classification of high resolution sar images using textural features

Upload: inriaariana

Post on 07-Apr-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Classification of high resolution sar images using textural features

    1/24

    Aurlie Voisin, Vladimir A. Krylov, and Josiane Zerubia

  • 8/6/2019 Classification of high resolution sar images using textural features

    2/24

    Synthetic Aperture Radar (SAR): active sensor used fordifferent kinds of applications: Security, Epidemiology, Environment, Risk management

    Very high resolution (VHR) SAR data (up to 1 meter) Speckle [Oliver 04]

    Heterogeneity [Cheney 09]

    Supervised classification of VHR single-channel SARamplitude images Methods : neural networks [Jacob 02], bags-of-features [Yang 09], etc.

    Proposed method: statistical modeling + Markov random fields (MRFs)

    2

  • 8/6/2019 Classification of high resolution sar images using textural features

    3/24

    3

    Supervised classification

    1 learning image

    1 test image

    M classes (e.g.: water, vegetation, urban)

    Original SAR

    amplitude image

  • 8/6/2019 Classification of high resolution sar images using textural features

    4/24

    4

    Learning

    Test

    PDF SAR amplitude of

    each class

    MRF parameter

    estimation

    Energy minimization to

    find the class of the test-image pixels

  • 8/6/2019 Classification of high resolution sar images using textural features

    5/24

    5

    Learning

    Test

    PDF SAR amplitude of

    each class

    MRF parameter

    estimation

    Energy minimization to

    find the class of the test-image pixels

  • 8/6/2019 Classification of high resolution sar images using textural features

    6/24

    Dictionary-based Stochastic Expectation Maximization

    Heterogeneity of SAR images

    Single probability density function (PDF) doesnt accurately model

    SAR amplitude statistics

    Model the SAR amplitude PDF by a FMM (Finite Mixture Model)

    6

    K

    k

    kkk rpPrp1

    )(.)(

    [Moser 10]

  • 8/6/2019 Classification of high resolution sar images using textural features

    7/24

    Estimation of:

    K: number of components

    pk(r| k): kth PDF family component

    Parameters of the kth component (k and Pk)

    with

    Data incompleteness

    belongs to which statistical population?

    Unsupervised context

    7

    K

    k

    kP

    1

    1 10 kP

    Nrrr ,...,1

    K

    k

    kkk rpPrp1

    )(.)(

  • 8/6/2019 Classification of high resolution sar images using textural features

    8/248

    Log Normal

    Weibull

    Fisher

    Generalized Gamma

    Nakagami

    K-Root

    Generalised Gaussian Rayleigh

    Heuristic

    Theoretical

    2

    ))(ln(

    12

    1

    ),(

    mr

    ermrf

    r

    errf1

    2 ),(

    ML

    L

    MLr

    M

    Lr

    M

    L

    ML

    MLMLrf

    )1(

    )(

    )()(

    )(),,(

    1

    3

    r

    er

    rf

    1

    4)(.

    ),,(

    12

    5)(

    2),(

    Lr

    L

    L

    erL

    LLrf

    2/1

    12

    6 2)()(

    4),,(

    LMrKr

    LM

    MLMLrf LM

    ML

    ML

    der

    rfr

    2/

    0

    )sin()cos(

    7

    /1/1/1

    )(

    ),(

    09/21/2010 SPIE Remote Sensing Toulouse 2010 - A. Voisin et al.

    [Moser 06]

    [Krylov 09]

  • 8/6/2019 Classification of high resolution sar images using textural features

    9/24

    E step:

    S step: stochastic labeling step leading to

    M step:

    9

    K

    l

    t

    lil

    t

    l

    t

    kik

    t

    kt

    ik

    rpP

    rpP

    1

    ),(.

    ),(.

    t

    ikw

    N

    i

    kik

    t

    ik

    t

    krpw

    k 1

    1),(lnmaxarg

    imagesize

    kpixelsnbP

    t

    k_

    _1

    [Celeux 95]

  • 8/6/2019 Classification of high resolution sar images using textural features

    10/24

    ML not feasible for some PDF distributions

    Method ofLog-Cumulants [Moser 06, Tison 04]:

    Mellin transform of the PDF [Sneddon 72]

    th order second kind cumulant

    10

    01).())(()( duuupspMs suuu

    )1())(ln()(v

    uv Family MoLC equations

    Log-Normal 1=m, 2=

    Weibull 1=ln()+(1)/, 2=(1,1)/

    Nakagami 21=(L)-ln(L/), 42=(1,L)

    Generalized Gamma 1=(k)/+ln(), 2=(1, k)/

    3=(2, k)/3

  • 8/6/2019 Classification of high resolution sar images using textural features

    11/24

    E - step: (posterior proba)

    S step: sample the label for each greylevel according to

    MoLC step:

    K step: for k=1,,Kt, if Pk

    t+1 < threshold, eliminate the kth

    component. Kt+1 = Kt-1

    Model Selection step: for each k, compute the log-likelihood,

    and define pkt+1(.) as the PDF yielding the highest value

    11

    tK

    l

    t

    l

    t

    l

    t

    l

    t

    k

    t

    k

    t

    kt

    k

    zpP

    zpP

    1

    ),(.

