combinatorial determinants - univie.ac.atkratt/vortrag/combdet.pdfwhy are combinatorialists...

111
Combinatorial Determinants Christian Krattenthaler Universit¨ at Wien Christian Krattenthaler Combinatorial Determinants

Upload: others

Post on 01-Oct-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Combinatorial Determinants

Christian Krattenthaler

Universitat Wien

Christian Krattenthaler Combinatorial Determinants

Page 2: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Why are combinatorialists fascinated by determinants?

Often, determinants solve combinatorial problems

Combinatorics may evaluate a determinant (“One pictureproof”)

−→ non-intersecting lattice paths

Christian Krattenthaler Combinatorial Determinants

Page 3: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Why are combinatorialists fascinated by determinants?

Often, determinants solve combinatorial problems

Combinatorics may evaluate a determinant (“One pictureproof”)

−→ non-intersecting lattice paths

Christian Krattenthaler Combinatorial Determinants

Page 4: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Why are combinatorialists fascinated by determinants?

Often, determinants solve combinatorial problems

Combinatorics may evaluate a determinant (“One pictureproof”)

−→ non-intersecting lattice paths

Christian Krattenthaler Combinatorial Determinants

Page 5: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Why are combinatorialists fascinated by determinants?

Often, determinants solve combinatorial problems

Combinatorics may evaluate a determinant (“One pictureproof”)

−→ non-intersecting lattice paths

Christian Krattenthaler Combinatorial Determinants

Page 6: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

A combinatorial problem

Christian Krattenthaler Combinatorial Determinants

Page 7: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

bbbbbbbbbbb

bbbbbbbbbbbb

bbbbbbbbbbbbbb

bbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbb

bbbbbbbbbbbbbb

bbbbbbbbbbbb

""

""

"""

""""

""

""

"""

"""

""

""

""

"""

""

"""

""

"""

"""

"""

"""

""""

"""

"""

"""

"""

""

""""

"""

"""

"""

""

"""

"""

""

"""

"""

""

"""

"""

"""

""""

"""

"""

"""

""

"""

"""

""

"""

"""

"""

"""

""

""""

"""

"""

"""

"""

""""

""

""

""

"""

"""

""

""

""

""

"""

"""b

bb

bbb

bbb

bb

"""""""""""

bbb

bbb

bbb

bb

"""""""""""

Christian Krattenthaler Combinatorial Determinants

Page 8: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

How many rhombus tilings of a hexagon with side lengthsa, b, c, a, b, c are there?

Christian Krattenthaler Combinatorial Determinants

Page 9: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

bbbbbbbbbbb

bbbbbbbbbbbb

bbbbbbbbbbbbbb

bbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbb

bbbbbbbbbbbbbb

bbbbbbbbbbbb

""

""

"""

""""

""

""

"""

"""

""

""

""

"""

""

"""

""

"""

"""

"""

"""

""""

"""

"""

"""

"""

""

""""

"""

"""

"""

""

"""

"""

""

"""

"""

""

"""

"""

"""

""""

"""

"""

"""

""

"""

"""

""

"""

"""

"""

"""

""

""""

"""

"""

"""

"""

""""

""

""

""

"""

"""

""

""

""

""

"""

"""b

bb

bbb

bbb

bb

"""""""""""

bbb

bbb

bbb

bb

"""""""""""

Christian Krattenthaler Combinatorial Determinants

Page 10: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

bbbbbbbbbbb

bbbbbbbbbbbb

bbbbbbbbbbbbbb

bbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbb

bbbbbbbbbbbbbb

bbbbbbbbbbbb

""

""

"""

""""

""

""

"""

"""

""

""

""

"""

""

"""

""

"""

"""

"""

"""

""""

"""

"""

"""

"""

""

""""

"""

"""

"""

""

"""

"""

""

"""

"""

""

"""

"""

"""

""""

"""

"""

"""

""

"""

"""

""

"""

"""

"""

"""

""

""""

"""

"""

"""

"""

""""

""

""

""

"""

"""

""

""

""

""

"""

"""b

bb

bbb

bbb

bb

"""""""""""

bbb

bbb

bbb

bb

"""""""""""

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""

""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

Christian Krattenthaler Combinatorial Determinants

Page 11: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""

""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

Christian Krattenthaler Combinatorial Determinants

Page 12: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

The bijection with non-intersecting lattice paths

Christian Krattenthaler Combinatorial Determinants

Page 13: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""

""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

Christian Krattenthaler Combinatorial Determinants

Page 14: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

d d d d d d

dddddd

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""

""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

Christian Krattenthaler Combinatorial Determinants

Page 15: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

d d d d d d

dddddd

""

""

""

""""""

""

""""

""

""""

""

""""

""""

""

""

""""

""""

""

""""

""

""""

""

""""""

""

""

""

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""

""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

Christian Krattenthaler Combinatorial Determinants

Page 16: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

d d d d d d

dddddd

""

""

""

""""""

""

""""

""

""""

""

""""

""""

""

""

""""

""""

""

""""

""

""""

""

""""""

""

""

""

Christian Krattenthaler Combinatorial Determinants

Page 17: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

◦◦◦◦◦◦

◦◦◦◦◦◦

Christian Krattenthaler Combinatorial Determinants

Page 18: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

We have now converted the original enumeration problem to thefollowing problem:

Given starting points A1,A2, . . . ,An and end points E1,E2, . . . ,En,count families (P1,P2, . . . ,Pn) of non-intersecting lattice paths,where the i-th path Pi runs from Ai to Ei , i = 1, 2, . . . , n.

Christian Krattenthaler Combinatorial Determinants

Page 19: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

We have now converted the original enumeration problem to thefollowing problem:Given starting points A1,A2, . . . ,An and end points E1,E2, . . . ,En,count families (P1,P2, . . . ,Pn) of non-intersecting lattice paths,where the i-th path Pi runs from Ai to Ei , i = 1, 2, . . . , n.

Christian Krattenthaler Combinatorial Determinants

Page 20: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

◦◦◦◦◦◦

◦◦◦◦◦◦

A1

A2

A3

A4

A5

A6

E1

E2

E3

E4

E5

E6

P1

P2

P3

P4

P5

P6

Christian Krattenthaler Combinatorial Determinants

Page 21: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Theorem (Karlin–McGregor, Lindstrom, Gessel–Viennot, Fisher,John–Sachs, Gronau–Just–Schade–Scheffler–Wojciechowski)

Let G be an acyclic, directed graph, and let A1,A2, . . . ,An andE1,E2, . . . ,En be vertices in the graph with the property that, fori < j and k < l , any (directed) path from Ai to El intersects withany path from Aj to Ek . Then the number of families(P1,P2, . . . ,Pn) of non-intersecting (directed) paths, where thei-th path Pi runs from Ai to Ei , i = 1, 2, . . . , n, is given by

det1≤i ,j≤n

(|P(Aj → Ei )|),

where P(A→ E ) denotes the set of paths from A to E .

