofUnreinforcedMasonryBuildingsinNewZealand

    C112

    theirfinancialvaluation,includinganarchitectural,historicorheritagevaluetothecommunity,

    whichcanbedifficulttoquantify(Goodwin2008;Goodwinetal.2009).

    C1.4.2EstimatedVulnerabilityofURMBuildings

    Following determination of the number of URM buildings and their approximate regional

    distribution, an analysis was performed to estimate the expected vulnerability of the URM

    buildingpopulation.ThedetailsoftheanalysisarereportedinRussellandIngham(2010),with

    the results reported in FigureC125 and inTableC13. It is recognised that the analysiswas

    essentially qualitative in nature and can be expected to overestimate the number of poorly

    performing URM buildings, primarily because of the conservative nature of the IEP.

    Nevertheless, as an informative estimate of the nature of the vulnerability of New Zealands

    URMbuildingstock,thisanalysis isconsideredrobust.Additionally,thisanalysisdoesnottake

    into account the number of buildings which have already been seismically improved, which

    Thornton (2010)notes isnot insignificant. Data that became available followingdamage to

    URM buildings in the 2010 Darfield earthquake (reported in Ingham and Griffith (2011))

    indicatedgeneralsupportforthisanalysis,althoughitwasevidentfollowingtheearthquakethat

    theanalysispresentedinFigureC125underestimatedthetotalnumberofURMbuildingsinthe

    Canterburyregion(seeDizhuretal.(2010)).

    FigureC125:Estimated%NBSofURMbuildingsinProvincesthroughoutNewZealand

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    29/315

    CommentarytoAssessmentandImprovementofUnreinforcedMasonryBuildingsfor

    EarthquakeResistance

    12/2011

    C113

    TableC13:EstimatednumberofpotentiallyearthquakeproneandearthquakeriskURM

    buildings

    Province Potentiallyearthquake

    prone

    Potentially

    earthquakerisk

    Unlikelytobe

    significantrisk

    Auckland 41 3% 628 31% 357 74%

    Taranaki 59 4% 105 5% 0 0%

    HawkesBay 85 6% 1 0% 0 0%

    Wellington 622 45% 55 3% 0 0%

    Marlborough 42 3% 5 0% 0 0%

    Nelson 94 7% 37 2% 0 0%

    Westland 39 3% 2 0% 0 0%

    Canterbury 338 24% 513 26% 0 0%

    Otagoand

    Southland66 5% 664 33% 126 26%

    Total 1386 36% 2010 52% 483 12%

    C1.5NewZealandBuildingCodesPertainingtoURMConstruction

    The Great Depression in the 1930s and the outbreak of World War II significantly slowed

    progressintheconstructionsector,andfewlargebuildingsofanymaterialwereconstructedin

    the period between 1935 and 1955 (Megget 2006; Stacpoole and Beaven 1972). Equally

    important in the history of URM buildings in New Zealand was the 1931 M7.8 Hawkes Bay

    earthquake, and the changes in building provisions which it precipitated. Later in 1931, in

    response to that earthquake, the Building Regulations Committee presented a report to theParliamentofNewZealandentitledDraftGeneralBuildingByLaw(Cull1931),whichwasthe

    firststeptowardsrequiringseismicprovisionsinthedesignandconstructionofnewbuildings.In

    1935, this report evolved into NZSS no. 95, published by the newly formed New Zealand

    Standards Institute, and required a horizontal acceleration for design of 0.1g, and this

    requirementappliedtothewholeofNewZealand(NewZealandStandardsInstitute1935).NZSS

    no. 95 also suggested that buildings for public gatherings should have frames constructed of

    reinforced concrete or steel. The ByLaw was not enforceable, but it is understoodthat it was

    widely used especially in the larger centres of Auckland, Napier, Wellington, Christchurch and

    Dunedin(Megget2006).TheprovisionsofNZSSno.95wereconfinedtonewbuildingsonly,but

    the draft report acknowledged that strengthening of existing buildings should also be

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    30/315

    SectionC1 HistoryandPrevalenceofUnreinforcedMasonryBuildingsinNewZealand

    C114

    considered,andthatalterationstoexistingbuildingswererequiredtocomply(Davenport2004).

