cmos compatible nanoscale vacuum tube - ieeesite.ieee.org/sfbanano/files/2013/01/sivnano_0219... ·...

14
2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-Woo Han, Ph. D Jin Woo Han, Ph. D NASA Ames Research Center Electronic Revolution from Transistors SF Bay Area Nanotechnology Council February 19, 2013 Texas Instrument

Upload: others

Post on 09-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

1

CMOS Compatible Nanoscale Vacuum Tube

02/19/2013

Jin-Woo Han, Ph. DJin Woo Han, Ph. DNASA Ames Research Center

Electronic Revolution from Transistors

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Page 2: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

2

Evolution of Electronics

Vacuum Triode (1906) Junction Transistor (1948)

AbacusMechanical Switch

Vacuum TubeTransistor

IntegratedCircuitPascal calculator

(1670)

Pentium (1995)

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Roman Analog (1500)

Babbage engine(1830)

Eniac (1946)17,000 Tubes Tradic (1954)

800 TransistorsIBM (1983)

Operation Mechanism of Triode Devices

Grid

Vacuum Tube

e Curr

ent

Cathode AnodeVacuum

GateTransistor

Gate/Grid Voltage

Dra

in/A

node

ONOFF

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Source Drain

Silicon

g

• Switch• Amplifier

Page 3: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

3

Nano-Electro-Mechanical Switch

For low-standby power (~2007)By MEMS technology

For high mobility channel (~2004)By ALD technology

?

Back to the Past for Better Future

Gate

S D

For low gate delayBy MG technology

(~1990’)?

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Vacuum TubeVacuum TubeLate 19th Century- Expensive- Bulky- Fragile- Energy hungry

Relay Transistor1st Transistor 1st IC1947 (William Shockely)- Ge material- Instable

1849- Babbage Engine- 8000relays/5tons- Short lifetime

1959 (RobertNoyce)- Si material- SiO2 dielectric- Al gate

Now- Si substrate- SiO2 dielectric- Poly-Si gate

Edison Effects (1883)Hot filament (Cathode)

Current

Thomas Edison (1847-1931)

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Thermionic Emission Heat-induced flow of electron from a surface of metal to a vacuum

Metal WorkfunctionMinimum energy required for the electron overcomes the biding potential

Thomas Edison (1847-1931)

Page 4: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

4

Vacuum Diode, Fleming Oscillation Valve (1903)

John Ambrose Fleming (1849-1945)

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Fleming Oscillation ValveFirst application of the Edison Effect used as a rectifier and detector

Vacuum Triode, Audion (1906)

Grid

Lee de Forest (1873-1961)

Cathode Anode

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Lee de Forest (1873-1961)

Vacuum TriodeFirst device to provide power gain and radio transmitter.

Page 5: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

5

Transistor (1914)

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

John Bardeen, William Shockley, Walter Brattain

AT&T Bell LabNobel Prize in 1956

Integrated Circuit (1958)

J k Kilb (1923 2005)

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Jack Kilby (1923-2005)

Texas InstrumentNobel Prize in 2000

Page 6: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

6

Evolution Scenario of Triode Devices

+ High gain + High performance+ P i di

Vacuum Tube+ Cheap+ Integrated Circuit+ Reliable

MOSFET

+ CMOS process+ Cheap !!+ L lif ti

Nano Vacuum Tube

+ Premier audio- Bulky, Fragile- Expensive- Short Lifetime- Power consumption

+ Low energy+ Long lifetime+ Variety applications- Low performance- Low breakdown

+ Long lifetime+ High power+ High performance+ Variety applications+ Premier audio

Vacuum ambient<50nm

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Cathode Anode

Back gate<5nm

<50nm

Benefit of Vacuum Channel – Speed

Silicon crystal latticeVacuum

Lattice ScatteringBallistic Transport

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Lattice ScatteringVelocity Saturation= 5 X 107cm/s

Ballistic Transportc = 3 X 1010cm/s

Page 7: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

7

Benefit of Vacuum – Temperature Immunity

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Crystal lattice scattering in semiconductor

Vacuum Channel is immune to high temperature.Military applications

Benefit of Vacuum – Radiation Immunity

R di ti i i ti i i d t

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Radiation ionization in semiconductor

Vacuum Channel is immune to radiation.Nuclear & space applications

Page 8: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

8

Weakness of Vacuum Device - Bulky

Bulky Tube

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Replacing a bad tubes ENIAC, Integration? Broken Tube

Weakness of Vacuum Device – Energy

EnergyElectron

QuantumWell

Workfunction

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Hot cathode

Page 9: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

9

What If Nanoscale Vacuum Device ?

