coal fired igcc power plants in wyoming fired igcc power plants in wyoming ... aspen plus software....

25
Coal Fired IGCC Power Plants In Wyoming William C. Schaffers & Dr. David Bell Department of Chemical & Petroleum Engineering University of Wyoming School of Energy Resources

Upload: lythien

Post on 23-May-2018

247 views

Category:

Documents


3 download

TRANSCRIPT

Coal Fired IGCC Power Plants In Wyoming

William C. Schaffers & Dr. David Bell

Department of Chemical & Petroleum Engineering

University of Wyoming School of Energy Resources

Wyoming Coal • Wyoming leads the Nation in Coal production.

• In 2008, Wyoming produced 467.6 million tons of coal.

• Coal underlies 54% of the state (53,000 sq miles).

• Wyoming “in place” coal resources estimated at 1.45 trillion tons.

• Wyoming “in place” coal reserves estimated at 67.5 billion tons.

WSGS website

Wyoming Coal Wyodak Coal Illinois #6 Coal

(As Received) (%)

(As Received) Proximate Analysis (%) Moisture 26.6 11.1 Ash 5.8 9.7 Volatile Matter 33.2 35.0 Fixed Carbon 34.4 44.2 Total 100.0 100.0

Ultimate Analysis Carbon 73.9 80.5 Hydrogen 5.2 5.7 Nitrogen 1.3 1.6 Chlorine xx 0.3 Oxygen 18.6 8.6 Sulfur 0.9 3.2 Total 100.0 100.0

High Heating Value (Btu/lb) 8,630 11,666

Coal Gasification • Can Serve as the first step in the production

of: – Electricity – Liquid fuels – Synthetic “natural gas” – Chemical feed stocks

• Allows for capture and sequestration of CO2. – Use for enhanced recovery of Wyoming oil and

gas.

Current Objectives

• Compare effect of gasifier type on net power generation.

• Determine effects of CO2 recovery on net power generation.

• Compare water usage requirements for different gasifiers and levels of CO2 recovery.

• Strategies for reducing water requirements.

Procedures • Several IGCC models have been constructed using

Aspen Plus software.

– Slurry fed gasifier

– Dry fed gasifiers

• Conventional and mechanical feed.

• Models completed thus far are:

– 0%, 70% and 90% CO2 capture for each gasifier.

– Air vs. evaporative cooling for 90% CO2 capture.

• Models based upon components supplied by Idaho National Laboratory (INL).

Plant Descriptions

• All plants have equal coal consumption (6,900 tons/day).

• All are mine-mouth plants located in Wyoming (elevation 5,000 ft.).

• Carbon dioxide sequestration for enhanced oil recovery.

