cobot order picking sci 2021 public

15
11‐10‐2021 1 RSM - a force for positive change Warehouse cobotics Recent Research Developments Supply Chain Innovation, Antwerp, 7 Oct 2021 RenĂŠ de Koster [email protected] Program 1. Fully robotic warehouses? 2. Cobot-AMRs in order picking 3. Performance analysis 4. Role of humans 5. Ride on AMRs 6. Sorting with AMRs? R. de Koster (c), Warehouse cobotics 2 11.10.2021 1.Fully robotic warehouses? 11.10.2021 R. de Koster (c), Warehouse cobotics 3 Fully Robotic Warehouses - stacking R. de Koster (c), Warehouse cobotics 4 Source: Azadeh, De Koster, Roy, Transportation Science, 2019 11.10.2021 Fully Robotic warehouses Implications + Particularly for (store-based) retail + Number increases rapidly - Long pay-back time (if ever) - Not affordable for most operations 11.10.2021 R. de Koster (c), Warehouse cobotics 5 Automated storage/picking systems 11.10.2021 R. de Koster (c), Warehouse cobotics 6 Azadeh, De Koster, Roy, 2019, Transportation Science 1 2 3 4 5 6

Upload: others

Post on 16-Jan-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cobot Order picking SCI 2021 Public

11‐10‐2021

1

RSM - a force for positive change

Warehouse coboticsRecent Research Developments

Supply Chain Innovation, Antwerp, 7 Oct 2021

RenĂŠ de Koster

[email protected]

Program

1. Fully robotic warehouses?

2. Cobot-AMRs in order picking

3. Performance analysis

4. Role of humans

5. Ride on AMRs

6. Sorting with AMRs?

R. de Koster (c), Warehouse cobotics 211.10.2021

1.Fully robotic warehouses?

11.10.2021 R. de Koster (c), Warehouse cobotics 3

Fully Robotic Warehouses - stacking

R. de Koster (c), Warehouse cobotics 4

Source: Azadeh, De Koster, Roy, Transportation Science, 2019

11.10.2021

Fully Robotic warehouses

Implications

+ Particularly for (store-based) retail

+ Number increases rapidly

- Long pay-back time (if ever)

- Not affordable for most operations

11.10.2021 R. de Koster (c), Warehouse cobotics 5

Automated storage/picking systems

11.10.2021 R. de Koster (c), Warehouse cobotics 6Azadeh, De Koster, Roy, 2019, Transportation Science

1 2

3 4

5 6

Page 2: Cobot Order picking SCI 2021 Public

11‐10‐2021

2

2.Cobot-AMRs in order picking

11.10.2021 R. de Koster (c), Warehouse cobotics 7

Autonomous mobile robot systems

Collaborative Picking Systems

8

• High throughput performance• Requires many robots• Requires special racking structure• Could become very expensive

Automated Systems Manual Systems

• Lower throughput performance• More operational flexibility• No special racking structure

Collaborative Systems

11.10.2021 R. de Koster (c), Warehouse cobotics

Variants

911.10.2021 R. de Koster (c), Warehouse cobotics

Cobot AMRs (autonomous mobile robots)

11.10.2021 R. de Koster (c), Warehouse cobotics 10

Human leading:

• Fetch Robotics

• Still iGo neo

Cobot leading:

• Locus Robotics

• Toyota

Hybrid: cobot with multiple persons (Zone picking):

• Vecna Robotics

• Righthand Robotics

• 6 River Systems (‘chuck’)

• Oceaneering (FROG)

Ride-on cobot

• Pick-by-glove (Crown QuickPick Remote)

Variants

1111.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation in Collaborative Systems