Remark

There holds as well a weighted version, in which every edge e isassigned a weight w(e), and where the weight of a path (family)P is defined as the product

∏e∈P w(e), with the product running

over all edges in the path (family).

Christian Krattenthaler Combinatorial Determinants

Page 22: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Theorem (Karlin–McGregor, Lindstrom, Gessel–Viennot, Fisher,John–Sachs, Gronau–Just–Schade–Scheffler–Wojciechowski)

Let G be an acyclic, directed graph, and let A1,A2, . . . ,An andE1,E2, . . . ,En be vertices in the graph with the property that, fori < j and k < l , any (directed) path from Ai to El intersects withany path from Aj to Ek . Then the number of families(P1,P2, . . . ,Pn) of non-intersecting (directed) paths, where thei-th path Pi runs from Ai to Ei , i = 1, 2, . . . , n, is given by

det1≤i ,j≤n

(|P(Aj → Ei )|),

where P(A→ E ) denotes the set of paths from A to E .

Remark

There holds as well a weighted version, in which every edge e isassigned a weight w(e), and where the weight of a path (family)P is defined as the product

∏e∈P w(e), with the product running

over all edges in the path (family).

Christian Krattenthaler Combinatorial Determinants

Page 23: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Sketch of Proof

det1≤i ,j≤n

(|P(Aj → Ei )|) =∑σ∈Sn

sgnσn∏

i=1

|P(Aσ(i) → Ei )|

=∑

(σ,P1,...,Pn)

σ∈Sn

Pi :Aσ(i)→Ei

sgnσ.

Christian Krattenthaler Combinatorial Determinants

Page 24: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Sketch of Proof

det1≤i ,j≤n

(|P(Aj → Ei )|) =∑σ∈Sn

sgnσn∏

i=1

|P(Aσ(i) → Ei )|

=∑

(σ,P1,...,Pn)

σ∈Sn

Pi :Aσ(i)→Ei

sgnσ.

Christian Krattenthaler Combinatorial Determinants

Page 25: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

A sign-reversing involution

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

•••

•••

A1

A2

A3

E1

E2

E3

“last” intersection point◦◦

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

−→

•••

•••

A1

A2

A3

E1

E2

E3

◦◦

σ = 213 σ = 123

Christian Krattenthaler Combinatorial Determinants

Page 26: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

A sign-reversing involution

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

•••

•••

A1

A2

A3

E1

E2

E3

“last” intersection point◦◦

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

−→

•••

•••

A1

A2

A3

E1

E2

E3

◦◦

σ = 213 σ = 123

Christian Krattenthaler Combinatorial Determinants

Page 27: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

A sign-reversing involution

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

•••

•••

A1

A2

A3

E1

E2

E3

“last” intersection point◦◦

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

−→

•••

•••

A1

A2

A3

E1

E2

E3

◦◦

σ = 213 σ = 123

Christian Krattenthaler Combinatorial Determinants

Page 28: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

A sign-reversing involution

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

•••

•••

A1

A2

A3

E1

E2

E3

“last” intersection point◦◦

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

−→

•••

•••

A1

A2

A3

E1

E2

E3

◦◦

σ = 213 σ = 123

Christian Krattenthaler Combinatorial Determinants

Page 29: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

In our enumeration problem:

We have Ai = (i − 1,−i + 1), Ei = (a + i − 1, c − i + 1),i = 1, 2, . . . , n.Hence: the number of rhombus tilings of a hexagon with sidelengths a, b, c , a, b, c is given by

det1≤i ,j≤b

((a + c

a + i − j

)).

It is not very difficult to evaluate this determinant (but this is adifferent story . . . ):

det1≤i ,j≤b

((a + c

a + i − j

))=

a∏i=1

b∏j=1

c∏k=1

i + j + k − 1

i + j + k − 2.

Christian Krattenthaler Combinatorial Determinants

Page 30: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

In our enumeration problem:We have Ai = (i − 1,−i + 1), Ei = (a + i − 1, c − i + 1),i = 1, 2, . . . , n.

Hence: the number of rhombus tilings of a hexagon with sidelengths a, b, c , a, b, c is given by

det1≤i ,j≤b

((a + c

a + i − j

)).

It is not very difficult to evaluate this determinant (but this is adifferent story . . . ):

det1≤i ,j≤b

((a + c

a + i − j

))=

a∏i=1

b∏j=1

c∏k=1

i + j + k − 1

i + j + k − 2.

Christian Krattenthaler Combinatorial Determinants

Page 31: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

In our enumeration problem:We have Ai = (i − 1,−i + 1), Ei = (a + i − 1, c − i + 1),i = 1, 2, . . . , n.Hence: the number of rhombus tilings of a hexagon with sidelengths a, b, c , a, b, c is given by

det1≤i ,j≤b

((a + c

a + i − j

)).

It is not very difficult to evaluate this determinant (but this is adifferent story . . . ):

det1≤i ,j≤b

((a + c

a + i − j

))=

a∏i=1

b∏j=1

c∏k=1

i + j + k − 1

i + j + k − 2.

Christian Krattenthaler Combinatorial Determinants

Page 32: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

In our enumeration problem:We have Ai = (i − 1,−i + 1), Ei = (a + i − 1, c − i + 1),i = 1, 2, . . . , n.Hence: the number of rhombus tilings of a hexagon with sidelengths a, b, c , a, b, c is given by

det1≤i ,j≤b

((a + c

a + i − j

)).

It is not very difficult to evaluate this determinant (but this is adifferent story . . . ):

det1≤i ,j≤b

((a + c

a + i − j

))=

a∏i=1

b∏j=1

c∏k=1

i + j + k − 1

i + j + k − 2.

Christian Krattenthaler Combinatorial Determinants

Page 33: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Hence:

Theorem (MacMahon)

The number of rhombus tilings of a hexagon with side lengthsa, b, c, a, b, c is given by

a∏i=1

b∏j=1

c∏k=1

i + j + k − 1

i + j + k − 2.