IGCC – Dry Fed

HIERARCHY

ASU

HIERARCHY

BL-WATER

HIERARCHY

CMD

HIERARCHY

CMDHEAT

HIERARCHY

CO2-COMP

HIERARCHY

COOL-H2O

HIERARCHY

GAS-TURB

HIERARCHY

GASIFIER

HIERARCHY

H20-SCR

HIERARCHY

HG-REMVL

HIERARCHY

HV-COAL

HIERARCHY

HV-SG

HIERARCHY

S-RMV-RC

HIERARCHY

SG-SHFT

HIERARCHY

STM-GEND U P L

DUP-1

TG-MIXER

SYNG-DUP

N2-SPLT2

STK-COMB

AIR-1

02-4B

GT-N2-ADRY-N2-1

KO-LIQ-2

BLD-LQ-3

SCR-BD

SLAG-IN

VNT-GS-B

RE-H2O-5

SLAG

GWATER

COAL-RAW

DRY-N2-2

GAS-VNT1

PLV-COAL

CMD-FUEL

CMD-AIR

CMDEXH-4

CO2-2COMP-CO2

MUH20-IN

CTAIR-IN

AIR-OUT

BLD-OUT

SYNG-16C

GT-POC6

COAL-1

SYNG-4A

STM-GFR

SYNG-3A

SYN-4A

FLY-ASH

SCR-MU

SYNG-4B SYNG-5A

DUPCOAL1

SYNG-16B

SYNG-5B

S-RECY-5

SYNG-16A

SULFUR

KO-BLD

SHIFT-ST

BFW-MU

ST-GAS-1

GASIF-N2

STACKGAS

IGCC – Slurry Fed

HIERARCHY

ASU

HIERARCHY

BL-WATER

HIERARCHY

CMD

HIERARCHY

CO2-COMP

HIERARCHY

COOL-H2O

HIERARCHY

GAS-TURB

HIERARCHY

GASIFIER

HIERARCHY

H20-SCR

HIERARCHY

HG-REMVL

HIERARCHY

HV-COAL

HIERARCHY

HV-SG

HIERARCHY

S-RMV-RC

HIERARCHY

SG-SHFT

HIERARCHY

STM-GEN

D U P L

DUP-1

SL-MIXER

SL-PUMP

H2O-MIX

TG-MIXER

SYNG-DUP

AIR-1

02-4B

GT-N2-A

KO-LIQ-2BLD-LQ-3

SCR-BD

BL-H2ORE-ELEM

RE-H2O-5

SOOT-OUT

PURG-H2O

COAL-RAW PLV-COAL

CO2-2

COMP-CO2

CTAIR-IN

MUH2O-IN BLD-OUTAIR

SYNG-16C

GT-POC6COAL-3

SYNG-3A

SLAG-OUT

SYNG-4A

VNTOUT-1

SYNG-4B SYNG-5A

DUPCOAL1

SYNG-16B

SYNG-5B

S-RECY-5

SYNG-16A

SULFUR

KO-BLD

SHIFT-ST

BFW-MU

STACK

COAL-1

SLUR-H2O COAL-2MU-H20

IGCC – Mechanical Fed

HIERARCHY

AIR-COOL

HIERARCHY

ASU

HIERARCHY

BL-WATER

HIERARCHY

CMD

HIERARCHY

CO2-COMP

HIERARCHY

COOL-H2O

HIERARCHY

GAS-TURB

HIERARCHY

GASIFIER

HIERARCHY

H20-SCR

HIERARCHY

HG-REMVL

HIERARCHY

HV-COAL

HIERARCHY

HV-SG

HIERARCHY

S-RMV-RC

HIERARCHY

SG-SHFT

HIERARCHY

STM-GEND U P L

DUP-1

TG-MIXER

SYNG-DUP

AIR-AC AC-EX

AIR-1

02-4B

GT-N2-A

KO-LIQ-2

BLD-LQ-3

SCR-BD

BL-H2ORE-ELEM

RE-H2O-5

SOOT-OUT

PURG-H2O

COAL-RAW PLV-COAL

CO2-2COMP-CO2

CTAIR-IN

MUH2O-IN

BLD-OUT

AIR-OUT

SYNG-16C

GT-POC6COAL-1

SYNG-3A

SLAG-OUT

SYNG-4A

VNTOUT-1

SYNG-4B SYNG-5A

DUPCOAL1

SYNG-16B

SYNG-5B

S-RECY-5

SYNG-16A

SULFUR

KO-BLD

SHIFT-ST

BFW-MU

STACK

Acid Gas Removal

SYNG-15SYNG-5B(IN)

S-RECY-4

S-RECY-5(OUT)

SYNG-16 SYNG-16A(OUT)

S-PROD

SULFUR(OUT)

CO2-1 CO2-2(OUT)

KO-BLDN

KO-BLD(OUT)