    In1939and1955neweditionsofthisByLawwerepublished,andapartfromsuggestingin1955

    thattheseismiccoefficientvarylinearlyfromzeroatthebaseto0.12atthetopofthebuilding

    (formerly the seismic coefficient was uniform up the height of the building), there were few

    significantchanges(Beattieetal.2008).Itwasnotuntil1965thatmuchoftherecentresearchat the time into seismic design was incorporated into legislation. The New Zealand Standard

    Model Building ByLaw NZSS 1900 Chapter 8:1965 explicitly prohibited the use of URM: (a) in

    ZoneA;(b)ofmorethanonestoreyor15ft(4.6m)eavesheightinZoneB;(c)ofmorethantwo

    storeysor25ft(7.6m)eavesheightinZoneC.Thesezonesrefertotheseismiczonationatthe

    time,whichhavesubsequentlychangedandevolved.ZoneAconsistedofregionsofthehighest

    seismicriskandZoneCconsistedofregionsofthe lowestseismicrisk(NewZealandStandards

    Institute1965b).Again,theprovisionsofthisByLawdidnotapplyautomaticallyandhadtobe

    adoptedbylocalauthorities.

    The1965coderequiredthatbuildingsbedesignedandbuiltwithadequateductility,althoughfurtherdetailswerenotgiven.Thenextversionofthe loadingscodewaspublished in1976as

    NZS4203(StandardsAssociationofNewZealand1976),andwasamajoradvanceonthe1965

    code.Most importantly, the1976 loadingscodewasused inconjunctionwithrevisedmaterial

    codes: steel, reinforced concrete, timber and reinforced masonry, which all required specific

    detailingforductility.Thusafterthepublicationofthiscodein1976,unreinforcedmasonrywas

    explicitlyprohibitedasabuildingmaterialthroughoutthewholeofNewZealand.

    The use of URM was implicitly discouraged through legislation from as early as 1935, and

    although it was still allowed in some forms after 1965, observations of existing building stock

    show its minimal use from 1935 onwards, especially for larger buildings. This is thought to be

    significantlyattributabletotheexceptionallyrigorousqualityofdesignandconstructionbythe

    MinistryofWorksatthetime(Johnson1963;Megget2006).AlthoughtwostoreyURMbuildings

    werepermittedinAuckland(ZoneC)after1965,onlythreeexistingURMbuildings inAuckland

    City constructed after 1940 have been identified. All three are single storey and they were

    constructedin1950,1953and1955.

    C1.5.1ProvisionsfortheSeismicUpgradeofExistingBuildings

    As building codes were being developed for the design of new buildings, attention was also

    giventotheperformanceofexistingbuildingsinearthquakes.Thefirsttimethiswasaddressed

    in legislation was Amendment 301A to the 1968 Municipal Corporations Act (New Zealand

    Parliament 1968). This Act allowed territorial authorities, usually being boroughs, cities or

    district councils, to categorise themselves as earthquake risk areas and thus to apply to the

    government to take up powers to classify earthquake prone buildings and require owners to

    reduceorremovethedanger.Buildings(orpartsthereof)ofhighearthquakeriskweredefined

    as being those of unreinforced concrete or unreinforced masonry with insufficient capacity to

    resistearthquakeforcesthatwere50%ofthe magnitudeofthoseforcesdefined byNZS 1900

    Chapter8:1965.Ifthebuildingwasassessedasbeingpotentiallydangerousinanearthquake,

    thecouncilcouldthenrequiretheownerofthebuildingwithinthetimespecifiedinthenotice

    toremovethedanger,eitherbysecuringthebuildingtothesatisfactionofthecouncil,orifthe

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    31/315

    CommentarytoAssessmentandImprovementofUnreinforcedMasonryBuildingsfor

    EarthquakeResistance

    12/2011

    C115

    council so required, by demolishing the building. Most major cities and towns took up the

    legislation,andasanindicationoftheeffectofthisAct,between1968and2003WellingtonCity

    Council achieved strengthening or demolition of 500 out of 700 buildings identified as

    earthquakeprone(Hopkinsetal.2008).

