cold rydberg atoms in laboratoire aimé cotton

30
P. Cheinet , B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms Cold Rydberg atoms in Laboratoire Aimé Cotton in Laboratoire Aimé Cotton 04/12/2013 04/12/2013

Upload: jada

Post on 05-Feb-2016

47 views

Category:

Documents


0 download

DESCRIPTION

Cold Rydberg atoms in Laboratoire Aimé Cotton. P. Cheinet , B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France). 04/12/2013. Outline. Introduction: Rydberg atoms and their properties Cold cesium experiment A new experiment on Ytterbium. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Cold Rydberg atoms  in Laboratoire Aimé Cotton

P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet

Laboratoire Aimé Cotton, Orsay (France)

Cold Rydberg atoms Cold Rydberg atoms

in Laboratoire Aimé Cottonin Laboratoire Aimé Cotton

04/12/201304/12/2013

Page 2: Cold Rydberg atoms  in Laboratoire Aimé Cotton

2Cold Rydberg atoms in LAC04/12/13 Orsay

OutlineOutline

• Introduction: – Rydberg atoms and their

properties

• Cold cesium experiment

• A new experiment on Ytterbium

Page 3: Cold Rydberg atoms  in Laboratoire Aimé Cotton

3Cold Rydberg atoms in LAC04/12/13 Orsay

Introduction: Rydberg Introduction: Rydberg atomatom

• Rydberg atom = highly excited atom

e-

Coolinglevels

|r>

|e>

|f>

E=-1/2n2Rydberg

levels

Failed screening at the core imply quantum defects

Most weight at large r!

1 10 100

-0,2

-0,1

0,0

0,1

0,2

Ene

rgy

or A

mpl

itude

Radius (a.u.)

Potential

23p e- Wavefunction

Page 4: Cold Rydberg atoms  in Laboratoire Aimé Cotton

4Cold Rydberg atoms in LAC04/12/13 Orsay

1 10 100

-0,2

-0,1

0,0

0,1

0,2

Ene

rgy

or A

mpl

itude

Radius (a.u.)

E-field perturbed potential Unperturbed potential e- Wavefunction

Introduction: Rydberg Introduction: Rydberg atomatom

Zimmerman et al. 1979

Ionization

Page 5: Cold Rydberg atoms  in Laboratoire Aimé Cotton

5Cold Rydberg atoms in LAC04/12/13 Orsay

Introduction: Rydberg Introduction: Rydberg atomatom

0 50 100 150 200-310

-300

-290

-280

-270

Ene

rgy

(cm

-1)

Field (V/cm)

23p3/2

23s

24s

Resonant energy transfer!@ ≈ 80V/cm

ssp 2423232 2/3

Page 6: Cold Rydberg atoms  in Laboratoire Aimé Cotton

6Cold Rydberg atoms in LAC04/12/13 Orsay

Introduction: MotivationsIntroduction: Motivations

→ Possibility to tune interaction type and strength over ORDERS OF MAGNITUDE

→ Selective Field Ionisation (SFI) TOF

→ Many studies:→Dipole blocade→Few and many-body physics→Ultra-cold plasma→2 electron systems

Page 7: Cold Rydberg atoms  in Laboratoire Aimé Cotton

7Cold Rydberg atoms in LAC04/12/13 Orsay

Cs experiment

Page 8: Cold Rydberg atoms  in Laboratoire Aimé Cotton

8Cold Rydberg atoms in LAC04/12/13 Orsay

Experimental setupExperimental setup

• Sequence=MOT,Rydberg,delay,ionisation

Ions extracted throughthe 2 holes to the MCP

Up to 5kV ramp applied between

the 2 central grids

MCP

Delay = 1.5μs (frozen!)Then TOF recorded on MCP

Page 9: Cold Rydberg atoms  in Laboratoire Aimé Cotton

9Cold Rydberg atoms in LAC04/12/13 Orsay

Cs exper./ 4-body Cs exper./ 4-body interactioninteraction

• Two close Förster resonances:→ @ ≈ 79.95V/cm→ @ ≈ 80.4V/cm (quasi-forbidden!)

• A 4-body exchange should be close…

ssp 2423232 2/3

2/52/1 2323242 dps

2/52/3 2323 dp

0 50 100 150 200-310

-300

-290

-280

-270

-260

-250

Ene

rgy

(cm

-1)

Field (V/cm)

23p3/2

23s

24s

23p1/2

23d5/2 TOF!d state is a signatureof 4-body

energy transfer!