1211.10.2021 R. de Koster (c), Warehouse cobotics

7 8

9 10

11 12

Page 3: Cobot Order picking SCI 2021 Public

11‐10‐2021

3

Picking Operation

1311.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

1411.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

1511.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

1611.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

1711.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

1811.10.2021 R. de Koster (c), Warehouse cobotics

13 14

15 16

17 18

Page 4: Cobot Order picking SCI 2021 Public

11‐10‐2021

4

Picking Operation

1911.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

2011.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

2111.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

2211.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

2311.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

2411.10.2021 R. de Koster (c), Warehouse cobotics

19 20

21 22

23 24

Page 5: Cobot Order picking SCI 2021 Public

11‐10‐2021

5

Picking Operation

2511.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

2611.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

2711.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

2811.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

2911.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

3011.10.2021 R. de Koster (c), Warehouse cobotics

25 26

27 28

29 30

Page 6: Cobot Order picking SCI 2021 Public

11‐10‐2021

6

Picking Operation

3111.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

3211.10.2021 R. de Koster (c), Warehouse cobotics

Picking Operation

3311.10.2021 R. de Koster (c), Warehouse cobotics

Collaborative Picking Systems

Benefits:

• Increase picker productivity (reduce walking)

• Easy implementation: in running operations, no rack or organizational changes needed.

• Low risk: invest with growing volume; easy fallback

• Safe: (relatively) low risk

3411.10.2021 R. de Koster (c), Warehouse cobotics

3.Performance analysis: effect of zoning

11.10.2021 R. de Koster (c), Warehouse cobotics 35

Autonomous mobile robot systems

Flexibility in zoning

R. de Koster (c), Warehouse cobotics 36

No Zoning (NZ)

Progressive Zoning (PZ) (Two Picking Zones)

Performance trade-offs:

• Shorter Robot Waiting Time• Longer Picker Travel Time

• Shorter Picker Travel Time• Longer Robot Waiting Time

Research Question:Can the pick performance be increased by dynamic switching between zone picking and No zoning (parallel picking)?

Azadeh, Roy, De Koster (2020), working paper

11.10.2021

31 32

33 34

35 36

Page 7: Cobot Order picking SCI 2021 Public

11‐10‐2021

7

2-Step Research Framework

R. de Koster (c), Warehouse cobotics 37

Markov Decision ProcessQueueing Network Modeling

Throughput capestimation of the system

Optimal switching strategy

12

11.10.2021

Step 1. Realistic Movement of Resources

R. de Koster (c), Warehouse cobotics 38

Picking Items

Return to Depot: Robot Transporting Picked Items to the Depot

We model the Parallel Movement of the picker and the robot using a two‐phase server

Parallel Movement: Picker and robot 

simultaneously travel to the first item location

Picker Idle Location

11.10.2021

Queueing Network – With One Picker

11.10.2021 39R. de Koster (c), Warehouse cobotics

Closed Queuing Network Models for Different Picking Strategies

R. de Koster (c), Warehouse cobotics 40

Pooled Pickers (NZ) Dedicated Pickers (with 2 zones, PZ)

Solution method to obtain throughput: Continuous time Markov chain 

Solution method to obtain throughput: Aggregation disaggregation  (ADA) based solution

11.10.2021

Queuing Network Model with K zones

4111.10.2021 R. de Koster (c), Warehouse cobotics

Step 2. Dynamic Switching (DS) Policy

R. de Koster (c), Warehouse cobotics 42

External waiting queue

Orders arrive in the system

Successfully processed orders leave the system

Collaborative Human‐Robot Picking System

Costs: â€˘ 𝐶 = Waiting Cost Per Time Unit to Fulfill the Order• 𝐶 = Postponement Cost Per Time Unit (no capacity to fulfill so will be 

postponed to another day)

