cohesion’and’reliability’of’organic’bulkheterojunc?on ... · figure’12’afmscans$of$...

1
Figure 12 AFM scans of debond surfaces Al side ITO side No annealing 150 °C, 30 min Figure 10 Four point bend results. Average G c determined from G c values at criDcal load peaks Figure 11 Plot of fracture energy vs. anneal Dme Figure 8 Average G c at different MoO 3 deposiDon rate. Average G c determined from three samples tested per cell Cohesion and Reliability of Organic Bulk Heterojunc?on Solar Cells Ellen Tsay, Christopher Bruner, and Reinhold H. Dauskardt Department of Materials Science and Engineering, Stanford University We chose to study P3HT:PC 60 BM bulk heterojuncDon (BHJ) cells because they offer high internal quantum efficiency and have been thoroughly researched Typically these cells fail cohesively within the BHJ, the weakest layer A rougher debond surface is associated with greater cohesion for several reasons: o Stress is distributed over a larger area and in mulDple direcDons o More contact between asperiDes behind crack Dp Figure 4 Mechanical tesDng system used for four point bend test Fabrica?ng the Solar Cells 1. 50 mm x 50 mm borosilicate glass substrates coated with ITO 2. Cleaning: ultrasonic baths with Extran, IPA and Ethanol and UV ozone 3. Low pressure thermal evaporaDon of MoO 3 onto ITO 4. BHJ soluDon contained 1:1 weight raDo PCBM:P3HT and 50 mg of solute per 1 ml of chlorobenzene solvent 5. Spincoated BHJ onto the MoO 3 at 900 rpm and 500 rpm/s for 45 s. Devices slow dried overnight 6. Low pressure thermal evaporaDon of Ca and Al metal electrodes Figure 3 A diced cell, ITO side up. Individual samples were detached and prenotched 1. We hypothesize that varying the deposiDon rate of a MoO 3 hole transport layer (HTL) will influence its surface roughness and therefore cohesion. Since the BHJ is so thin, the failure path may follow the surface of the underlying MoO 3 layer in order to stay cohesive within the BHJ layer. 2. A second hypothesis is that thermally annealing cells will increase cohesion. This has been shown in cells with a PEDOT:PSS HTL, and we aeempt to duplicate the result with MoO 3 as the HTL. All devices failed cohesively within the bulk heterojuncDon Varying the rate of MoO 3 deposiDon had no significant effect on surface roughness, and there was no correlaDon between MoO 3 surface roughness and cohesion Annealing produced a 70112% increase in G c , from 3.63 J/m 2 ± 0.642 up to 7.71 J/m 2 ± 0.162 The opDmal annealing Dme at 150 °C was 30 min. Annealing results closely resembled those for PEDOT:PSS HTL cells Introduc?on Organic Bulk Heterojunc?on Solar Cells Hypotheses Device Prepara?on and Tes?ng Effect of Deposi?on Rate Conclusions References and Acknowledgements Annealed four samples from the same cell at 150 °C in a glovebox for 5, 30, 60, 120 min Preparing Cells for Fracture Tes?ng A solar cell “sandwich” was created by adhering a second, idenDcal glass substrate to the top electrode with epoxy Cured sandwich for 30 min at 85 °C to harden the epoxy Diced cells into individual samples (see Fig. 3) The four point bend test was used to measure the cohesion, or criDcal energy release rate, of the cells (see Fig. 4). The criDcal energy release rate, G c , is the energy released per unit crack area and was calculated using the equaDon in Fig. 5. P3HT a polymer electron donor + PC 60 BM a fullerene derivaDve electron acceptor = Figure 1 Typical structure of a bulk heterojuncDon solar cell Organic solar cells are promising alternaDves to silicon solar cells, but in order to become a viable technology their mechanical reliability must be improved. Cracks and defects shorten device lifeDmes and have a negaDve impact on producDon yields and cost. We study the effect of chemical deposiDon rate and thermal annealing on the mechanical strength of organic bulk heterojuncDon solar cells and whether these factors can be successfully manipulated to improve device reliability. Brand, Bruner & Dauskardt. 2012. “Cohesion and device reliability in organic bulk heterojuncDon photovoltaic cells.” Solar Energy Materials & Solar Cells 99:182–189. Brand, Levi, McGehee & Dauskardt. 2012. “Film stresses and electrode buckling in organic solar cells.” Solar Energy Materials & Solar Cells 103:8085. Dupont, Oliver, Krebs & Dauskardt. 2012. “Interlayer adhesion in rolltoroll processed flexible inverted polymer solar cells.” Solar Energy Material & Solar Cells 97:171175. I would like to thank the Vice Provost for Undergraduate EducaDon and the Materials Science and Engineering Department for funding this project. Special thanks to Christopher Bruner, the Dauskardt Group, and the McGehee Group for their guidance and support. Figure 9 Debonded devices Figure 7 MoO 3 surface roughness for different deposiDon rates. R rms is the root mean square value of the surface topography Figure 2 Structure of the tested solar cell “sandwiches” Science Knowledge 2010 Molecule images: Brand, Bruner & Dauskardt 2012 Figure 5 EquaDon for G c , where P c is the criDcal load, L is the moment arm length, E’ is the biaxial modulus and b and h are the specimen width and halfheight Brand, Bruner & Dauskardt 2012 Built three devices at MoO 3 deposiDon rates of 0.5, 5, 20 Å/s Characterized roughness of MoO 3 surfaces with AFM Figure 6 XPS results for the ITO side of the cell annealed for 30 min Characterized debond surfaces with noncontact atomic force microscopy (AFM) and Xray photoelectron spectroscopy (XPS) XPS results for all devices looked similar, showing carbon and sulfur peaks Debond Path Characteriza?on Effect of Thermal Annealing