Page 10: Cold Rydberg atoms  in Laboratoire Aimé Cotton

10Cold Rydberg atoms in LAC04/12/13 Orsay

Cs exper./ 4-body Cs exper./ 4-body interactioninteraction

• Two close Förster resonances:→ @ ≈ 79.95V/cm→ @ ≈ 80.4V/cm (quasi-forbidden!)

• A 4-body exchange should be close…

ssp 2423232 2/3

2/52/1 2323242 dps

2/52/3 2323 dp

Page 11: Cold Rydberg atoms  in Laboratoire Aimé Cotton

11Cold Rydberg atoms in LAC04/12/13 Orsay

Introduction / 1Introduction / 1stst 4-body 4-body schemescheme

• Two close Förster resonances:→ @ ≈ 79.95V/cm→ @ ≈ 80.4V/cm (quasi-forbidden!)

• A 4-body exchange should be close…

ssp 2423232 2/3

2/52/1 2323242 dps

2/52/3 2323 dp

Page 12: Cold Rydberg atoms  in Laboratoire Aimé Cotton

12Cold Rydberg atoms in LAC04/12/13 Orsay

Results / ResonancesResults / Resonances

• Observe the 2-body resonances:

Page 13: Cold Rydberg atoms  in Laboratoire Aimé Cotton

13Cold Rydberg atoms in LAC04/12/13 Orsay

Results / ResonancesResults / Resonances

• Observe the 4-body resonance:

Observe d state :4-body

energy transfer!

Shift Observed

(79.99V/cm)

Page 14: Cold Rydberg atoms  in Laboratoire Aimé Cotton

14Cold Rydberg atoms in LAC04/12/13 Orsay

Results / Density Results / Density dependancedependance

• Observe p → s → d transfer

No residual linearcross-talk from s

Page 15: Cold Rydberg atoms  in Laboratoire Aimé Cotton

15Cold Rydberg atoms in LAC04/12/13 Orsay

Results / Density Results / Density dependancedependance

• Observe p → s → d transfer

p → d transfergoverned by

4-body process4pd

No residual linearcross-talk from s

Page 16: Cold Rydberg atoms  in Laboratoire Aimé Cotton

16Cold Rydberg atoms in LAC04/12/13 Orsay

Conclusion on Cs Exper.Conclusion on Cs Exper.

• Demonstration of a 4-body interaction→Observed 4-body resonant energy transfer→Studied density dependance→Many-body effect at MOT density for n=23

J. Gurian et al., PRL 108, 023005 (2012)

• Other few-body schemes?→RF to restore resonance?

→Spin mixture?

5 6 7 8 9 10

0,00

0,05

0,10

0,15

0,20

f 5/2m

1/2

f 7/2m

5/2

f 7/2m

3/2

ns+

(n-3

)f7/

2m1/

2

ns+(n+1)s

m5/

2+m

1/2

m3

/2+

m1

/2

m3

/2+

m3

/2

Tra

nsfe

r fr

om 3

2p3/

2m3/

2

Electric field (V/cm)

(n+1)p ns (n+1)s

(n-2

)d5

/2m

1/2+

(n+

1)p 3

/2m

3/2

Too many quasi-forbidden

Resonances in Cs

Page 17: Cold Rydberg atoms  in Laboratoire Aimé Cotton

17Cold Rydberg atoms in LAC04/12/13 Orsay

Towards a new experimentOn Ytterbium Rydberg atoms

Page 18: Cold Rydberg atoms  in Laboratoire Aimé Cotton

18Cold Rydberg atoms in LAC04/12/13 Orsay

Ytterbium experimentYtterbium experiment

• Motivation for 2 electron atom:

Coolinglevels

|r>

|e>

|f>

E=-1/2n2Rydberg

levels

e-

Rydberg electronno longer available

for optical manipulation

e-

e- Second electronis available for

cooling/trapping/imaging

Page 19: Cold Rydberg atoms  in Laboratoire Aimé Cotton

19Cold Rydberg atoms in LAC04/12/13 Orsay

Yb experiment planningYb experiment planning

• Yb cooling and trapping

Zeeman Slower399nm

3D MOT556nm

Yb6s6p 1P1

6s2 1S0

5d6s 3D2

5d6s 3D1

6s6p 3P2

6s6p 3P1

6s6p 3P0

398.8 nm

555.6 nm

t = 5.5 ns

t = 875 ns

Efficient but“hot” limit

Weak but“cold” limit

Page 20: Cold Rydberg atoms  in Laboratoire Aimé Cotton

20Cold Rydberg atoms in LAC04/12/13 Orsay

Yb experiment planningYb experiment planning

• Trapping practical issue: – MOT capture velocity vc8m/s

– Large divergence of Zeeman slower… 2D MOT!