11.10.2021

37 38

39 40

41 42

Page 8: Cobot Order picking SCI 2021 Public

11‐10‐2021

8

Dynamic Switching (DS) Policy

• Objective: find a stationary policy 𝑓 which minimizes the average cost per

time period

• Solution method: value iteration

R. de Koster (c), Warehouse cobotics 4311.10.2021

Numerical Results DS Policy

44

Description Value

Number of aisle 20

Number of storage columns per block

20

Number of blocks 2

Number of pickers 6

Picker speed 0.75 m/s

Robot Speed 1 m/s

Depot Time 10 sec

Capacity of System 20 orders

Arrival Rate 200 orders/h

Postponement Cost 20 euro

Waiting Cost 0.833 euro/order/ h

Switching Cost 0.001 euro

Blo

ck

Warehouse Layout and Parameters

11.10.2021 R. de Koster (c), Warehouse cobotics

Current picking operation: NZ Current picking operation: PZ

# robots: 8Small-sized order probability: 0.55

11.10.2021 R. de Koster (c), Warehouse cobotics 45

Numerical Results DS PolicyAverage cost comparison between Dynamic Switching (DS) and Static - NZ/PZ

• We simulate the network to

calculate the average cost

per unit time under DS and

NZ and PZ picking policy by

changing:

• Number of robots from 8-11

• probability of arrival order to

be small: from 0.05 to 0.95

46

Simulation Framework

11.10.2021 R. de Koster (c), Warehouse cobotics

Average cost comparison between DS and NZ/PZ

Insights:

• Region A (E-commerce): PZ

• Region C (Store-chain whse): NZ

• Region B (Omnichannel whse) : DS

The performance gain is larger

when the number of robots is small

(Region B)

With a small number of robots, start

with dynamic policy

As the number of robots increases,

choose either PZ or NZ depending

on the order composition

11.10.2021 47

8 robots 9 robots

10 robots 11 robots

Average cost comparison between DS and NZ/PZ

Insights:

• Region A (E-commerce): PZ

• Region C (Store-chain whse): NZ

• Region B (Omnichannel whse) : DS

The performance gain is larger

when the number of robots is small

(Region B)

With a small number of robots, start

with dynamic policy

As the number of robots increases,

choose either PZ or NZ depending

on the order composition

11.10.2021 48

8 robots 9 robots

10 robots 11 robots

43 44

45 46

47 48

Page 9: Cobot Order picking SCI 2021 Public

11‐10‐2021

9

Conclusions and Next Steps

• Cobot order-picking systems improve productivity (ergonomics) and also

costs

• Dynamic policy can improve static policy (depending on mix of small/large

orders), with up to 8%

• But: Behavioral issues need to be analyzed

• Robot leading or lagging? Picker control or robot control?

• Future of work?

4911.10.2021 R. de Koster (c), Warehouse cobotics

4. Role of humans

11.10.2021 R. de Koster (c), Warehouse cobotics 50

Research questions & aims

51

1. What is the best collaboration strategy?

Comparison of Human leading vs Human supporting

2. How will people with different behavioral traits perform in such a collaboration?

Based on Prevention regulatory focus

3. How will human robot collaboration affect the worker’s psychosynthesis?

Technology acceptance and robot design may affect job satisfaction, self-esteem, robot-efficacy

11.10.2021 R. de Koster (c), Warehouse cobotics

Work with: Alexandros Pasparakis, Jelle de Vries, (2021), working paper

Research questions & aims

52

1. Collaboration Dynamics:

Human leading vs Human supporting

System performance:

i. Total productivity

ii. Picking accuracy

2. Behavioral Mechanism: Prevention regulatory focus

Human performance:

iii. Intention to be productive

3. Behavioral Implications:

Technology acceptance, robot design

Human psychosynthesis:

iv. Task satisfaction

v. Self-esteem

vi. Robot efficacy

11.10.2021 R. de Koster (c), Warehouse cobotics

Human leading Human supporting

Human leading vs human supporting

53

Vs

11.10.2021 R. de Koster (c), Warehouse cobotics

Human leading Human supporting

54

Vs

Human leading vs human supporting

11.10.2021 R. de Koster (c), Warehouse cobotics

49 50

51 52

53 54

Page 10: Cobot Order picking SCI 2021 Public

11‐10‐2021

10

Human characteristics

55

a. Competence: base speed level

of manual order picking

b. Order picking experience

American New Home Group11.10.2021 R. de Koster (c), Warehouse cobotics

Human characteristics

56

a. Competence: base speed level

of manual order picking

b. Order picking experience

c. Prevention regulatory focus(Regulatory Focus Theory, Higgins et al., 1998)