Upload: others

Post on 25-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cohesion’and’Reliability’of’Organic’BulkHeterojunc?on ... · Figure’12’AFMscans$of$ debond$surfaces’ e $ No$annealing$ 150°C,30min$ Figure’ 10’ Four$ point bend$

Figure  12  AFM  scans  of  debond  surfaces  

Al  side

 ITO  side

 

No  annealing   150  °C,  30  min  

Figure   10   Four   point   bend   results.   Average   Gc  determined  from  Gc  values  at  criDcal  load  peaks  

Figure  11  Plot  of  fracture  energy  vs.  anneal    Dme  

Figure  8  Average  Gc  at  different  MoO3  deposiDon  rate.  Average  Gc  determined  from  three  samples  tested  per  cell

Cohesion  and  Reliability  of  Organic  Bulk  Heterojunc?on  Solar  Cells  Ellen  Tsay,  Christopher  Bruner,  and  Reinhold  H.  Dauskardt  

Department  of  Materials  Science  and  Engineering,  Stanford  University  

•  We   chose   to   study   P3HT:PC60BM   bulk   heterojuncDon  (BHJ)   cells   because   they   offer   high   internal   quantum  efficiency  and  have  been  thoroughly  researched  

•  Typically  these  cells  fail  cohesively  within  the  BHJ,  the  weakest  layer  

•  A   rougher   debond   surface   is   associated   with   greater  cohesion  for  several  reasons:  o  Stress  is  distributed  over  a  larger  area  and  in  

mulDple  direcDons  o  More  contact  between  asperiDes  behind  crack  Dp   Figure  4  Mechanical  tesDng  system  used  for  four  point  bend  test  

Fabrica?ng  the  Solar  Cells  1.  50  mm  x  50  mm  borosilicate  glass    substrates  coated  with  ITO  2.  Cleaning:  ultrasonic  baths  with  Extran,  IPA  and  Ethanol  and  UV  ozone  3.  Low  pressure  thermal  evaporaDon  of  MoO3  onto  ITO    4.  BHJ   soluDon   contained   1:1   weight   raDo   PCBM:P3HT   and   50   mg   of  

solute  per  1  ml  of  chlorobenzene  solvent  5.  Spin-­‐coated   BHJ   onto   the  MoO3   at   900   rpm   and   500   rpm/s   for   45   s.  

Devices  slow  dried  overnight  6.  Low  pressure  thermal  evaporaDon  of  Ca  and  Al  metal  electrodes  

Figure   3   A   diced   cell,   ITO   side   up.  Individual   samples  were  detached  and  prenotched  

1.  We   hypothesize   that   varying   the   deposiDon   rate   of   a  MoO3   hole   transport   layer   (HTL)   will   influence   its  surface   roughness   and   therefore   cohesion.   Since   the  BHJ   is  so  thin,   the   failure  path  may  follow  the  surface  of  the  underlying  MoO3  layer  in  order  to  stay  cohesive  within  the  BHJ  layer.  

2.  A   second   hypothesis   is   that   thermally   annealing   cells  will   increase   cohesion.   This   has   been   shown   in   cells  with   a   PEDOT:PSS   HTL,   and   we   aeempt   to   duplicate  the  result  with  MoO3  as  the  HTL.  