Christian Krattenthaler Combinatorial Determinants

Page 34: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Hence:

Theorem (MacMahon)

The number of rhombus tilings of a hexagon with side lengthsa, b, c, a, b, c is given by

a∏i=1

b∏j=1

c∏k=1

i + j + k − 1

i + j + k − 2.

Christian Krattenthaler Combinatorial Determinants

Page 35: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Combinatorics evaluates determinants

Problem: Evaluate the determinant

det0≤i ,j≤n−1

((i + j

i

))Example: n = 3:

det

1 1 11 2 31 3 6

= · · · = 1.

Christian Krattenthaler Combinatorial Determinants

Page 36: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Combinatorics evaluates determinantsProblem: Evaluate the determinant

det0≤i ,j≤n−1

((i + j

i

))

Example: n = 3:

det

1 1 11 2 31 3 6

= · · · = 1.

Christian Krattenthaler Combinatorial Determinants

Page 37: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Combinatorics evaluates determinantsProblem: Evaluate the determinant

det0≤i ,j≤n−1

((i + j

i

))Example: n = 3:

det

1 1 11 2 31 3 6

= · · · = 1.

Christian Krattenthaler Combinatorial Determinants

Page 38: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Claim

det0≤i ,j≤n−1

((i + j

i

))= 1.

Proof.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•••••

• • • •A0

A1

A2

A3

A4

E0 E1 E2 E3 E4

(4 + 2

2

)

Christian Krattenthaler Combinatorial Determinants

Page 39: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Claim

det0≤i ,j≤n−1

((i + j

i

))= 1.

Proof.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•••••

• • • •A0

A1

A2

A3

A4

E0 E1 E2 E3 E4

(4 + 2

2

)

Christian Krattenthaler Combinatorial Determinants

Page 40: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Claim

det0≤i ,j≤n−1

((i + j

i

))= 1.

Proof.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•••••

• • • •A0

A1

A2

A3

A4

E0 E1 E2 E3 E4

(4 + 2

2

)

Christian Krattenthaler Combinatorial Determinants

Page 41: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Claim

det0≤i ,j≤n−1

((i + j

i

))= 1.

Proof.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•••••

• • • •A0

A1

A2

A3

A4

E0 E1 E2 E3 E4

(4 + 2

2

)

Christian Krattenthaler Combinatorial Determinants

Page 42: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Claim

det0≤i ,j≤n−1

((i + j

i

))

!

= 1.

Proof.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•••••

• • • •A0

A1

A2

A3

A4

E0 E1 E2 E3 E4

Christian Krattenthaler Combinatorial Determinants

Page 43: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Claim

det0≤i ,j≤n−1

((i + j

i

))

!

= 1.

Proof.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•••••

• • • •A0

A1

A2

A3

A4

E0 E1 E2 E3 E4

Christian Krattenthaler Combinatorial Determinants

Page 44: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Claim

det0≤i ,j≤n−1

((i + j

i

))

!

= 1.

Proof.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•••••

• • • •A0

A1

A2

A3

A4

E0 E1 E2 E3 E4

Christian Krattenthaler Combinatorial Determinants

Page 45: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Claim

det0≤i ,j≤n−1

((i + j

i

))

!

= 1.

Proof.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•••••

• • • •A0

A1

A2

A3

A4

E0 E1 E2 E3 E4

Christian Krattenthaler Combinatorial Determinants

Page 46: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Claim

det0≤i ,j≤n−1

((i + j

i

))

!

= 1.

Proof.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•••••

• • • •A0

A1

A2

A3

A4

E0 E1 E2 E3 E4

Christian Krattenthaler Combinatorial Determinants

Page 47: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Claim

det0≤i ,j≤n−1

((i + j

i

))!

= 1.

Proof.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•••••

• • • •A0

A1

A2

A3

A4

E0 E1 E2 E3 E4

Christian Krattenthaler Combinatorial Determinants

Page 48: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Warning:

This is very beautiful, but normally it is the other wayround.(I.e., one wants to solve a combinatorial problem, obtains adeterminant, and then one has a hard time to evaluate thedeterminant . . . )

Christian Krattenthaler Combinatorial Determinants

Page 49: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Warning: This is very beautiful, but normally it is the other wayround.

(I.e., one wants to solve a combinatorial problem, obtains adeterminant, and then one has a hard time to evaluate thedeterminant . . . )

Christian Krattenthaler Combinatorial Determinants

Page 50: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Warning: This is very beautiful, but normally it is the other wayround.(I.e., one wants to solve a combinatorial problem, obtains adeterminant, and then one has a hard time to evaluate thedeterminant . . . )

Christian Krattenthaler Combinatorial Determinants

Page 51: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

The general form of the non-intersecting lattice path theorem

Theorem (Lindstrom, Gessel–Viennot)

Let G be an acyclic, directed graph, and let A1,A2, . . . ,An andE1,E2, . . . ,En be vertices in the graph. Denote by P+(A→ E) theset of all families (P1,P2, . . . ,Pn) of non-intersecting (directed)paths, such that the i-th path Pi runs from Ai to Ei ,i = 1, 2, . . . , n. Then∑

σ∈Sn

(sgnσ) · |P+(Aσ → E)| = det1≤i ,j≤n

(|P(Aj → Ei )|),

where Aσ = (Aσ(1),Aσ(2), . . . ,Aσ(n)).

Remark

Again, there holds as well a weighted version.

Christian Krattenthaler Combinatorial Determinants

Page 52: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

The general form of the non-intersecting lattice path theorem

Theorem (Lindstrom, Gessel–Viennot)

Let G be an acyclic, directed graph, and let A1,A2, . . . ,An andE1,E2, . . . ,En be vertices in the graph. Denote by P+(A→ E) theset of all families (P1,P2, . . . ,Pn) of non-intersecting (directed)paths, such that the i-th path Pi runs from Ai to Ei ,i = 1, 2, . . . , n. Then∑

σ∈Sn

(sgnσ) · |P+(Aσ → E)| = det1≤i ,j≤n

(|P(Aj → Ei )|),

where Aσ = (Aσ(1),Aσ(2), . . . ,Aσ(n)).

Remark

Again, there holds as well a weighted version.