• State dependent work-rate adjustment (Powell & Schultz, 2004)

• Productivity cap (cooperation incentive)

• Imminent job loss threat

American New Home Group

11.10.2021 R. de Koster (c), Warehouse cobotics

Warehouse Behavioral Lab

2.5 aisles

300 picking locations

Task:

Pick as many correct order-lines as possible within time limits

Incentives:

• Fixed monetary compensation

• Productivity bonus, prize for top pickers

• Certificate of training

Participants’ profile:

60 Students training to become logistics professionals

(2.5 hours each)

Experiment: The warehouse

5711.10.2021 R. de Koster (c), Warehouse cobotics

Experiment description

11.10.2021 R. de Koster (c), Warehouse cobotics 58

Results 1 - TOTAL PRODUCTIVITY

59

Table 1. Linear mixed-effects models predicting total productivity in human-robot collaborative order picking.

Dependent variable: Total productivity (correct total order lines picked in 20 minutes)

Scenarios model (M1a) Behavioral model (M1b) Interaction model (M1c)

Independent variable estimate Std. error estimate Std. error estimate Std. error

Constant 60.213 1.048 54.201 4.199 50.895 4.763

Base competence: Medium 4.472 1.105 4.828 1.120 4.841 1.119

Base competence: High 7.935 1.085 8.052 1.077 8.066 1.076

Order picking experience -0.117 0.086 -0.126 0.085 -0.125 0.085

Order set #2 -2.301 0.668 -2.229 0.669 -2.080 0.671

Order set #3 -3.766 0.654 -3.660 0.657 -3.620 0.652

Scenario sequence 1.598 0.905 1.444 0.902 1.441 0.901

Scenario: Human leading 5.074 0.490 5.074 0.490 11.453 4.381

Prevention regulatory focus 1.388 0.939 2.150 1.073

(Scenario: Human leading) * (Prevention

regulatory focus)

-1.504 1.026

Restricted maximum likelihood criterion 634.0 630.2 622.8

Number of subjects 60 60 60

Number of rounds 120 120 120

Bold type = significant at p < 0.05.

11.10.2021 R. de Koster (c), Warehouse cobotics

Results 1 - TOTAL PRODUCTIVITY

60

Table 1. Linear mixed-effects models predicting total productivity in human-robot collaborative order picking.

Dependent variable: Total productivity (correct total order lines picked in 20 minutes)

Scenarios model (M1a) Behavioral model (M1b) Interaction model (M1c)

Independent variable estimate Std. error estimate Std. error estimate Std. error

Constant 60.213 1.048 54.201 4.199 50.895 4.763

Base competence: Medium 4.472 1.105 4.828 1.120 4.841 1.119

Base competence: High 7.935 1.085 8.052 1.077 8.066 1.076

Order picking experience -0.117 0.086 -0.126 0.085 -0.125 0.085

Order set #2 -2.301 0.668 -2.229 0.669 -2.080 0.671

Order set #3 -3.766 0.654 -3.660 0.657 -3.620 0.652

Scenario sequence 1.598 0.905 1.444 0.902 1.441 0.901

Scenario: Human leading 5.074 0.490 5.074 0.490 11.453 4.381

Prevention regulatory focus 1.388 0.939 2.150 1.073

(Scenario: Human leading) * (Prevention

regulatory focus)

-1.504 1.026

Restricted maximum likelihood criterion 634.0 630.2 622.8

Number of subjects 60 60 60

Number of rounds 120 120 120

Bold type = significant at p < 0.05.

