cisco telepresence room design · pdf filecost versus immersive ... by offering a powerful...

74
© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 74 Cisco TelePresence Room Design Guide April 2012

Upload: vodat

Post on 06-Mar-2018

225 views

Category:

Documents


3 download

TRANSCRIPT

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 74

Cisco TelePresence

Room Design Guide

April 2012

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 2 of 74

THIS REPORT, AND ALL DOCUMENTS, RECOMMENDATIONS, COMMUNICATIONS AND OTHER

INFORMATION PROVIDED IN CONNECTION THEREWITH, ARE PROVIDED BY CISCO TO THE RECIPIENT

ON AN "AS IS" BASIS, AND ARE NOT REPRESENTED TO BE COMPLETE OR ACCURATE; AND CISCO

DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES (EXPRESS OR IMPLIED) RELATING TO ALL

REPORTS, DOCUMENTS, RECOMMENDATIONS, COMMUNICATIONS AND OTHER INFORMATION

GENERATED IN CONNECTION THEREWITH, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.

THE RECIPIENT EXPRESSLY ACKNOWLEDGES AND AGREES THAT IT IS SOLELY RESPONSIBLE FOR

THE DETERMINATION AND IMPLEMENTATION OF ITS NETWORK, DESIGN, BUSINESS, AND OTHER

REQUIREMENTS. EXCEPT AS OTHERWISE PROVIDED IN A SEPARATE WRITTEN AGREEMENT, CISCO

SHALL NOT BE RESPONSIBLE FOR THE FAILURE OF ANY REPORT OR RELATED DOCUMENT,

RECOMMENDATION OR COMMUNICATION TO MEET RECIPIENT’S NETWORK, DESIGN, BUSINESS, OR

OTHER REQUIREMENTS. IN NO EVENT SHALL CISCO BE LIABLE FOR THE ACCURACY OR

COMPLETENESS OF THE INFORMATION CONTAINED IN ANY REPORT OR OTHER INFORMATION

PROVIDED IN CONNECTION THEREWITH.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 3 of 74

Contents

Introduction ........................................................................................................................................................... 6 What Is Immersive Cisco TelePresence? .......................................................................................................... 6 How Is Cisco TelePresence Used? .................................................................................................................... 6

Characteristics of Immersive Cisco TelePresence Rooms ............................................................................. 6 How to Use This Guide ...................................................................................................................................... 7

Immersive Cisco TelePresence ........................................................................................................................... 8 Continuity in Cisco TelePresence ...................................................................................................................... 8 Continuity Implementation: Lighting, Acoustics, and Aesthetics ........................................................................ 8

Lighting ................................................................................................................................................................ 10 Lighting Theory ................................................................................................................................................ 10

Color Temperature ....................................................................................................................................... 11 Color Rendering Index ................................................................................................................................. 12 Pigment and Light Color ............................................................................................................................... 12 Lumens, Lux, and the Candela Curve .......................................................................................................... 12 How to Measure Lighting Levels .................................................................................................................. 13

Application of Video Production Lighting to Cisco TelePresence ..................................................................... 14 Key Light ...................................................................................................................................................... 14 Fill Light ........................................................................................................................................................ 14 Back Light .................................................................................................................................................... 15

Application of Commercial Office Lighting to Cisco TelePresence ................................................................... 15 Immersive Cisco TelePresence Lighting .......................................................................................................... 16

Facial Lighting .............................................................................................................................................. 17 Shoulder Lighting ......................................................................................................................................... 17 Lighting Control Systems ............................................................................................................................. 17 Occupancy Sensors ..................................................................................................................................... 18 Lighting Fixtures ........................................................................................................................................... 18 Wall Wash .................................................................................................................................................... 24 Ceiling Soffits and Lighting Coves................................................................................................................ 24

Energy Efficiency ............................................................................................................................................. 25 Conclusion ....................................................................................................................................................... 25