Page 21: Cold Rydberg atoms  in Laboratoire Aimé Cotton

21Cold Rydberg atoms in LAC04/12/13 Orsay

Yb experiment planningYb experiment planning

• Slowing and trapping simulation:– Longitudinal speed Vs position

Position from Zeeman slower start (m)

Longit

udin

al sp

eed (

m/s

)

Page 22: Cold Rydberg atoms  in Laboratoire Aimé Cotton

22Cold Rydberg atoms in LAC04/12/13 Orsay

Yb experiment planningYb experiment planning

• Slowing and trapping simulation:– Longitudinal speed Vs position

Position from Zeeman slower start (m)

Longit

udin

al sp

eed (

m/s

)

Page 23: Cold Rydberg atoms  in Laboratoire Aimé Cotton

23Cold Rydberg atoms in LAC04/12/13 Orsay

Yb experiment planningYb experiment planning

• Slowing and trapping simulation:– Transverse position Vs longitudinal

position

Position from Zeeman slower start (m)

transv

ers

e p

osi

tion (

m)

Page 24: Cold Rydberg atoms  in Laboratoire Aimé Cotton

24Cold Rydberg atoms in LAC04/12/13 Orsay

Yb experiment planningYb experiment planning

• Electrodes and imaging

8 electrodesforming 2 rings

Possibilityto compensate

any field gradient

Holding mechanicsletting all beams pass:16 CF16 + 8 CF40 “in

plane”8 CF16 + 8 CF40 at 45°

2 CF63 at 90°

Under vacuum lens:diffraction limitedimaging of 3µm

Page 25: Cold Rydberg atoms  in Laboratoire Aimé Cotton

25Cold Rydberg atoms in LAC04/12/13 Orsay

Thank you for your attention!

Page 26: Cold Rydberg atoms  in Laboratoire Aimé Cotton

26Cold Rydberg atoms in LAC04/12/13 Orsay

Page 27: Cold Rydberg atoms  in Laboratoire Aimé Cotton

27Cold Rydberg atoms in LAC04/12/13 Orsay

Experimental setupExperimental setup

• Calibrate detection→Direct excitation of each relevant state:

Signal gates

Cross-talk

gatep

s

d

p

s

d

149.4147.3083.0

275.0645.4100.0

082.00645.0016.2

Compute theinversion matrix

to retrieve signal:

(includes ionisation efficiency)

Page 28: Cold Rydberg atoms  in Laboratoire Aimé Cotton

28Cold Rydberg atoms in LAC04/12/13 Orsay

Experimental sequenceExperimental sequence

• Fix electric field• Rydberg excitation + delay • Field ionization pulse + detection• Change electric field and repeat…

Page 29: Cold Rydberg atoms  in Laboratoire Aimé Cotton

29Cold Rydberg atoms in LAC04/12/13 Orsay

Results / ResonancesResults / Resonances

• Minimal toy model:→2 or 4 equidistant atoms at distance R→2 or 4 state basis :

→Compute Rabi oscillation to s or d for each field

• Average over distance R :→2 atoms : Erlang nearest neighbour distribution→4 atoms : Erlang distribution cubed

• Average over field inhomogeneity→ ≈ 5V/cm/cm implies 0.1V/cm over sample

'ss

pp

'pd

ss

'''

''

'

sspd

ssss

sspp

pppp

Page 30: Cold Rydberg atoms  in Laboratoire Aimé Cotton

30Cold Rydberg atoms in LAC04/12/13 Orsay

Ytterbium autoinonisationYtterbium autoinonisation

• Total internal energy > ionisation limit– Autoionisation if nl too small:

• Adiabatic loading of large l states:

e-

e-