Christian Krattenthaler Combinatorial Determinants

Page 53: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

The general form of the non-intersecting lattice path theorem

Theorem (Lindstrom, Gessel–Viennot)

Let G be an acyclic, directed graph, and let A1,A2, . . . ,An andE1,E2, . . . ,En be vertices in the graph. Denote by P+(A→ E) theset of all families (P1,P2, . . . ,Pn) of non-intersecting (directed)paths, such that the i-th path Pi runs from Ai to Ei ,i = 1, 2, . . . , n. Then∑

σ∈Sn

(sgnσ) · |P+(Aσ → E)| = det1≤i ,j≤n

(|P(Aj → Ei )|),

where Aσ = (Aσ(1),Aσ(2), . . . ,Aσ(n)).

Remark

Again, there holds as well a weighted version.

Christian Krattenthaler Combinatorial Determinants

Page 54: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Is this good for anything?

Yes!

Christian Krattenthaler Combinatorial Determinants

Page 55: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Is this good for anything?

Yes!

Christian Krattenthaler Combinatorial Determinants

Page 56: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Christian Krattenthaler Combinatorial Determinants

Page 57: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Christian Krattenthaler Combinatorial Determinants

Page 58: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Christian Krattenthaler Combinatorial Determinants

Page 59: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

A1

E1

A2

E4

A3

E5

A4

E2

A5

E3

Christian Krattenthaler Combinatorial Determinants

Page 60: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

So, at least for even m, the number of rhombus tilings of ahexagon with sides a, b + m, c , a + m, b, c + m, with an equilateraltriangle of side m removed from its center is given by

det1≤i ,j≤a+m

(

b + c + m

b − i + j

)1 ≤ i ≤ a( b+c

2b+a2 − i + j

)a+ 1 ≤ i ≤ a+m

.

Christian Krattenthaler Combinatorial Determinants

Page 61: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Theorem (with Ciucu, Eisenkolbl, Zare)

The number of rhombus tilings of the hexagon minus triangle isgiven by

H(a + m) H(b + m) H(c + m) H(a + b + c + m)

H(a + b + m) H(a + c + m) H(b + c + m)

×H(m +

⌈a+b+c

2

⌉) H(m +

⌊a+b+c

2

⌋)

H(a+b2 + m) H(a+c

2 + m) H(b+c2 + m)

×H(⌈a2

⌉) H(

⌈b2

⌉) H(

⌈c2

⌉) H(

⌊a2

⌋) H(

⌊b2

⌋) H(

⌊c2

⌋)

H(m2 +⌈a2

⌉) H(m2 +

⌈b2

⌉) H(m2 +

⌈c2

⌉) H(m2 +

⌊a2

⌋) H(m2 +

⌊b2

⌋) H(m2 +

⌊c2

⌋)

×H(m2 )2 H(a+b+m

2 )2 H(a+c+m2 )2 H(b+c+m

2 )2

H(m2 +⌈a+b+c

2

⌉) H(m2 +

⌊a+b+c

2

⌋) H(a+b

2 ) H(a+c2 ) H(b+c

2 ),

where H(n) :=

{∏n−1k=0 Γ(k + 1) for n an integer,∏n− 1

2k=0 Γ(k + 1

2) for n a half-integer.

Christian Krattenthaler Combinatorial Determinants

Page 62: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Non-intersecting Lattice Paths and Pfaffians

Christian Krattenthaler Combinatorial Determinants

Page 63: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bbbb

bb

bbbb

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""

""

""

""

""

bbbbbb

bbbb

bb ""

""""

""""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbbbb

""

""""

"""

"""

bbbbbb

bbbb

bb """

"""

""

""

""

"""""""b

bbbbbb

""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""""

""""

""""""

""""

""

""""

""""

""""

""""""

""

"""""""

"""""

""

""

""""

""

""bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bb

bb

bb

bb

bb

bbbb

bbbb

bbb

bbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bb

bbbb b

bb

bbb

bb

bb

bbbb

bb

bb

Christian Krattenthaler Combinatorial Determinants

Page 64: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

""

""""

""

""""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

""

""

""

""

""""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

""

""

""

""

""""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

""

""

""

""

""""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

""

""

""

""

""

""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

""

""""

"""

"""

bbbbbb

bbbb

""

""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bbb

bbb b

bb

bbb

bb

bb

bbbb

bb

bb

""

""""

"""

"""

bbbbbb

bbbb

""

""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bbb

bbb b

bb

bbb

bb

bb

bbbb

bb

bb

""

""""

"""

"""

bbbbbb

bbbb

""

""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bbb

bbb b

bb

bbb

bb

bb

bbbb

bb

bb

""

""""

""

""""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

Christian Krattenthaler Combinatorial Determinants

Page 65: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

d d d d d d ddd

ddd

""

""

""

""""""

""

""""

""

""

""

""""

""

""

""""

""""

""

""

""""

""

""""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

""

""

""

""

""""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

""

""

""

""

""""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

""

""

""

""

""""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

""

""

""

""

""

""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bbbb

bbb

bbb

bbbb

bb

bbbb

bbbb

bb

bbb

bbb

bb

bb

bb

bb

bb bb

bb

bb

bb

bb

bb

bb

bb

bb

""

""""

"""

"""

bbbbbb

bbbb

""

""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bbb

bbb b

bb

bbb

bb

bb

bbbb

bb

bb

""

""""

"""

"""

bbbbbb

bbbb

""

""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bbb

bbb b

bb

bbb

bb

bb

bbbb

bb

bb

""

""""

"""

"""

bbbbbb

bbbb

""

""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bb

bb

bb

bbb

bbb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bbbb

bbbb

bb

bbb

bbb b

bb

bbb

bb

bb

bbbb

bb

bb

""

""""

""

""""

bbbbbb

bbbb

""""

""

""""

bbbb""

""""""

""

""

""

""

""""

""

""

""""""

""""

""""

""""""

""""

""""""

""

""""

""

""

""

bbbbbb

bb

bbbb

""

bbbb

bbbb

bbb

bbb

bbbb

bb

bb

bb

bb

bb

bb

bbb

bbb

bb

bb

bb

bbbb b

bb

bbb

bb

bb

bb

bb

bb

bb

Christian Krattenthaler Combinatorial Determinants

Page 66: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

d d d d d d ddd

ddd

""

""

""

""""""

""

""""

""

""

""

""""

""

""

""""

""""

""

Christian Krattenthaler Combinatorial Determinants

Page 67: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

◦◦◦◦◦◦

◦◦

◦◦

Christian Krattenthaler Combinatorial Determinants

Page 68: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

We encounter a new problem:Given starting points A1,A2, . . . ,An and end points E1,E2, . . . ,count families (P1,P2, . . . ,Pn) of non-intersecting lattice paths,where the i-th path Pi runs from Ai to one of the E`’s,i = 1, 2, . . . , n.