Acoustics ............................................................................................................................................................. 27 Acoustic Theory and Background .................................................................................................................... 27

Sound Pressure Level in Decibels ............................................................................................................... 27 Human Range of Hearing Frequencies ........................................................................................................ 28 Human Hearing ............................................................................................................................................ 29 Human Speech ............................................................................................................................................ 30 Reverberation............................................................................................................................................... 31 Echo ............................................................................................................................................................. 32 Reverberation and Echo in Cisco TelePresence Rooms ............................................................................. 32 Lively Sound Environments .......................................................................................................................... 33 Flat Sound Environments ............................................................................................................................. 34

Building for Acoustic Isolation .......................................................................................................................... 35 Sound Transmission Class .......................................................................................................................... 35 Noise-Reduction Coefficient ......................................................................................................................... 36 Impact Insulation Class ................................................................................................................................ 37

Office Environment Acoustic Concerns and Resolutions ................................................................................. 38 High Ambient Noise Levels .......................................................................................................................... 38 Noise from Air Movement ............................................................................................................................. 39 Noise from Machinery .................................................................................................................................. 39 Noise from Adjacent Rooms ........................................................................................................................ 39 Reverberation Remediation ......................................................................................................................... 40 Acoustic Panel Placement ........................................................................................................................... 41

Conclusion ....................................................................................................................................................... 43

Heating, Ventilation, and Air Conditioning for Cisco TelePresence ............................................................... 44 General Rules for HVAC .................................................................................................................................. 44 Use of an Existing HVAC System .................................................................................................................... 45

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 4 of 74

Zoning and Capability to Rezone HVAC .......................................................................................................... 47 Common HVAC Cooling Issues and Resolutions............................................................................................. 47 Supplemental Cooling ...................................................................................................................................... 48 Conclusion ....................................................................................................................................................... 48

Aesthetics ............................................................................................................................................................ 49 Aesthetic Principles .......................................................................................................................................... 49 Choice and Customization in Design ............................................................................................................... 49 How to Approach Aesthetic Design for Immersive Cisco TelePresence .......................................................... 50 Wall Color ........................................................................................................................................................ 51

Color Matching ............................................................................................................................................. 51 Aesthetics and Room Remediation .................................................................................................................. 51

Exterior Windows ......................................................................................................................................... 52 Interior Windows .......................................................................................................................................... 52 Doorways ..................................................................................................................................................... 52 Acoustic Panels............................................................................................................................................ 53

Creative Wall Treatments ................................................................................................................................. 53 Wall Coverings ............................................................................................................................................. 53 Wood Panels ................................................................................................................................................ 53

Cisco TelePresence Room Design Palettes .................................................................................................... 54 Modifiable Aesthetic Elements ......................................................................................................................... 55 Branding In Cisco TelePresence Room Design ............................................................................................... 56 Integration of Aesthetics in a Cisco TelePresence Room ................................................................................ 56 Conclusion ....................................................................................................................................................... 57

Immersive Room Design Implementation ......................................................................................................... 58 Room Selection ................................................................................................................................................ 58

Cost Versus Immersive Experience ............................................................................................................. 58 Dedicated or Multipurpose Meeting Space ...................................................................................................... 59 Physical Elements of the Room ....................................................................................................................... 60 Room Dimensions ............................................................................................................................................ 61 Location ........................................................................................................................................................... 62

Doors ........................................................................................................................................................... 62 Windows ...................................................................................................................................................... 62 Placement of The Room in the Building ....................................................................................................... 63 Adjacent Rooms ........................................................................................................................................... 63 Acoustic Evaluation ...................................................................................................................................... 63

Construction Characteristics ............................................................................................................................ 64 Wall Materials............................................................................................................................................... 64 Ceiling Materials ........................................................................................................................................... 64 Flooring Materials ......................................................................................................................................... 64 Power Outlets............................................................................................................................................... 65 Network Access ........................................................................................................................................... 65