Human leading: superior in total order picking

productivity

11.10.2021 R. de Koster (c), Warehouse cobotics

55 56

57 58

59 60

Page 11: Cobot Order picking SCI 2021 Public

11‐10‐2021

11

Results 2 - Accuracy

61

Table 2. Negative binomial mixed-effects models predicting inaccuracy in human-robot collaborative order picking.

Dependent variable: Inaccuracy (total errors per 20 minutes)

Scenarios model (M2a) Behavioral model (M2b) Interaction model (M2c)

Independent variable estimate Std. error estimate Std. error estimate Std. error

Constant 4.088 1.714 4.206 1.901 5.161 2.112

Base competence: Medium -0.386 0.331 -0.403 0.352 -0.414 0.353

Base competence: High 0.316 0.362 0.303 0.372 0.283 0.373

Order picking experience -0.050 0.036 -0.050 0.036 -0.053 0.036

Order set #2 0.210 0.311 0.210 0.311 0.182 0.314

Order set #3 0.540 0.300 0.537 0.301 0.549 0.301

Scenario sequence -0.289 0.249 -0.288 0.249 -0.287 0.249

Correct total order lines picked in 20 minutes -0.075 0.029 -0.074 0.029 -0.071 0.029

Scenario: Human leading 0.662 0.263 0.657 0.264 -1.341 1.960

Prevention regulatory focus -0.038 0.268 -0.305 0.374

(Scenario: Human leading) * (Prevention

regulatory focus)

0.472 0.459

Log-likelihood -131.09 -131.08 -130.55

Number of subjects 60 60 60

Number of rounds 120 120 120

Bold type = significant at p < 0.05. ALEXANDROS PASPARAKIS | SCM Seminar | Virtual | Nov 23, 2020

11.10.2021 R. de Koster (c), Warehouse cobotics

Results 2 - Accuracy

62

Table 2. Negative binomial mixed-effects models predicting inaccuracy in human-robot collaborative order picking.

Dependent variable: Inaccuracy (total errors per 20 minutes)

Scenarios model (M2a) Behavioral model (M2b) Interaction model (M2c)

Independent variable estimate Std. error estimate Std. error estimate Std. error

Constant 4.088 1.714 4.206 1.901 5.161 2.112

Base competence: Medium -0.386 0.331 -0.403 0.352 -0.414 0.353

Base competence: High 0.316 0.362 0.303 0.372 0.283 0.373

Order picking experience -0.050 0.036 -0.050 0.036 -0.053 0.036

Order set #2 0.210 0.311 0.210 0.311 0.182 0.314

Order set #3 0.540 0.300 0.537 0.301 0.549 0.301

Scenario sequence -0.289 0.249 -0.288 0.249 -0.287 0.249

Correct total order lines picked in 20 minutes -0.075 0.029 -0.074 0.029 -0.071 0.029

Scenario: Human leading 0.662 0.263 0.657 0.264 -1.341 1.960

Prevention regulatory focus -0.038 0.268 -0.305 0.374

(Scenario: Human leading) * (Prevention

regulatory focus)

0.472 0.459

Log-likelihood -131.09 -131.08 -130.55

Number of subjects 60 60 60

Number of rounds 120 120 120

Bold type = significant at p < 0.05.

Human supporting: greater order picking accuracy

11.10.2021 R. de Koster (c), Warehouse cobotics

Table 3. Linear mixed-effects models predicting pick time of products located in same aisle (different stopping node).