    ),(.

    )(zst

    ktQz

    t

    kjj

    t

    kj zfzhL )(ln).(

    t

    k

    1,...,0 Zz

    1

    0

    1

    )(

    )(

    Z

    z

    Qzt

    k

    zh

    zh

    P kt

    kt

    kt

    Qz

    Qzt

    kzh

    zzh

    )(

    )ln().(1

    1

    kt

    kt

    Qz

    Qz

    bt

    k

    t

    bkzh

    zzh

    )(

    ))).(ln(( 1

    kzszQt

    kt )(:

    [Moser 06]

    [Krylov 09]

    3,2b

  • 8/6/2019 Classification of high resolution sar images using textural features

    12/24

    Initialization Kmax = 6 chosen by trial and error

    Randomly chosen labels

    For each iteration t, the global log-likelihood is

    computed, if it is > (max log-likelihood), the parameters

    are saved

    Stopping criterion

    Maximum number of iterations reached

    Number of components = 1

    12

  • 8/6/2019 Classification of high resolution sar images using textural features

    13/2413

    Model KS distance

    GGamma 0.022

    DSEM 4: GGamma,

    Naka, LogN, Weib.

    0.007

    TerraSAR-XimageofRoshe

    nheim

    (Germany)(Infoterra,2008)

    COSMO-Skymedimageof

    Cavallermaggiore(It

    aly)

    (ISA,2008)

    Model KS distance

    Weibull 0.053

    DSEM 4: LogN,

    Naka (2), Weib.

    0.011

    Statistics of the

    whole imageStatistics of the

    vegetation class

  • 8/6/2019 Classification of high resolution sar images using textural features

    14/2414

    Learning

    Test

    PDF SAR amplitude of

    each class

    MRF parameter

    estimation

    Energy minimization to

    find the class of the test-image pixels

  • 8/6/2019 Classification of high resolution sar images using textural features

    15/2415

    MRF: robustness against speckle and contextualinformation [Besag 86, Dubes 89, Fjortoft 03]

    Anisotropic second-order neighborhood system

    Gibbs distribution[Besag 74, Geman 84]

    : Localcharacteristic (conditional proba) for each class m

    Potts model:

    Pseudo-logLikelihood

    M;1

    M

    j

    xxH

    xxH

    s

    s

    mss

    ms

    s

    mss

    js

    sms

    e

    e

    xP

    xxPxxPxp

    1

    ),(

    ),(

    )(

    )(

    )()(

    )(

    )(

    ,)()(

    Ss Csss

    xxs

    s ssPDFxxH

    ',:'

    )(

    '.)ln(),,(

    scliques

    s

    ms xpxPL_

    )()(ln))(ln(

  • 8/6/2019 Classification of high resolution sar images using textural features

    16/2416

    Problematic: Single pol. CSK images

    Find a 2nd channel to improve the accuracy

    Textural features

    COSMO-Skymedimageof

    Cavallermaggiore(Ita

    ly)(ISA,2008)

    Semi-Variogram [Chen 04]

    Grey-Level Co-occurrence

    Matrix (GLCM) variance

    [Haralick 73]

  • 8/6/2019 Classification of high resolution sar images using textural features

    17/2417

    PDF SAR amplitude ofeach class and each

    channel

    Copulas

    MRF parameter

    estimation

    Energy minimization to

    find the class of the test-

    image pixels

    Learning

    Test

    [Moser 10]

  • 8/6/2019 Classification of high resolution sar images using textural features

    18/2418

    PDF SAR amplitude ofeach class and each

    channel

    Copulas

    MRF parameter

    estimation

    Energy minimization to

    find the class of the test-

    image pixels

    Learning

    Test

    [Moser 10]

    21

    2211

    *

    2211

    )(),(

    )().()( yy

    yFyFC

    ypypypmmmmm

    mmmmmm

  • 8/6/2019 Classification of high resolution sar images using textural features

    19/24

    19

    Water Urban Vegetation Overall

    DSEM-MRF 99.14 % 98.88 % 84.65 % 94.22 %

    K-NN-MRF 96.72 % 96.09 % 99.92 % 97.58 %

    CoDSEM (Semivar.) 98.37 % 98.91 % 100 % 99.09 %

    CoDSEM (GLCM) 98.62 % 98.42 % 100 % 99.01 %

    DSEM-MRFCoDSEM (GLCM)

    COSMO-SkymedimageofCavallermaggiore

    (Italy)

    (ISA,2008)