Indirect Lighting ................................................................................................................................................ 65 Lighting Control Systems ................................................................................................................................. 66 Direct Lighting .................................................................................................................................................. 66 Replacing Lighting Fixtures .............................................................................................................................. 67

Room Design Models ......................................................................................................................................... 68

Appendix A: HVAC Components and Systems ................................................................................................ 70 HVAC Components .......................................................................................................................................... 70

Duct Types ................................................................................................................................................... 70 Galvanized Steel .......................................................................................................................................... 70 Duct Board ................................................................................................................................................... 70 Flexible Ducting............................................................................................................................................ 70 Ducting Systems .......................................................................................................................................... 70 Perimeter Duct Systems .............................................................................................................................. 71 Extended Plenum Systems .......................................................................................................................... 71 Other Main Duct Components ...................................................................................................................... 71

Air Terminals .................................................................................................................................................... 71 Diffusers ....................................................................................................................................................... 71 Registers ...................................................................................................................................................... 72

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 5 of 74

Thermostats ................................................................................................................................................. 72 HVAC System Types ....................................................................................................................................... 72

Central Air Handler System with Forced Air ................................................................................................. 73 Independent Room Air Conditioning System ............................................................................................... 73 Split Air Conditioning Systems ..................................................................................................................... 73 Cassette Room Air Conditioning Systems ................................................................................................... 73 Independent Room Heat Systems ............................................................................................................... 73

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 6 of 74

Introduction

What Is Immersive Cisco TelePresence?

Immersive Cisco TelePresence is a real-time, real-size, interactive meeting experience that enables participants

in different cities and parts of the world to come together in one meeting across all geographies and time zones.

It is unique in that all details of the meeting experience are carefully planned in advance — using the best

practices in this guide — to provide a natural experience that puts people first and technology seamlessly in the

background.

Some people categorize any video conferencing system that provides high-definition (HD) video and wideband

audio as telepresence, but Cisco TelePresence is different from video conferencing because it can deliver a

virtual in-person experience with the highest life-like quality, simplicity, and reliability. The key to this experience

is Immersive Cisco TelePresence room design coupled with Cisco TelePresence technology.

Note: For more information about the differences between telepresence and videoconferencing, see Cisco

TelePresence Fundamentals (Cisco Press, 2009), which discusses what separates telepresence from video

conferencing, including the history of these technologies.

How Is Cisco TelePresence Used?

Regardless of the economic outlook, companies seek technologies that enable them to improve business results

and reduce operating costs. The premium experience of Immersive Cisco TelePresence transforms businesses

by offering a powerful collaboration platform that is as good as being there in person. This spurs business

productivity by providing a practical and enjoyable alternative to physical travel. The following are common uses

of Cisco TelePresence:

● Communicate more frequently and more effectively with customers, partners, and employees.

● Speed decision making among geographically dispersed teams by allowing them to meet regularly

without travel.

● Collaborate more effectively on projects.

● Increase intimacy with customers through intracompany meetings that are a normal part of the business

day without disruptive travel.

● Reduce or eliminate physical access issues such as allowing additional personnel into secure buildings

for a meeting.

● Lower operating costs by replacing business travel with a life-like virtual meeting.

● Increase productivity by giving employees time to work on projects that would otherwise be lost during

travel.

● Build corporate identity across geographies.

Characteristics of Immersive Cisco TelePresence Rooms

An Immersive Cisco TelePresence room is an environment that is completely dedicated to Cisco TelePresence,

provides continuity, and meets Immersive Cisco TelePresence room design recommendations. Immersive rooms

or environments offer the best and most natural Cisco TelePresence meeting experience because they are

predictable in their meeting quality and free from distractions. Implementing a dedicated room with correct

lighting, room color, and acoustics — and remediation of variables that can distract from a meeting — results in a

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 7 of 74

room that provides the highest level of ease-of-use for participants. These rooms are ideal for very important

meetings where communication and body language are needed to be viewed without distractions, resulting in an

overall seamless experience that is like all of the participants being in the same room.