ACID-GAS CL-1-IN

CLAUSAIR

CL-2-INCL-2-OUT

CL-2-HTQ

CL-3-IN

CL-S-2

CL-3-OUT

S-RECY-1

CL-S-3

CL-3-HTQ

S-RECY-2

TG-RED

S-RECY-3

TG-AIR TG-CH4

S1 S3

SEP

SELEXOL

H2S-SPLT

CLAUS-1

CLAUS-2CL-SEP-2

CL-SEP-3 CLAUS-3

S-MIX

TG-COMP

TG-RED

TGCOOLER

TG-MX

HEATER

SEL-STM

COMPR

SEL-ELEC

Based u pon :DOE/NETL-20 07/128 1

Results

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

0 % CO2 70 % CO2 90 % CO2

409.5

338.4 349.8

400.7

343.9 357.1

460.9

372.8

392.9

490.2

413.5 421.7

MW

% CO2 Recovery

Power Generation vs. CO2 Capture

Dry

"Dry" Slurry

Slurry

Mech Fed

-300

-200

-100

0

100

200

300

400

500

0 % CO2 70 % CO2 90 % CO2

75

359

392

-41

365

488

-216

241

404

-206

301

412

Gal

lons

/ M

inut

e

% CO2 Capture

Process Water Consumption vs. CO2 Capture (w/o Cooling )

Dry

"Dry" Slurry

Slurry

Mech Fed

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 % CO2 70 % CO2 90 % CO2

75 -41 -216 -206

359 365 241 301 392 488 404 412

2444 2504

3400 3081

2638 2484

3381 3094

2560 2626

3483 3184

Gal

lons

/min

ute

% CO2 Capture

Total Water Consumption (with Evaporative Cooling) vs. CO2 Capture

Mech Fed

Slurry

"Dry" Slurry

Dry

2463

2875

2849

3114

3395

3596

2519

3184

2997

3622

2952

3887

0

200

400

600

800

1000

1200

0 % CO2 70 % CO2 90 % CO2

855

1142 1175

745

1153

1200

458

919 969

467

976 969

Gal

lons

/min

ute

% CO2 Capture

Water Vapor Vented to Atmosphere (w/o Cooling)

Dry

"Dry" Slurry

Slurry

Mech Fed

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

Dry "Dry" Slurry Slurry Mech Fed

349.8 357.1

392.9

421.7

347.6 352.2

386.3

419.8

MW

Gasifier/Feed Type

Evaporative vs. Air Cooling (Net Power Production)

Evap Cooling

Air Cooling

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

0 % CO2 70 % CO2 90 % CO2

375.5

109.5

36.6

368.8

109.5

35.5

484.1

142.4

46.2

485.1

145.7

46.4

Tons

/hr

% CO2 Capture

CO2 Vented to Atmosphere

Dry

"Dry" Slurry

Slurry

Mech Fed

Conclusions • Carbon capture and sequestration results in a significant

reduction in net power production.

• Carbon capture and sequestration also results in a significant increase in water requirements.

• A large reduction in water usage could be obtained through the use of air cooling.

• It may be possible to satisfy a substantial portion of the remaining water requirements through water recovery from flue gas and coal drying exhaust.

Conclusions (cont.)

• There is sufficient inherent moisture available in PRB coal for gasification when fed without drying.

• The elimination of drying and slurry feeding results in a

significant increase in net power production.

What’s Left? • Continue to refine current models to improve

accuracy.

• Develop economics in conjunction with INL and Tom Foulke (University of Wyoming).

• Evaluate economics of different gasifier/feed scenarios.

• Evaluate economic costs / benefits of minimum water use cases.

What’s Left (cont.) • Supply appropriate models to Wyoming Business

Council to aid in the promotion of the use of Wyoming coal resources within Wyoming.

• Modification of models for coal / biomass blends? – Biomass preparation for blending. – Data collection on blend gasification and combustion. – Model adaptation and analysis.

Acknowledgements • University of Wyoming School of Energy

Resources

• University of Wyoming Department of Chemical and Petroleum Engineering

– John Meyers, Sara Harkins & Hao Yu

• Wyoming Business Council

• Idaho National Laboratory

– Dr. Richard Boardman, Rick Wood

Thank you for your attention.