Christian Krattenthaler Combinatorial Determinants

Page 69: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

The non-intersecting lattice path theorem with variable end points

Theorem (Okada, Stembridge)

Let G be an acyclic, directed graph, and let A1,A2, . . . ,A2n andE1,E2, . . . be vertices in the graph with the property that, for i < jand k < l , any (directed) path from Ai to El intersects with anypath from Aj to Ek . Then the number of families (P1,P2, . . . ,P2n)of non-intersecting (directed) paths, where the i-th path Pi runsfrom Ai to one of the E`’s, i = 1, 2, . . . , 2n, is given by

Pf1≤i ,j≤2n(Qi ,j),

where

Qi ,j =∑

1≤s<t

(|P(Ai → Es)|·|P(Aj → Et)|−|P(Aj → Es)|·|P(Ai → Et)|

).

Remark

Again, there holds as well a weighted version.

Christian Krattenthaler Combinatorial Determinants

Page 70: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

The non-intersecting lattice path theorem with variable end points

Theorem (Okada, Stembridge)

Let G be an acyclic, directed graph, and let A1,A2, . . . ,A2n andE1,E2, . . . be vertices in the graph with the property that, for i < jand k < l , any (directed) path from Ai to El intersects with anypath from Aj to Ek . Then the number of families (P1,P2, . . . ,P2n)of non-intersecting (directed) paths, where the i-th path Pi runsfrom Ai to one of the E`’s, i = 1, 2, . . . , 2n, is given by

Pf1≤i ,j≤2n(Qi ,j),

where

Qi ,j =∑

1≤s<t

(|P(Ai → Es)|·|P(Aj → Et)|−|P(Aj → Es)|·|P(Ai → Et)|

).

Remark

Again, there holds as well a weighted version.

Christian Krattenthaler Combinatorial Determinants

Page 71: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

The non-intersecting lattice path theorem with variable end points

Theorem (Okada, Stembridge)

Let G be an acyclic, directed graph, and let A1,A2, . . . ,A2n andE1,E2, . . . be vertices in the graph with the property that, for i < jand k < l , any (directed) path from Ai to El intersects with anypath from Aj to Ek . Then the number of families (P1,P2, . . . ,P2n)of non-intersecting (directed) paths, where the i-th path Pi runsfrom Ai to one of the E`’s, i = 1, 2, . . . , 2n, is given by

Pf1≤i ,j≤2n(Qi ,j),

where

Qi ,j =∑

1≤s<t

(|P(Ai → Es)|·|P(Aj → Et)|−|P(Aj → Es)|·|P(Ai → Et)|

).

Remark

Again, there holds as well a weighted version.

Christian Krattenthaler Combinatorial Determinants

Page 72: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

What is a Pfaffian?

Combinatorially:

Pf(A) =∑

π perfect matching of {1,...,2n}

(−1)#(crossings of π)∏

(i ,j)∈π, i<j

Ai ,j .

A perfect matching of {1, 2, . . . , 6} with 2 crossings:

◦ ◦ ◦ ◦ ◦ ◦1 2 3 4 5 6

' $' $' $

Algebraically: Given a (2n)× (2n) skew symmetric matrix A,

(Pf(A))2 = det A.

Christian Krattenthaler Combinatorial Determinants

Page 73: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

What is a Pfaffian?Combinatorially:

Pf(A) =∑

π perfect matching of {1,...,2n}

(−1)#(crossings of π)∏

(i ,j)∈π, i<j

Ai ,j .

A perfect matching of {1, 2, . . . , 6} with 2 crossings:

◦ ◦ ◦ ◦ ◦ ◦1 2 3 4 5 6

' $' $' $

Algebraically: Given a (2n)× (2n) skew symmetric matrix A,

(Pf(A))2 = det A.

Christian Krattenthaler Combinatorial Determinants

Page 74: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

What is a Pfaffian?Combinatorially:

Pf(A) =∑

π perfect matching of {1,...,2n}

(−1)#(crossings of π)∏

(i ,j)∈π, i<j

Ai ,j .

A perfect matching of {1, 2, . . . , 6} with 2 crossings:

◦ ◦ ◦ ◦ ◦ ◦1 2 3 4 5 6

' $' $' $

Algebraically: Given a (2n)× (2n) skew symmetric matrix A,

(Pf(A))2 = det A.

Christian Krattenthaler Combinatorial Determinants

Page 75: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

What is a Pfaffian?Combinatorially:

Pf(A) =∑

π perfect matching of {1,...,2n}

(−1)#(crossings of π)∏

(i ,j)∈π, i<j

Ai ,j .

A perfect matching of {1, 2, . . . , 6} with 2 crossings:

◦ ◦ ◦ ◦ ◦ ◦1 2 3 4 5 6

' $' $' $

Algebraically: Given a (2n)× (2n) skew symmetric matrix A,

(Pf(A))2 = det A.

Christian Krattenthaler Combinatorial Determinants

Page 76: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

In our problem, this leads to the Pfaffian

Pf1≤i ,j≤2n

( ∑−n≤s<t≤2x

((2n + s

s + j − 1

)(2n + t

t + i − 1

)−(

2n + s

s + i − 1

)(2n + t

t + j − 1

))).

Theorem (Andrews)

The number of vertically symmetric rhombus tilings of a hexagonwith side lengths 2n, 2n, 2x , 2n, 2n, 2x is equal to(

x + 12

)2n(

12

)2n

n∏s=1

(2x + 2s)4n−4s+1

(2s)4n−4s+1,

where (α)m := α(α + 1) · · · (α + m − 1) for m ≥ 1, and (α)0 := 1.

Christian Krattenthaler Combinatorial Determinants

Page 77: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

In our problem, this leads to the Pfaffian

Pf1≤i ,j≤2n

( ∑−n≤s<t≤2x

((2n + s

s + j − 1

)(2n + t

t + i − 1

)−(

2n + s

s + i − 1

)(2n + t

t + j − 1

))).

Theorem (Andrews)

The number of vertically symmetric rhombus tilings of a hexagonwith side lengths 2n, 2n, 2x , 2n, 2n, 2x is equal to(

x + 12

)2n(

12

)2n

n∏s=1

(2x + 2s)4n−4s+1

(2s)4n−4s+1,

where (α)m := α(α + 1) · · · (α + m − 1) for m ≥ 1, and (α)0 := 1.