The advantage of an Immersive Cisco TelePresence room is that there are no variables to consider — nothing

that will distract participants during the meeting. Everything is 100 percent designed for a Cisco TelePresence

meeting. Lighting is designed to produce the best image on the display, colors and adornments are correctly

positioned, seating positions are well defined, and the network is designed for the best quality and highest

availability. When a participant walks into a purpose-designed Immersive Cisco TelePresence room, the

participant knows where to sit, is in view on camera, and is already correctly positioned with regard to

microphones and speakers. Ultimately, participants have a level of comfort and familiarity when they enter

another Immersive Cisco TelePresence room. Even if the colors, adornments, or room size are slightly different

than what participants are used to, they nevertheless should find the environment familiar and be able to place a

call in a new Immersive Cisco TelePresence room just as if they were in an Immersive Cisco TelePresence room

that they had visited before.

How to Use This Guide

For an Immersive Cisco TelePresence experience, preparation of the room before installation of a Cisco

TelePresence endpoint is crucial because improper lighting, unremediated acoustic issues, and glaring or

distracting room colors all interfere with the experience. Furthermore, insufficient or incorrect lighting leads to

poor video quality no matter how well tuned the cameras are or how efficient the network is. This guide describes

each element needed for an Immersive Cisco TelePresence experience.

Additionally, this guide outlines room selection criteria to help facilities planners chose the best room for the

Cisco TelePresence deployment. Individuals involved with any portion of Cisco TelePresence deployment, room

selection, or room remediation will find this information invaluable.

Combined with an Immersive Cisco TelePresence endpoint, the Immersive Cisco TelePresence room design

principles for lighting, sound, and aesthetics presented in this guide result in an experience that is so life-like and

realistic that meeting participants will be able to:

● Focus all their attention on the people in the meeting and what is being said or shown, instead of on

distractions caused by acoustic problems or lights that are too dim or too bright.

● With the clarity of life-like audio and video, experience most of the same emotional and psychological

interactions that occur when people meet face-to-face, instead of dealing with technological distractions.

This guide should be read prior to completing the Cisco TelePresence

prequalification questionnaires and Room Readiness Assessment

(RRA).

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 8 of 74

Immersive Cisco TelePresence

Continuity in Cisco TelePresence

Feeling like you are in the same room with the participants on the other side of a Cisco TelePresence meeting is

called Immersive Cisco TelePresence. Continuity is what creates this feeling, and if continuity principles are

applied, although rooms may be designed differently, the meeting participants will have a familiar, consistent

experience.

As an example of continuity, consider food and coffee franchises. One of the reasons franchising is so

successful is because customers are already familiar with the environment when they enter a new store in a

different location. From Toronto to Barcelona to Jakarta, franchises create a continuous experience for their

customers. For example, Starbucks uses the same earth-toned colors, wood trim, type of counters, and general

ordering procedure across its locations. The core drink and snack menu is generally the same. The counters for

adding cream and sugar to drinks are generally the same. Details such as lighting and temperature are also

consistent. Even so, no two locations are exactly the same. The square footage of a store may be larger,

smaller, or arranged differently than in other stores. Some stores may have couches while others do not.

However, when a customer walks into a Starbucks store, the experience is the same and familiar across all

Starbucks locations. This is continuity.

Continuity Implementation: Lighting, Acoustics, and Aesthetics

Immersive Cisco TelePresence considers the entire room environment and uses continuity to create a familiar,

consistent experience for all participants. In other words, Immersive Cisco TelePresence matches the

experiences of local and remote participants using continuity principles.

Figure 1. Continuity In Cisco TelePresence Rooms

San Jose Kiev

Specifically, the elements of continuity in Immersive Cisco TelePresence room design are:

● Lighting

● Acoustics

● Aesthetics

When these are consistent, there is continuity. This guide discusses each of these elements and how to apply

them to create an Immersive Cisco TelePresence meeting.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 9 of 74

The more continuity there is between multiple environments, the more immersive the experience will feel.