` Dependent variable: Pick Time in same aisle (Tukey transformation, 𝜆 0.325)

Scenarios model (M3a) Behavioral model (M3b) Interaction model (M3c)

Independent variable estimate Std. error estimate Std. error estimate Std. error

Constant 1.497 0.049 1.806 0.152 1.976 0.170

Base competence: Medium -0.152 0.041 -0.170 0.040 -0.170 0.040

Base competence: High -0.269 0.040 -0.274 0.039 -0.274 0.039

Order picking experience 0.005 0.003 0.005 0.003 0.005 0.003

Scenario sequence -0.015 0.033 -0.007 0.032 -0.007 0.032

Progress (square root of pick timestamp) -0.006 0.001 -0.006 0.001 -0.006 0.001

Scenario: Human leading -0.084 0.017 -0.084 0.017 -0.409 0.145

Prevention regulatory focus -0.072 0.034 -0.112 0.038

(Scenario: Human leading) * (Prevention

regulatory focus)

0.076 0.034

Restricted maximum likelihood criterion 3161.6 3162.0 3161.9

Number of subjects 60 60 60

Number of stopping node combinations 26 26 26

Number of picks 2720 2720 2720

Bold type = significant at p < 0.05.

Results 3 - intention for Productivity

6311.10.2021 R. de Koster (c), Warehouse cobotics

Table 3. Linear mixed-effects models predicting pick time of products located in same aisle (different stopping node).

` Dependent variable: Pick Time in same aisle (Tukey transformation, 𝜆 0.325)

Scenarios model (M3a) Behavioral model (M3b) Interaction model (M3c)

Independent variable estimate Std. error estimate Std. error estimate Std. error

Constant 1.497 0.049 1.806 0.152 1.976 0.170

Base competence: Medium -0.152 0.041 -0.170 0.040 -0.170 0.040

Base competence: High -0.269 0.040 -0.274 0.039 -0.274 0.039

Order picking experience 0.005 0.003 0.005 0.003 0.005 0.003

Scenario sequence -0.015 0.033 -0.007 0.032 -0.007 0.032

Progress (square root of pick timestamp) -0.006 0.001 -0.006 0.001 -0.006 0.001

Scenario: Human leading -0.084 0.017 -0.084 0.017 -0.409 0.145

Prevention regulatory focus -0.072 0.034 -0.112 0.038

(Scenario: Human leading) * (Prevention

regulatory focus)

0.076 0.034

Restricted maximum likelihood criterion 3161.6 3162.0 3161.9

Number of subjects 60 60 60

Number of stopping node combinations 26 26 26

Number of picks 2720 2720 2720

Bold type = significant at p < 0.05.

Results 3 - intention for Productivity

6411.10.2021 R. de Koster (c), Warehouse cobotics

RESULTS 4: in progress

65

Transferring from manual picking to human and robot collaboration

Task satisfaction(Stone, 1977)

Self-esteem(Rosenberg, 1965)

Robot efficacy(Rosenthal Et Al., 2017)

Human leading + +

Human supporting ++ + +

11.10.2021 R. de Koster (c), Warehouse cobotics

RESULTS 4: in progress

66

Transferring from manual picking to human and robot collaboration

Ease of Use Robot efficacy

Perceived Usefulness Task satisfactionRobot characteristics:

i. Anthropomorphism

ii. Animacy

iii. Likeability

iv. Perceived intelligence

v. Perceived safety

(Adapted T.A.M., Venkatesh, et al., 2000)

+

+

+

Task satisfaction(Stone, 1977)

Self-esteem(Rosenberg, 1965)

Robot efficacy(Rosenthal Et Al., 2017)

Human leading + +

Human supporting ++ + +

11.10.2021 R. de Koster (c), Warehouse cobotics

61 62

63 64

65 66

Page 12: Cobot Order picking SCI 2021 Public

11‐10‐2021

12

5. Ride-on cobots

11.10.2021 R. de Koster (c), Warehouse cobotics 67

Joint work with: Mahmut Tutam, working paper, 2021

Problem Definition (Ride-on Cobots)

Advantages

Increase order-picking throughput

Decrease stress for joints

Relatively low costs compared to fully automated systems

Research Questions

Should the order picker walk or ride between pick locations?

What is the optimal collaboration strategy?