    AucklandCityCouncil,inspiteofhavingalowseismicity,tookastronginterestinthelegislation

    andthisledtoconsiderableactivityinstrengtheningbuildings(Boardman1983).InChristchurch,

    a moderately high seismic zone, the City Council implemented the legislation, but adopted a

    more passive approach, generally waiting for significant developments to trigger the

    requirements.InDunedin,nowseentobeoflowseismicrisk,littlewasdoneinresponsetothe

    1968 legislation although strengthening of schools, public buildings and some commercial

    premiseswasachieved.Asaresult,DunedinhasahighpercentageofURMbuildingscompared

    withmanyothercitiesinNewZealand(Hopkins2009).Megget(2006)andThornton(2010)state

    thatmuchofthestrengtheninginWellingtonwasaccomplishedwithextrashearwalls,diagonal

    bracingorbuttressingandthetyingofstructuralfloorsandwallstogether,andthatmanybrittlehazards such as parapets and clock towers had been removed after the two damaging 1942

    SouthWairarapaearthquakes(M7.0&M7.1)whichwerefeltstronglyinWellington.Hopkinset

    al.(2008)notedthattherewascriticismatthelossofmanyolderheritagebuildingsandatthe

    useofintrusiveretrofittingmeasureswhichwerenotharmoniouswiththearchitecturalfabricof

    thebuilding(McClean2009).Atthesametime,thisdidprovideanopportunityinmanycasesfor

    thelandonwhichtheoldbuildingwassituatedtobebetterutilisedwithnew,largerandmore

    efficientlydesignedstructures.

    Amajordrawbackofthe1968 legislation,whichendureduntil2004,surviving intactwiththe

    passageoftheBuildingAct 1991,wasthatthedefinitionof anearthquake pronebuildingand

    therequiredleveltowhichsuchbuildingsshouldbeimprovedremainedtiedtothe1965code.

    Mostterritorialauthoritiescalledforstrengtheningtoonehalfortwothirdsofthe1965code,

    andmanybuildingswhichwerestrengthenedto these requirementsweresubsequentlyfound

    tofallwellshortoftherequirementsoflaterdesignstandardsfornewbuildings(Hopkinsetal.

    2008). (Wellington City Council found that in January 2008, of 97 buildings which had been

    previouslystrengthened,61(63%)weresubsequentlyidentifiedaspotentiallyearthquakeprone

    (Bothara et al. 2008; Stevens and Wheeler 2008)). This situation was recognised by the New

    Zealand Society for Earthquake Engineering (NZSEE), who were also concerned about the

    performance of more modern buildings, particularly after the observed poor performance ofsimilarlyagedbuildings inearthquakesinNorthridge,California(1994)andKobe,Japan(1995).

    NZSEEpushedfornew,moreuptodateandwideranginglegislation.Thispushwassupported

    by the Building Industry Authority, later to become part of the Department of Building and

    Housing, and a new Building Act came into effect in August 2004 (New Zealand Parliament

    2004). This brought innewchanges as towhat constitutedan EarthquakeProneBuilding. In

    particular, the definition of an earthquake prone building was tied to the current design

    standardofthetime,andnolongertothedesignstandardofanyparticularyear.Thelegislation

    allowedanyterritorialauthoritythat issatisfiedthatabuilding isearthquakepronetorequire

    theownertotakeactiontoreduceorremovethedanger.Eachterritorialauthoritywasrequired

    tohaveapolicyonearthquakepronebuildings,andtoconsultpubliclyonthispolicybeforeits

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    32/315

    SectionC1 HistoryandPrevalenceofUnreinforcedMasonryBuildingsinNewZealand

    C116

    adoption.Policieswererequiredtoaddresstheapproachandprioritiesandtostatewhatspecial

    provisions would be made for heritage buildings. The 2004 legislation applied to all types of

    buildings except small residential ones, (residential buildings were excluded unless they

    comprised2ormorestoreysandcontained3ormorehouseholdunits).