Christian Krattenthaler Combinatorial Determinants

Page 78: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

What about some fixed and some variable end points,at the same time?

Christian Krattenthaler Combinatorial Determinants

Page 79: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Christian Krattenthaler Combinatorial Determinants

Page 80: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Christian Krattenthaler Combinatorial Determinants

Page 81: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Christian Krattenthaler Combinatorial Determinants

Page 82: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

••••••••

••

A1

A2

A3

A4

A5

A6

A7

A8

S1

S2

P1

P2

P3

P4P5

P6

P7P8

Christian Krattenthaler Combinatorial Determinants

Page 83: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Theorem (Stembridge)

Let {A1,A2, . . . ,Ap, S1,S2, . . . ,Sq} and E = {E1,E2, . . . } be finitesets of lattice points in the integer lattice Z2. Then the number offamilies (P1,P2, . . . ,Pp) of non-intersecting lattice paths, with Pk

running from Ak to Sk , for k = 1, 2, . . . , q, and to Ejk , fork = q + 1, q + 2, . . . , p, the indices being required to satisfyjq+1 < jq+2 < · · · < jp, is given by

Pf

(Q H−Ht 0

),

where Qi ,j is defined as before, and where the matrixH = (Hi ,j)1≤i≤p, 1≤j≤q is defined by

Hi ,j = |P(Ai → Sj)|.

Christian Krattenthaler Combinatorial Determinants

Page 84: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Theorem (with Ciucu)

The number of rhombus tilings of the half hexagon minus triangleof size 2 at distance 2k from the free boundary is equal to(

4k + 1

2k

)(n + k)!

(x + n − k)2k+1

n∏s=1

(2x + 2s)4n−4s+1

(2s)4n−4s+1

×n−k−1∑i=0

(12)i

i ! (n − k − i − 1)!2 (n + k − i + 1)n−k

· 1

(n + k − i + 1)i (2n − i + 12)i

·(

(x)i (x + i + 1)n−k−i−1 (x + n + k + 1)n−k

− (x)n−k (x + n + k + 1)n−k−i−1 (x + 2n − i + 1)i

).

Christian Krattenthaler Combinatorial Determinants

Page 85: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

The Minor Summation Formula of Ishikawa and Wakayama

Theorem (Ishikawa–Wakayama)

Let n, p, q be integers such that n + q is even and 0 ≤ n − q ≤ p.Let G be any n × p matrix, H be any n × q matrix, andA = (aij)1≤i ,j≤p be any skew-symmetric matrix. Then we have

∑K

Pf(

AKK

)det(GK

... H)

= (−1)q(q−1)/2 Pf

(G A tG H−tH 0

),

where K runs over all (n − q)-element subsets of [1, p], AKK is the

skew-symmetric matrix obtained by picking the rows and columnsindexed by K and GK is the sub-matrix of G consisting of thecolumns corresponding to K .

Christian Krattenthaler Combinatorial Determinants

Page 86: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

The Minor Summation Formula of Ishikawa and Wakayama

Theorem (Ishikawa–Wakayama)

Let n, p, q be integers such that n + q is even and 0 ≤ n − q ≤ p.Let G be any n × p matrix, H be any n × q matrix, andA = (aij)1≤i ,j≤p be any skew-symmetric matrix. Then we have

∑K

Pf(

AKK

)det(GK

... H)

= (−1)q(q−1)/2 Pf

(G A tG H−tH 0

),

where K runs over all (n − q)-element subsets of [1, p], AKK is the

skew-symmetric matrix obtained by picking the rows and columnsindexed by K and GK is the sub-matrix of G consisting of thecolumns corresponding to K .

Christian Krattenthaler Combinatorial Determinants

Page 87: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Hankel Determinants and Orthogonal Polynomials

Definition

A sequence (pn(x))n≥0 of polynomials is called (formally)orthogonal if pn(x) has degree n, n = 0, 1, . . . , and if there exists alinear functional L such that L(pn(x)pm(x)) = δmncn for somesequence (cn)n≥0 of nonzero numbers, with δm,n denoting theKronecker delta (i.e., δm,n = 1 if m = n and δm,n = 0 otherwise).

Theorem (Favard)

Let (pn(x))n≥0 be a sequence of monic polynomials, thepolynomial pn(x) having degree n, n = 0, 1, . . . . Then thesequence (pn(x)) is (formally) orthogonal if and only if there existsequences (an)n≥1 and (bn)n≥1, with bn 6= 0 for all n ≥ 1, suchthat the three-term recurrence

pn+1(x) = (x − an)pn(x)− bnpn−1(x), for n ≥ 1, (1)

holds, with initial conditions p0(x) = 1 and p1(x) = x − a0.

Christian Krattenthaler Combinatorial Determinants

Page 88: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Hankel Determinants and Orthogonal Polynomials

Definition

A sequence (pn(x))n≥0 of polynomials is called (formally)orthogonal if pn(x) has degree n, n = 0, 1, . . . , and if there exists alinear functional L such that L(pn(x)pm(x)) = δmncn for somesequence (cn)n≥0 of nonzero numbers, with δm,n denoting theKronecker delta (i.e., δm,n = 1 if m = n and δm,n = 0 otherwise).

Theorem (Favard)

Let (pn(x))n≥0 be a sequence of monic polynomials, thepolynomial pn(x) having degree n, n = 0, 1, . . . . Then thesequence (pn(x)) is (formally) orthogonal if and only if there existsequences (an)n≥1 and (bn)n≥1, with bn 6= 0 for all n ≥ 1, suchthat the three-term recurrence

pn+1(x) = (x − an)pn(x)− bnpn−1(x), for n ≥ 1, (1)

holds, with initial conditions p0(x) = 1 and p1(x) = x − a0.

Christian Krattenthaler Combinatorial Determinants

Page 89: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Hankel Determinants and Orthogonal Polynomials

Definition

A sequence (pn(x))n≥0 of polynomials is called (formally)orthogonal if pn(x) has degree n, n = 0, 1, . . . , and if there exists alinear functional L such that L(pn(x)pm(x)) = δmncn for somesequence (cn)n≥0 of nonzero numbers, with δm,n denoting theKronecker delta (i.e., δm,n = 1 if m = n and δm,n = 0 otherwise).