  • 8/6/2019 Classification of high resolution sar images using textural features

    20/24

    20

    Water Urban Vegetation Overall

    DSEM-MRF 92.95 % 98.32 % 81.33 % 90.87 %

    K-NN-MRF 90.56 % 98.49 % 94.99 % 94.68 %

    CoDSEM (GLCM) 91.28 % 98.82 % 93.53 % 94.54 %

    CoDSEM (GLCM) K-NN-MRF

    TerraSAR-X image of Rosenheim

    (Germany) (Infoterra, 2008)

  • 8/6/2019 Classification of high resolution sar images using textural features

    21/24

    21

    Water Urban Vegetation Overall

    DSEM-MRF 99.81 % 99.03 % 99.99 % 99.61 %

    CoDSEM (GLCM) 98.66 % 99.56 % 99.27 % 99.16 %

    CoDSEM (GLCM)

    COSMO-Skymedimage of Port-au-Prince

    (Haiti) (ISA, 2009)

    DSEM-MRF

  • 8/6/2019 Classification of high resolution sar images using textural features

    22/24

    22

    Algorithm validated in the application:

    urban/land/water separation on several single-pol. SAR

    images

    Smoothing effects at spatial borders

    Possible improvements:

    More sophisticated texture-extraction techniques

    Taking into account urban geometry via hierarchical/multiscaleMRFs

  • 8/6/2019 Classification of high resolution sar images using textural features

    23/24

    23

    French defense agency (DGA)

    Italian Space Agency (ISA)

    Infoterra (Astrium Services)

    Dr. G. Moser and Prof. S. Serpico from Univ. of Genoa

    for their helpful comments and fruitful collaboration

  • 8/6/2019 Classification of high resolution sar images using textural features

    24/24

    24

    [Oliver 04] Oliver, C. and Quegan, S., [Understanding Synthetic Aperture Radar images], SciTech Publishing (2004).

    [Jacob 02] Jacob, A. M., Hemmerly, E. M., and Fernandes, D., SAR image classification using a neural classifier based on Fisher criterion, in

    [Medical Imaging: Image Processing], Proc. of the VII Brasilian Symposium on Neural Networks (SBRN), 168172 (2002).

    [Yang 09] Yang, W., Dai, D., Triggs, B., and Xia, G.-S., Semantic labeling of SAR images with hierarchical Markov aspect models, HAL Research

    Report , hal00433600 (2009).

    [Cheney 09] Cheney, M. and Borden, B., [Fundamentals of radar imaging], Phladelphia: Society for industrial and applied mathematics (2009).

    [Moser 10] Moser, G., Krylov, V., Serpico, S. B., and Zerubia, J., High resolution SAR image classification by Markov random fields and finite

    mixtures, Proc. of SPIE7533, 753308 (2010).

    [Moser 06] Moser, G., Serpico, S. B., and Zerubia, J., Dictionary-based Stochastic Expectation Maximization for SAR amplitude probability

    density function estimation, IEEE Trans. Geosci. Remote Sens. 44(1), 188199 (2006).

    [Krylov 09] Krylov, V., Moser, G., Serpico, S. B., and Zerubia, J., Dictionary-based probability density function estimation for high-resolutionSAR data, Proc. of SPIE7246, 72460S (2009).

    [Celeux 95] Celeux, G., Cheveau, D., and Diebolt, J., On stochastic versions of the EM algorithm, INRIA Research Report2514 (1995).

    [Tison 04] Tison, C., Nicolas, J.-M., Tupin, F., and Maitre, H., A new statistical model for Markovian classification of urban areas in high-

    resolution SAR images, IEEE Trans. Geosci. Remote Sens. 42(10), 20462057 (2004).

    [Sneddon 72] Sneddon, I., [The use of integral transforms], McGraw-Hill, New York (1972).

    [Fjortoft 03] Fjortoft, R., Delignon, Y., Pieczynski, W., Sigelle, M., and Tupin, F., Unsupervised classification of radar images using hidden

    Markov chains and hidden Markov random fields, IEEE Trans. Geosci. Remote Sens. 41(3), 675686 (2003).

    [Besag 86] Besag, J., On the statistical analysis of dirty pictures,Journal of the Royal Statistical Society48, 259

    302 (1986).[Dubes 89] Dubes, R. C. and Jain, A. K., Random field models in image analysis,Journal of Applied Statistics 16(2), 131164 (1989).

    [Besag 74] Besag, J., Spatial interaction and the statistical analysis of lattice systems,Journal of the Royal Stat. Soc. 36(2), 192236 (1974).

    [Geman 84] Geman, S. and Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Patt. Anal.

    Mach. Intell. 6(6), 721741 (1984).

    *Chen 04+ Chen, Q. and Gong, P., Automatic variogram parameter extraction for textural classification of the panchromatic IKONOS imagery,

    IEEE Trans. Geosci. Remote Sens. 42(5), 11061115 (2004).

    [Haralick 73] Haralick, R. M., Shanmugam, K., and Dinstein, I., Textural features for image classification, IEEE Trans. on Systems, Mans and

    Cybern. 3(6), 610

    621 (1973).