class 21 22 - summary

23
ICE401: PROCESS INSTRUMENTATION AND CONTROL Class 21, 22 Summary Dr. S. Meenatchisundaram Email: [email protected] Process Instrumentation and Control (ICE 401) Dr. S.Meenatchisundaram, MIT, Manipal, Aug Nov 2015

Upload: manipal-institute-of-technology

Post on 24-Jan-2017

524 views

Category:

Engineering


3 download

TRANSCRIPT

Page 1: Class 21 22 - summary

ICE401: PROCESS INSTRUMENTATION

AND CONTROL

Class 21, 22

Summary

Dr. S. Meenatchisundaram

Email: [email protected]

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Page 2: Class 21 22 - summary

Control System Components:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Page 3: Class 21 22 - summary

Control Loops:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Page 4: Class 21 22 - summary

Advanced Control Loops:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Page 5: Class 21 22 - summary

Advanced Control Loops:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Page 6: Class 21 22 - summary

Mathematical Modeling:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

We can define hydraulic resistance (R) to flow as follows:

Hydraulic Capacitance (A) can be given as:

Liquid-Level System:

0

Potential hR

Flow q≡ =

( )

( )

V t QuantityA

h t Potential= =

( )

( )

( ) 1i

H s R

Q s RAs=

+ ( )0 ( ) 1

( ) 1i

Q s

Q s RAs=

+0

( )( )

H sQ s

R=

Page 7: Class 21 22 - summary

Mathematical Modeling:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Liquid-Level Systems with Interaction:

Liquid-Level Systems without Interaction:

( )2

2

1 1 2 2 1 1 2 2 2 1

( ) 1

( ) 1

Q s

Q s R C R C s R C R C R C s=

+ + + +

( )2 2

2

1 1 2 2 1 1 2 2 2 1

( )

( ) 1

H s R

Q s R C R C s R C R C R C s=

+ + + +

1

1

( ) 1

( ) 1

Q s

Q s sτ=

+

2 2

1 2

( ) 1

( ) 1 1

H s R

Q s s sτ τ=

+ +

Page 8: Class 21 22 - summary

Mathematical Modeling:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Thermal System:

CSTR:

( ) =

H(s) 1 Cs

s R

R

θ∆ ∆ +

( ) ( )A A Ai i A

d dn C V C F C F rV

dt dt= = − −

( ) ( )/

0

E RTiAAi A A

FdCC C k e C

dt V

−= − −

Page 9: Class 21 22 - summary

Mathematical Modeling:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Pneumatic System:

Hydraulic System:

0 ( ) 1

( ) ( 1)i

P s

P s RCs

∆=

∆ +

( )

( ) 1 1i

A AX s K K

P s RCs sτ= =

+ +

Page 10: Class 21 22 - summary

Dead Time, P&I Diagram:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Process dead time (td) is equal to the distance (D) divided by

the velocity (υ) through the discharge pipe, or td = D/υ.

Page 11: Class 21 22 - summary

Direct & Reverse Action:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

A controller operates with direct action when an increasing

value of the controlled variable causes an increasing value of

the controller output.

Reverse action is the opposite case, where an increase in a

controlled variable causes a decrease in controller output.

Page 12: Class 21 22 - summary

Classification of Controller Modes:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Page 13: Class 21 22 - summary

Controller Action:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Two-Position Mode:

Neutral Zone:

00%

0100%

p

p

ep

e

<=

>

Page 14: Class 21 22 - summary

Controller Action:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Multi-Position Mode:

Floating Control Mode – Single Speed:

Multi Speed:

1

1 1

1

100%

50%

0%

p

p

p

e e

p e e e

e e

>

= − < < < −

F p p

dpK e e

dt= ± > ∆

Fi p pi

dpK e e

dt= ± > ∆

Page 15: Class 21 22 - summary

Controller Action:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Proportional Mode:

0p pp K e p= +

100

p

PBK

=

Page 16: Class 21 22 - summary

Controller Action:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Integral Mode:

0

( ) (0)

t

I pp t K e dt p= +∫

1=

I

I

TK

Page 17: Class 21 22 - summary

Controller Action:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Derivative Mode:

Proportional-Integral Control Mode:

Proportional-Derivate Control Mode:

Proportional-Integral-Derivate Control Mode:

( )p

D

dep t K

dt=

0

( ) (0)

t

P P P I p Ip t K e K K e dt p= + +∫

0( )p

P P P D

dep t K e K K p

dt= + +

0

( ) (0)

t

p

P P P I p P D I

dep t K e K K e dt K K p

dt= + + +∫

Page 18: Class 21 22 - summary

Controller Action:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Proportional-Integral

Page 19: Class 21 22 - summary

Controller Action:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Proportional-Derivative

Page 20: Class 21 22 - summary

Effects of KP, KI and KD:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

KP KI

Page 21: Class 21 22 - summary

Effects of KP, KI and KD:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

KD

Page 22: Class 21 22 - summary

Controller Action:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015

Try:

A PI controller is reverse acting, PB = 20, 12 repeats per

minute. Find (a) the proportional gain, (b) the integral gain,

and (c) the time that the controller output will reach 0% after

a constant error of -1.5% starts. The controller output when

the error occurred was 72%.

Solution: 1005%

p

PBK

= =

( )

12%

% minIK =

Page 23: Class 21 22 - summary

Controller Action:

Process Instrumentation and Control (ICE 401)

Dr. S.Meenatchisundaram, MIT, Manipal, Aug – Nov 2015