Theorem (Favard)

Let (pn(x))n≥0 be a sequence of monic polynomials, thepolynomial pn(x) having degree n, n = 0, 1, . . . . Then thesequence (pn(x)) is (formally) orthogonal if and only if there existsequences (an)n≥1 and (bn)n≥1, with bn 6= 0 for all n ≥ 1, suchthat the three-term recurrence

pn+1(x) = (x − an)pn(x)− bnpn−1(x), for n ≥ 1, (1)

holds, with initial conditions p0(x) = 1 and p1(x) = x − a0.

Christian Krattenthaler Combinatorial Determinants

Page 90: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Moments of Orthogonal Polynomials and Motzkin Paths

A (generalised) Motzkin path is a lattice path consisting of stepsfrom {(1, 1), (1, 0), (1,−1)} (up-steps, level-steps, down-steps)that does not pass below the x-axis.

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

���� @

@ ����@@@@��

••• •

• • ••••••

a2b2

a1 a1

b3

b2

For each of the three kinds of steps, we define a weight:

w((1, 1)) = 1, w((1, 0)) = ah, w((1,−1)) = bh,

where h is the height of the starting point of the step. The weightw(P) of a Motzkin path P is the product of all the weights of itssteps. In our example we have

w(.) = a2b2a1a1b3b2.

Christian Krattenthaler Combinatorial Determinants

Page 91: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Moments of Orthogonal Polynomials and Motzkin PathsA (generalised) Motzkin path is a lattice path consisting of stepsfrom {(1, 1), (1, 0), (1,−1)} (up-steps, level-steps, down-steps)that does not pass below the x-axis.

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

���� @

@ ����@@@@��

••• •

• • ••••••

a2b2

a1 a1

b3

b2

For each of the three kinds of steps, we define a weight:

w((1, 1)) = 1, w((1, 0)) = ah, w((1,−1)) = bh,

where h is the height of the starting point of the step. The weightw(P) of a Motzkin path P is the product of all the weights of itssteps. In our example we have

w(.) = a2b2a1a1b3b2.

Christian Krattenthaler Combinatorial Determinants

Page 92: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Moments of Orthogonal Polynomials and Motzkin PathsA (generalised) Motzkin path is a lattice path consisting of stepsfrom {(1, 1), (1, 0), (1,−1)} (up-steps, level-steps, down-steps)that does not pass below the x-axis.

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

���� @

@ ����@@@@��

••• •

• • ••••••

a2b2

a1 a1

b3

b2

For each of the three kinds of steps, we define a weight:

w((1, 1)) = 1, w((1, 0)) = ah, w((1,−1)) = bh,

where h is the height of the starting point of the step. The weightw(P) of a Motzkin path P is the product of all the weights of itssteps.

In our example we have

w(.) = a2b2a1a1b3b2.

Christian Krattenthaler Combinatorial Determinants

Page 93: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Moments of Orthogonal Polynomials and Motzkin PathsA (generalised) Motzkin path is a lattice path consisting of stepsfrom {(1, 1), (1, 0), (1,−1)} (up-steps, level-steps, down-steps)that does not pass below the x-axis.

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

���� @

@ ����@@@@��

••• •

• • ••••••

a2b2

a1 a1

b3

b2

For each of the three kinds of steps, we define a weight:

w((1, 1)) = 1, w((1, 0)) = ah, w((1,−1)) = bh,

where h is the height of the starting point of the step. The weightw(P) of a Motzkin path P is the product of all the weights of itssteps. In our example we have

w(.) = a2b2a1a1b3b2.Christian Krattenthaler Combinatorial Determinants

Page 94: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Proposition (Viennot)

The moments µn := L(xn) of orthogonal polynomials are given by∑P

w(P),

where the sum is over all Motzkin paths from (0, 0) to (n, 0).

Theorem (Viennot)

Given a sequence of monic orthogonal polynomials (pn(x)), wehave

L(xn pk(x) pl(x)

)= b1 · · · bl ·

∑P

w(P),

where the sum is over all Motzkin paths from (0, k) to (n, l).

Christian Krattenthaler Combinatorial Determinants

Page 95: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Proposition (Viennot)

The moments µn := L(xn) of orthogonal polynomials are given by∑P

w(P),

where the sum is over all Motzkin paths from (0, 0) to (n, 0).

Theorem (Viennot)

Given a sequence of monic orthogonal polynomials (pn(x)), wehave

L(xn pk(x) pl(x)

)= b1 · · · bl ·

∑P

w(P),

where the sum is over all Motzkin paths from (0, k) to (n, l).

Christian Krattenthaler Combinatorial Determinants

Page 96: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Theorem (Heilermann)

Let (µk)k≥0 be the moments for a monic sequence of orthogonalpolynomials. Then the Hankel determinant det0≤i ,j≤n−1(µi+j)equals µn0bn−1

1 bn−22 · · · b2

n−2bn−1.

Christian Krattenthaler Combinatorial Determinants

Page 97: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Another one picture proof

Without loss of generality, we assume that µ0 = 1. We must prove:

det0≤i ,j≤n−1

(µi+j) = bn−11 bn−2

2 · · · b2n−2bn−1.

• • • • • • • • •

••

••

••

A4 A3 A2 A1 A0

E0

E1 E2 E3 E4

���@@@�

�����@@@@@@�

��������@@@@@@@@@�

�����������@@@@@@@@@@@@

b4

b3

b2

b1

b3

b2

b1

b2

b1b1

Christian Krattenthaler Combinatorial Determinants

Page 98: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Another one picture proofWithout loss of generality, we assume that µ0 = 1. We must prove:

det0≤i ,j≤n−1

(µi+j) = bn−11 bn−2

2 · · · b2n−2bn−1.

• • • • • • • • •

••

••

••

A4 A3 A2 A1 A0

E0

E1 E2 E3 E4

���@@@�

�����@@@@@@�

��������@@@@@@@@@�

�����������@@@@@@@@@@@@

b4

b3

b2

b1

b3

b2

b1

b2

b1b1

Christian Krattenthaler Combinatorial Determinants

Page 99: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Another one picture proofWithout loss of generality, we assume that µ0 = 1. We must prove:

det0≤i ,j≤n−1

(µi+j) = bn−11 bn−2

2 · · · b2n−2bn−1.

• • • • • • • • •

••

••

••

A4 A3 A2 A1 A0

E0

E1 E2 E3 E4

���@

@@�

�����@

@@@@@�

��������@

@@@@@@@@�

�����������@@@@@@@@@@@@

b4

b3

b2

b1

b3

b2

b1

b2

b1b1

Christian Krattenthaler Combinatorial Determinants

Page 100: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Another one picture proofWithout loss of generality, we assume that µ0 = 1. We must prove:

det0≤i ,j≤n−1

(µi+j) = bn−11 bn−2

2 · · · b2n−2bn−1.