•  All  devices  failed  cohesively  within  the  bulk  heterojuncDon  •  Varying  the  rate  of  MoO3  deposiDon  had  no  significant  effect  on  surface  roughness,  and  there  was  no  correlaDon  between  MoO3  surface  roughness  and  cohesion  

•  Annealing  produced  a  70-­‐112%  increase  in  Gc,  from  3.63  J/m2  ±  0.642  up  to  7.71  J/m2  ±  0.162  •  The  opDmal  annealing  Dme  at  150  °C  was  30  min.  Annealing  results  closely  resembled  those  for  PEDOT:PSS  HTL  cells  

Introduc?on  

Organic  Bulk  Heterojunc?on  Solar  Cells  

Hypotheses  

Device  Prepara?on  and  Tes?ng   Effect  of  Deposi?on  Rate  

Conclusions  

References  and  Acknowledgements  

Annealed  four  samples  from  the  same  cell  at  150  °C  in  a  glovebox  for  5,  30,  60,  120  min  

Preparing  Cells  for  Fracture  Tes?ng  •  A  solar  cell  “sandwich”  was  created  by  adhering  a  second,  idenDcal  glass  substrate  to  the  top  electrode  with  epoxy  

•  Cured  sandwich  for  30  min  at  85  °C  to  harden  the  epoxy  •  Diced  cells  into  individual  samples  (see  Fig.  3)    The   four   point   bend   test   was   used   to  measure   the   cohesion,   or   criDcal  energy   release   rate,   of   the   cells   (see   Fig.   4).   The   criDcal   energy   release  rate,   Gc,   is   the   energy   released   per   unit   crack   area   and   was   calculated  using  the  equaDon  in  Fig.  5.  

P3HT  a  polymer  

electron  donor  

+  

PC60BM  a  fullerene  derivaDve  electron  acceptor  

=  

Figure  1  Typical  structure  of  a  bulk  heterojuncDon  solar  cell  

Organic   solar   cells  a r e   p r om i s i n g  a l t e r n aD ve s   t o  silicon   solar   cells,  but   in   order   to  become   a   viable  technology   their  m e c h a n i c a l  reliability  must  be    

improved.   Cracks   and   defects   shorten   device   lifeDmes  and   have   a   negaDve   impact   on   producDon   yields   and  cost.  We  study  the  effect  of  chemical  deposiDon  rate  and  thermal  annealing  on  the  mechanical  strength  of  organic  bulk  heterojuncDon  solar  cells  and  whether  these  factors  can   be   successfully   manipulated   to   improve   device  reliability.  

Brand,  Bruner  &  Dauskardt.  2012.  “Cohesion  and  device  reliability  in  organic  bulk  heterojuncDon  photovoltaic  cells.”    Solar  Energy  Materials  &  Solar  Cells  99:182–189.  

Brand,  Levi,  McGehee  &  Dauskardt.  2012.  “Film  stresses  and  electrode  buckling  in  organic  solar  cells.”  Solar  Energy    Materials  &  Solar  Cells  103:80-­‐85.  

Dupont,  Oliver,  Krebs  &  Dauskardt.  2012.  “Interlayer  adhesion  in  roll-­‐to-­‐roll  processed  flexible  inverted  polymer  solar    cells.”  Solar  Energy  Material  &  Solar  Cells  97:171-­‐175.  

 I  would  like  to  thank  the  Vice  Provost  for  Undergraduate  EducaDon  and  the  Materials  Science  and  Engineering  Department  for  funding  this  project.  Special  thanks  to  Christopher  Bruner,  the  Dauskardt  Group,  and  the  McGehee  Group  for  their  guidance  and  support.  

Figure  9  Debonded  devices  

Figure   7   MoO3   surface   roughness   for   different  deposiDon   rates.   Rrms   is   the   root   mean   square  value  of  the  surface  topography  

Figure   2   Structure   of   the   tested  solar  cell  “sandwiches”  

Science  Kn

owledge  2010  

Molecule  im

ages:  

Brand,  Brune

r  &  Dauskardt  2012  

Figure  5  EquaDon   for  Gc,  where  Pc   is   the  criDcal    load,  L  is  the  moment  arm  length,  E’   is   the  biaxial  modulus  and  b  and  h  are  the  specimen  width  and  half-­‐height  

Brand,  Brune

r  &  Dauskardt  2012  

•  Built   three   devices   at   MoO3   deposiDon  rates  of  0.5,  5,  20  Å/s  

•  Characterized  roughness  of  MoO3  surfaces  with  AFM  

Figure  6  XPS  results  for  the  ITO  side  of  the  cell  annealed  for  30  min  

•  Characterized   debond   surfaces  with   non-­‐contact   atomic   force  microscopy   (AFM)   and   X-­‐ray  photoelectron   spectroscopy  (XPS)  

•  XPS   results   for   all   devices  looked   similar,   showing   carbon  and  sulfur  peaks  

Debond  Path  Characteriza?on  

Effect  of  Thermal  Annealing