11.10.2021 R. de Koster (c), Warehouse cobotics 68

Problem Definition (Ride-on Cobots)

Optimal Routing (ride to all locations, walk to all

locations)

Optimal Collaboration (ride or walk)

Ride to clustered locations and walk to pick locations

Truck follows an optimal ride route

Only walk (Optimal) Ride or walk (Optimal)Only ride (Optimal)

11.10.2021 R. de Koster (c), Warehouse cobotics 69

Results for single block warehouse

L = 50m, v = 2.7 m, a = 5.3 m, sd = 1.8 m/s, sw = 0.7 m/s, e = 2s, s = 2s)

11.10.2021 70

Results for single block warehouse

L = 50m, v = 2.7 m, a = 5.3 m, sd = 1.8 m/s, sw = 0.7 m/s, e = 2s, s = 2s)

11.10.2021 71

Conclusion

• Optimal ride/drive policy can improve static policy with up to 5-10%

• When driving to all locations: large savings, if many picks/aisle

• In practice: improvement depends on #picks/aisle

7211.10.2021 R. de Koster (c), Warehouse cobotics

67 68

69 70

71 72

Page 13: Cobot Order picking SCI 2021 Public

11‐10‐2021

13

6. Sorting with AMRs

11.10.2021 R. de Koster (c), Warehouse cobotics 73

Robotic sorting systems

R. de Koster (c), Warehouse Robotics

puzzle-based storage – store and sort

R. de Koster (c), Warehouse Robotics 75

Implementation of GridFlow, KIT – courtesy: Kai Furmans

Robotic sortingConveyor/shuttle based

• FlexConveyor

• GridFlow

• GridSorter

AMR-based

• Tompkins T-sort

• LiBiao

• ….

R.de Koster, Warehouse Robotics 76

GridSorter – Gue et al., 2014, IEEE T on Automation science and Engineering

Robotic sortingConveyor/shuttle based

• FlexConveyor

• GridFlow

• GridSorter

AMR-based

• Tompkins T-sort

• LiBiao

• ….

R.de Koster, Warehouse Robotics 77

GridSorter – Gue et al., 2014, IEEE T on Automation science and Engineering

Only 3 vehicles

Raviv et al, (2021), working paper

https://youtu.be/Gla3A5OMK7g

Robot sorting model

R. de Koster (c), Warehouse Robotics 78

a. Dual-lane (shortest) Path b. Single-lane (detour) Path

73 74

75 76

77 78

Page 14: Cobot Order picking SCI 2021 Public

11‐10‐2021

14

More flexible, but also cheaper!

R. de Koster (c), Warehouse Robotics 79

Zou, De Koster, Gong (2021), Transportation Science

Robot sorting systems

RenĂŠ de Koster | Warehouse Robotics 80

Implications:

+ In many cases cheaper than traditional sorters

+ Flexible in layout, space use

- Less flexible in parcel sizes that can be handled

- Manual parcel induction is not ergonomic

7. Wrap-up

11.10.2021 R. de Koster (c), Warehouse cobotics 81

Are Bots Going to Take Away a Picker’s Role?

82

Not very

soon!

11.10.2021 R. de Koster (c), Warehouse cobotics

Wrap-up

Pick robots are here to come and here to stay

R. de Koster (c), Warehouse Robotics 83

Wrap-up

Pick robots are here to come and here to stay

But, humans will remain important

Warehouse performance is largely determined by the collaboration and how this

is managed

R. de Koster (c), Warehouse Robotics 84

79 80

81 82

83 84

Page 15: Cobot Order picking SCI 2021 Public

11‐10‐2021

15

Wrap-up

Pick robots are here to come and here to stay

But, humans will remain important

Warehouse performance is largely determined by the collaboration and how this

is managed

Topics for academic research

- How to deploy and control cobot technologies; impact on performance?

- For collaborative robotic systems: How do people interact with these

systems?

R. de Koster (c), Warehouse Robotics 85

Questions: [email protected]

11.10.2021 R. de Koster (c), Warehouse cobotics 86

85 86