Machining (mm scale)

Conventional vacuum tube

Wafer process (nm scale)

Nanoscale vacuum tube

Discrete componentOperation voltage > 100VThermionic emission (heater)Short lifetimeGlass package (fragile)High vacuum requirement

Integrated vacuum circuitOperation voltage <10VField emission (cold cathode)Long lifetime due to heating freeSemiconductor packageRelaxed vacuum requirement

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Fowler-Nordheim Tunneling

φ

Surface barrier Surface barrier bendingdue to applied field

Off-state On-state

Electron tunneling through a potential barrier, rather than escaping over it

Thermal excitation Photo excitation Tunneling

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

E

C

E

C

Tunnelingdistance

VG < Vturn-on VG > Vturn-on

Vacuum Vacuum

Page 10: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

10

Field Emission Current Density∫ ∞+

∞−= dssFDsTNeJ ),,(),( φ

N(T,S): electron density T: temperature

F-N Tunneling Equation

Fowler-Nordheim Equation

⎥⎦

⎤⎢⎣

⎡−= )(

3)2(8exp

)(8

2/32/1

2

23yv

heFm

ythFeJ φπ

φπ

N(T,S): electron densityD(F,s,φ): tunneling probabilitys: kinetic energy

T: temperature F: applied fieldφ: work function

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

m mass of electronφ work function of the cathodey function of F and φt(y), v(y) approximated as constants

J emission current densitye electron chargeh Planck’s constantF electric field at cathode

⎦⎣)( yφ

Simplified F-N Tunneling Equation

Where:

⎟⎠⎞

⎜⎝⎛ −=

VbaVI exp2

α emitting area

⎟⎠⎞

⎜⎝⎛−=⎟

⎠⎞

⎜⎝⎛

Vba

VI 1)ln(ln 2or

⎟⎟⎠

⎞⎜⎜⎝

⎛×=

2/1

26 4.10exp11

1056.1φφ

αβa α e tt g a eaφ emitter work functionβ field enhancement factor

⎠⎝1.1 φφ

βφ /1044.6 2/37×=b

Field Enhancement Factor

Anodeβ = F / V

rF: electric field at emitter tipV lt b t d d th d

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Cathoded

rhrh

1

24ln

2∗

−⎟⎠⎞

⎜⎝⎛

=βh

drV: voltage between anode and cathode rSpacer

Page 11: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

11

Low Voltage Operation – Small workfunction

1. Small workfunction of cathode

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Low Voltage Operation – Large field enhancement

1. Large field enhancement factor (sharp emitter tip & Short cathode to anode distance)

E

C

G

G

S

D

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Vacuum channel transistor MOSFET

Page 12: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

12

Relaxed Vacuum Requirement

Mean free path of electrons in air

Vacuum range Pressure (mbar) Mean free path

Ambient pressure 1013 68nm

Low vacuum 300-1 0.1-100um

Medium vacuum 1-10-3 0.1-100mm

High vacuum 10-3-10-7 10cm-1km

Ultra high vacuum 10-7-10-12 1km-105km

Extremely high vacuum <10-12 >105km

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

150

Image of the Vacuum Transistor

150 nm

15

20

25

curr

ent (

A)

curr

ent (

μA)

10-8

10-6

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

-4 -2 0 2 4 6 8 10 12

0

5

10

Col

lect

or

Col

lect

or c

Gate voltage (V)10-12

10-10

Page 13: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

13

Applications of Nano Vacuum TubeHigh Performance

Premier Audio Hifi into Smartphone

High Temperature StabilityAutomobile Industry

High Radiation ImmunityA I d

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

Aerospace Industry

Subsequent Necessary Process

Vacuum Package ProcessMatured in MEMS Package

Potent Option : Wafer bonding

TSV wafer bonding DicingWire bonding Packaging

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument

• MEMS Gyroscope• MEMS Accelerometer• MEMS Microphone

Page 14: CMOS Compatible Nanoscale Vacuum Tube - IEEEsite.ieee.org/sfbanano/files/2013/01/SIVNano_0219... · 2013-02-24 · 2013-02-24 1 CMOS Compatible Nanoscale Vacuum Tube 02/19/2013 Jin-WooHan,Ph.DWoo

2013-02-24

14

Thank you

SF Bay Area Nanotechnology CouncilFebruary 19, 2013Texas Instrument