Remember that the idea is to make the local room and remote room as similar in their core design elements as

possible. When successful, the meeting participants will feel like they are in similar rooms sharing the same

experience. If two totally different rooms, in different countries and different time zones, have continuity, the

meeting participants will focus on the meeting rather than the technology or room. This experience is the ultimate

goal of Immersive Cisco TelePresence. When designing a Cisco TelePresence environment, regardless of the

size of the endpoint, one should always consider the environment of the endpoint and if the environment

supports the elements of continuity.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 10 of 74

Lighting

Lighting is one of the most important factors in building continuity across different environments. Variations in

lighting are instantly perceived by the eye and can generate undesirable effects in capturing and displaying

video. For example, room to room, lighting may be darker, more blue, more yellow, or with or without shadows

and hotspots. However, if the lighting is consistent from room to room, the Cisco TelePresence cameras capture

the same image quality across all rooms and create a visually harmonious experience.

Lighting sets the overall tone and feeling of the space and is fundamentally important for capturing the high-

quality video used in Cisco TelePresence. Lighting also provides aesthetic appeal.

Note: Improper lighting in a room can create a number of undesirable conditions such as shadowed facial

features, interference with eye contact, and grainy or pixilated video even if the network carrying the Cisco

TelePresence traffic is operating perfectly.

The Cisco TelePresence lighting recommendations, in conjunction with the integrated endpoint lighting

components, take into consideration the participant seating locations and placement of lighting to ensure that

appropriate illumination levels are achieved without overexposure or shadowing, and that the environment

provides for the best overall video quality and Immersive Cisco TelePresence experience.

Figure 2. Cisco TelePresence Lighting Design

To better understand lighting for Cisco TelePresence, this chapter discusses the following areas:

● Lighting theory

● Application of video production lighting to Cisco TelePresence

● Application of commercial office lighting to Cisco TelePresence

● Cisco TelePresence lighting

● Energy efficiency

Lighting Theory

This section describes the main concepts and terms used in lighting theory in order to be able to use them in

Cisco TelePresence lighting design.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 11 of 74

Color Temperature

Light, regardless of the source, also conveys color. Outdoor light has a blue color temperature, whereas the

integrated lighting of a CTS Immersive TelePresence endpoint emits a white light. Color temperature measures

the spectral properties of a light source, regardless of whether or not the human eye is sensitive to it.

Unlike cameras and video systems, the human visual system is adept at quickly correcting for changes in the

color temperature of light. Many different kinds of light can seem ‘white’ to the human eye, even when they

actually have different color temperatures, because the human eye changes aperture and blends light colors to

produce an optimum picture in dark and bright conditions. Cameras, however, cannot adjust to such changes,

and so maintaining a consistent color temperature enhances the quality and consistency of the image that is

captured and transmitted.

As shown in the figure below, lower color temperatures, such as 2900 Kelvin (for example, from incandescent

lights) produce a warm reddish light. Production studios typically use 3200 Kelvin for indoor environments, and

when daylight is present or there is an abundance of viewing screens in the room, studios use a higher color

temperature such as 5000 or 6000 Kelvin to create cooler-colored lighting.

Figure 3. Kelvin Color Temperature Scale

Generally in production studios, actors are lit with very high intensity light (2000 lux or higher). You can expect

very bright (and annoying) lights when you are in a studio environment. Since an Immersive Cisco TelePresence

room is not a studio, a greater amount of comfort is taken into consideration.