    Assoonasthe1968legislationcameintoeffecttoattempttomitigatetheeffectsofearthquake

    pronebuildings,theNewZealandNationalSocietyforEarthquakeEngineeringsetupasteering

    committeetoprovideacodeofpracticeinanefforttoassistlocalauthoritiestoimplementthe

    legislation. Since the first draft code of practice published by the NZNSEE (1972), several

    successive publications have been produced, each extending on the previous version. These

    guidelineshavebeen instrumental inhelpingengineersandterritorialauthoritiestoassessthe

    expected seismic performance of existing buildings consistent with the requirements of the

    legislation.Guidelinesforassessingandupgradingearthquakeriskbuildingswerepublishedasa

    bulletinarticle in1972(NZNSEE1972)andthenseparatelypublishedthefollowingyear,which

    became colloquially known as the Brown Book (NZNSEE 1973). This document providedguidelines for surveying earthquake risk buildings and for the identification of particularly

    hazardous buildings and features, and was found to be helpful in many respects. It did not

    establish or recommend strength levels to which earthquake prone buildings should be

    upgraded,andthusstandardsvariedfromoneareatoanother.Itwasimplicitthatstrengthening

    be to more than half the standard required in Chapter8 of the1965NZSS Model Building By

    Law.

    In1982,NZSEEestablishedastudygrouptoexamineandrationalisetheuseoftheseguidelines

    and to produce further guidelines and recommendations. This activity culminated in the

    publicationin1985ofwhatbecameknownasthe1985RedBook(NZNSEE1985).Again,this

    document was primarily of a technical nature and the responsibilities of what to do with

    buildingsstillrestedwithlocalauthorities.Thepublicationwasintendedtopromoteaconsistent

    approach throughout New Zealand for the strengthening of earthquake risk buildings and

    includedarecommendedleveltowhichbuildingsshouldbestrengthenedplusthetimescaleto

    complete the requirements. The basic objective was to establish a reasonably consistent

    reduction of the overall risk to life which the countrys stock of earthquake risk buildings

    represented.Basedonoverseasexperiences,particularlyinLosAngelesinSouthernCalifornia,a

    philosophy was accepted of providing owners of earthquake risk buildings with the option of

    interim securing to gain limited extension of useful life, after which the building should bestrengthenedtoprovideindefinitefuturelife.Thedesignofinterimsecuringsystemswastobe

    basedonminimumseismiccoefficientswhichrepresentedtwothirdsofthosespecifiedinNZSS

    1900, Chapter 8 (New Zealand Standards Institute 1965b). For permanent strengthening

    measures, it was recommended that the building be strengthened to the standard of a new

    building, but with the design lateral forces reduced depending on the occupancy classification

    andtypeofstrengtheningsystem.Thispublicationwaswidelyusedbyterritorialauthoritiesand

    designers.

    In1992theNZNSEEagainsetupastudygrouptoreviewthe1985publication,andthisresulted

    in another publication, which similarly became colloquially known as the 1995 Red Book(NZNSEE1995).Thisdocumentextendedtheapproachandcontentofitspredecessorandtook

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    33/315

    CommentarytoAssessmentandImprovementofUnreinforcedMasonryBuildingsfor

    EarthquakeResistance

    12/2011

    C117

    into account the changing circumstances, technical developments and improved knowledge of

    the behaviour ofURM buildings in earthquakes. In particular, earthquakerisk buildings in that

    document were taken to include all unreinforced masonry buildings, and notjust those which

    weredefinedasearthquakeproneintermsoftheBuildingActofthetime,whichstillreferred

    backtothe1965code.Anotherkeydifferencefromthe1985RedBookwasthatasinglestageapproach to strengthening was suggested, in contrast to the two stage securing and

    strengtheningprocedureofthe1985document.Theguidelinesalsohighlightedthedifferences

    in analysis for unsecured buildings in comparison to a building which has positive connections

    between floor, roof and wall elements, and cantilever elements secured or removed. Greater

    emphasis was placed on the assessment of the likely performance of URM buildings in their

    original form and with interim securing only in place, as distinct from the performance of the

    building with any strengthening work which was subsequently found to be necessary.