• • • • • • • • •

••

••

••

A4 A3 A2 A1 A0

E0

E1 E2 E3 E4

���@

@@

������@

@@@@@�

��������@

@@@@@@@@�

�����������@@@@@@@@@@@@

b4

b3

b2

b1

b3

b2

b1

b2

b1b1

Christian Krattenthaler Combinatorial Determinants

Page 101: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Another one picture proofWithout loss of generality, we assume that µ0 = 1. We must prove:

det0≤i ,j≤n−1

(µi+j) = bn−11 bn−2

2 · · · b2n−2bn−1.

• • • • • • • • •

••

••

••

A4 A3 A2 A1 A0

E0

E1 E2 E3 E4

���@

@@�

�����@

@@@@@

���������@

@@@@@@@@�

�����������@@@@@@@@@@@@

b4

b3

b2

b1

b3

b2

b1

b2

b1b1

Christian Krattenthaler Combinatorial Determinants

Page 102: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Another one picture proofWithout loss of generality, we assume that µ0 = 1. We must prove:

det0≤i ,j≤n−1

(µi+j) = bn−11 bn−2

2 · · · b2n−2bn−1.

• • • • • • • • •

••

••

••

A4 A3 A2 A1 A0

E0

E1 E2 E3 E4

���@

@@�

�����@

@@@@@�

��������@

@@@@@@@@

������������@@@@@@@@@@@@

b4

b3

b2

b1

b3

b2

b1

b2

b1b1

Christian Krattenthaler Combinatorial Determinants

Page 103: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Another one picture proofWithout loss of generality, we assume that µ0 = 1. We must prove:

det0≤i ,j≤n−1

(µi+j) = bn−11 bn−2

2 · · · b2n−2bn−1.

• • • • • • • • •

••

••

••

A4 A3 A2 A1 A0

E0

E1 E2 E3 E4

���@

@@�

�����@

@@@@@�

��������@

@@@@@@@@�

�����������@

@@@@@@@@@@@

b4

b3

b2

b1

b3

b2

b1

b2

b1b1

Christian Krattenthaler Combinatorial Determinants

Page 104: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Another one picture proofWithout loss of generality, we assume that µ0 = 1. We must prove:

det0≤i ,j≤n−1

(µi+j) = bn−11 bn−2

2 · · · b2n−2bn−1.

• • • • • • • • •

••

••

••

A4 A3 A2 A1 A0

E0

E1 E2 E3 E4

���@

@@�

�����@

@@@@@�

��������@

@@@@@@@@�

�����������@

@@@@@@@@@@@

b4

b3

b2

b1

b3

b2

b1

b2

b1b1

Christian Krattenthaler Combinatorial Determinants

Page 105: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

An Application:

In a certain problem of rhombus tiling enumeration, MarkusFulmek and myself needed to compute the determinant (amongothers)

det0≤i ,j≤n−1

(Bi+j+2),

where Bk denotes the k-th Bernoulli number. (The Bernoullinumbers are defined via their generating function,∑∞

k=0 Bkzk/k! = z/(ez − 1).)

Christian Krattenthaler Combinatorial Determinants

Page 106: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

An Application:In a certain problem of rhombus tiling enumeration, MarkusFulmek and myself needed to compute the determinant (amongothers)

det0≤i ,j≤n−1

(Bi+j+2),

where Bk denotes the k-th Bernoulli number. (The Bernoullinumbers are defined via their generating function,∑∞

k=0 Bkzk/k! = z/(ez − 1).)

Christian Krattenthaler Combinatorial Determinants

Page 107: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Solution:

Askey Scheme of Hypergeometric Orthogonal Polynomialshttp://aw.twi.tudelft.nl/~koekoek/research.html

4F3 Wilson Racah

3F2Continuousdual Hahn

ContinuousHahn

Hahn dual Hahn

2F1Meixner –Pollaczek

Jacobi Meixner Kravchouk

2F1/2F0 Laguerre Charlier

Christian Krattenthaler Combinatorial Determinants

Page 108: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Solution:Askey Scheme of Hypergeometric Orthogonal Polynomials

http://aw.twi.tudelft.nl/~koekoek/research.html

4F3 Wilson Racah

3F2Continuousdual Hahn

ContinuousHahn

Hahn dual Hahn

2F1Meixner –Pollaczek

Jacobi Meixner Kravchouk

2F1/2F0 Laguerre Charlier

Christian Krattenthaler Combinatorial Determinants

Page 109: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

We need the continuous Hahn polynomials (they have the “right”moments).

If one works everything out, then, according to Heilermann’stheorem, we obtain:

det0≤i ,j ,≤n−1

(Bi+j+2) = (−1)(n2)(

1

6

)n n−1∏i=1

(i(i + 1)2(i + 2)

4(2i + 1)(2i + 3)

)n−i

= (−1)(n2)1

6

n−1∏i=1

i ! (i + 1)!4 (i + 2)!

(2i + 2)! (2i + 3)!.

Christian Krattenthaler Combinatorial Determinants

Page 110: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

We need the continuous Hahn polynomials (they have the “right”moments).If one works everything out, then, according to Heilermann’stheorem, we obtain:

det0≤i ,j ,≤n−1

(Bi+j+2) = (−1)(n2)(

1

6

)n n−1∏i=1

(i(i + 1)2(i + 2)

4(2i + 1)(2i + 3)

)n−i

= (−1)(n2)1

6

n−1∏i=1

i ! (i + 1)!4 (i + 2)!

(2i + 2)! (2i + 3)!.

Christian Krattenthaler Combinatorial Determinants

Page 111: Combinatorial Determinants - univie.ac.atkratt/vortrag/combdet.pdfWhy are combinatorialists fascinated by determinants? Often, determinants solve combinatorial problems Combinatorics

Of course, there is much more . . .You may criticise that I have entirely left out another importantapplication of determinants in combinatorics:

the Kasteleyn determinants and Pfaffians

for the enumeration of perfect matchings in planar graphs. In fact,these stand at the beginning of the beautiful asymptotic analysis ofplanar tiling and matching models due to Cohn–Kenyon–Propp,respectively, in greater generality, to Kenyon–Okounkov–Sheffield.However, that would again be a story by itself . . .

Christian Krattenthaler Combinatorial Determinants