    Furthermore, material strengths were given in ultimate limit state format. Historic or heritage

    buildingswerenotgivenanyspecificorseparatetreatment,andtheguidelinesstatedthatthe

    issuesofriskversusthepracticalitiesofstrengtheningassociatedwithhistoricbuildingsrequire

    evaluationonacasebycasebasis.Theprincipalproblemwithsuchbuildingsisthatthegreater

    theleveloflateralforcesthatisspecifiedforstrengthening,thegreatertheriskofdamagingthe

    fabricthatistobepreserved(NZNSEE1995).

    After the introduction of a new Building Act in 2004 (New Zealand Parliament 2004) the

    Department of Building and Housing supported NZSEE in producing a set of guidelines,

    Assessment and Improvement of the Structural Performance of Buildings in Earthquakes

    (NZSEE2006).Thiswasamajorreviewandextensionofpreviousguidelines,toaccountforthe

    widerscopeoftheproposednewlegislation.PriortoenactingTheBuildingAct2004,thetermearthquakeriskbuildingrelatedonlytoURMbuildings,butnowanearthquakepronebuilding

    couldbeofanymaterial;steel,concrete,timberormasonry.Thelevelofriskposedbybuildings

    constructedasrecentlyasthe1970swasmorewidelyappreciated,inparticulartheinadequate

    performance of reinforced concrete structures due to deficient detailing. Definitions of

    earthquakeproneandearthquakeriskalsochanged.Essentially,earthquakepronebuildings

    were defined as those with onethird or less of the capacity of a new building. While The

    Building Act itself still focussed on buildings of high risk (earthquake prone buildings), NZSEE

    considered earthquake risk buildings to be any building which is not capable of meeting the

    performance objectives and requirements set out in its guidelines, and earthquake prone

    buildings formed a subset of this. Moreover, NZSEE expressed a philosophical change, in

    acknowledgmentofthewiderangeofoptionsforimprovingtheperformanceofstructuresthat

    are found to have high earthquake risk. Some of these options involve only the removal or

    separationofcomponents,andothersaffectarelativelysmallnumberofmembers.Inlinewith

    performancebaseddesignthinking,thetermstrengtheningwasreplacedwithimprovingthe

    structuralperformanceof,highlightingthefactthatsuchsolutionsasbase isolationwerenot

    strengtheningbutwereaneffectivewayofimprovingstructuralperformance.

    The 2006 guidelines (NZSEE 2006) provided both an initial evaluation procedure (IEP) and a

    detailed analysis procedure. The IEP can be used for a quick and preliminary evaluation of

    existingbuildings,andtakes intoaccountthebuildingform,naturalperiodofvibration,critical

  • 7/26/2019 Commentary to Assessment and Improvement of Unreinforced Masonry Buildings for Earthquake Resistance

    34/315

    SectionC1 HistoryandPrevalenceofUnreinforcedMasonryBuildingsinNewZealand

    C118

    structural weaknesses (vertical irregularity, horizontal irregularity, short columns and potential

    for buildingtobuilding impact) and the design era of the building. Based on this analysis, if a

    territorial authority determines a building to be earthquake prone, the owner may then be

    requiredtotakeactiontoreduceorremovethedanger,dependingontheterritorialauthoritys

    policy and associated timeline. The level required to reduce or remove the danger is notspecified in The Building Act or its associated regulations. The Department of Building and

    Housing suggested that territorial authorities adopt as part of their policies that buildings be

    improvedtoalevelasnearasisreasonablypracticaltothatofanewbuilding.Mostterritorial

    authorities took the view that they could not require strengthening beyond onethird of new

    buildingstandard,butasignificantnumberincludedrequirementstostrengthentotwothirdsof

    new building standard, in line with NZSEE recommendations. In developing policies on

    earthquake prone buildings, most territorial authorities recognised the need for special

    treatmentanddialoguewithownerswhenheritagebuildingswereaffected.Itisbelievedbythe

    DepartmentofBuildingandHousingthatthelegislationhasrequiredeachl