Specifically, through video quality testing and user feedback, the color temperature of 4000 Kelvin was chosen

for Cisco TelePresence because it is the closest color temperature to that of pure white for producing high-quality

video without being overly taxing to the human eye, or modifying the natural hues of human skin tones. If only

4100 Kelvin lighting is available, however, this is also acceptable. Using 4000/4100 Kelvin for all lighting in a

Cisco TelePresence room ensures that the white levels match and are processed and displayed well by the

Cisco TelePresence endpoint.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 12 of 74

Color Rendering Index

The Color Rendering Index (CRI) is a measurement of the ability of a light source to illuminate an object and

reproduce colors accurately. The highest CRI attainable is 100 and a CRI of 82 or greater is recommended for

Immersive Cisco TelePresence.

Pigment and Light Color

For video technology, color needs to be addressed by both pigment color and lighting color.

Pigment color is in respect to paint. The chemistry of paint is made up of three components: hue, saturation, and

value. It is the variation in these three components that creates differences in color ranges.

● Hue refers to the pure spectrum colors commonly referred to by the color names red, orange, yellow,

blue, green, and violet.

● Saturation is how intense or vibrant a color is. This is also known as chroma or purity. For example, red

and royal blue are more saturated than pink and sky blue.

● Value is how light or dark a color is.

The light reflectance value (LRV) of an individual color indicates the amount of light and heat that the color will

reflect back into the room. LRV values range from 0 to 100 percent, with absolute black at 0 percent and pure

white at 100 percent reflectivity. However, the blackest black available as a paint color has an LRV of

approximately 5 percent, and the whitest white has an LRV of about 80 to 90 percent, because in practical terms,

absolute black and pure white do not exist in paint or dye pigments. Yellows can also have LRVs close to the

values for pure whites.

The color temperature, intensity, and positioning of a room’s practical lights affect the way that pigment color is

perceived over Cisco TelePresence. The color of the light source influences the perceived colors used in a room,

therefore paint seen under different lighting looks different to both video and the human eye. In addition, a

camera’s and a monitor’s interpretation of color will be different from the interpretation by the human eye. Also,

the color on monitors appears as a variation of the color the eye perceives when looking at the same room while

standing in the room, so the Cisco® recommended colors that have been fully tested to be consistent both in the

room and over video. These exact colors are available in the Cisco TelePresence Room Design Palettes Quick

Reference Guide.

Lumens, Lux, and the Candela Curve

When considering lighting, the concepts of lumens and lux should be well understood.

The intensity of light emitted directly from a source in a specific direction is measured in the scientific unit

lumens. Lux is a measurement of the overall intensity of light within an environment for any given area or

distance from the source. Think of Lumens as the amount of light being emitted from a light source and of Lux as

the amount of light that strikes a surface from the light source. Lux is the amount of light striking the desktop, the

faces of meeting participants, or any other objects in the room.

Lux is also expressed as the Candela Distribution Curve or, simply, a Candela curve. A Candela curve is often

included in a lighting manufacturer specification sheet and is a representation of the light output of the lighting

source, or luminaire, at different angles. Candela curves for fluorescent lights often provide two (or more) curves,

one for the intensity parallel to the fixture axis and the other for intensity perpendicular to the axis. The Candela

curve also shows if light is concentrated below the fixture or widely diffused. This is important as it describes the

direction and intensity of the distribution of light from the light fixture. The Candela curve enables you to

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 13 of 74

determine the appropriateness of a fixture for the lighting application you are considering and, if you choose that

fixture, its proper location in the room. The following is an example of a Candela curve:

Figure 4. Candela Curve

In designing lighting for Immersive Cisco TelePresence, the light fixtures with the greatest area of light

diffusion—that is above 45 degrees and as much as 70 degrees—are preferred because they provide a greater

level of vertical lux and more even light distribution. This choice is important because it reduces areas of light

concentration, minimizing hotspots and shadowing, and can also reduce the total number of light fixtures needed

for proper illumination.

How to Measure Lighting Levels

Measuring lighting or the illumination of an environment requires the use of an incident lux meter or foot-candle

meter. However, the lux is the standard SI unit whereas the foot-candle is not. For this reason, we’ll refer to light

levels in lux rather than foot-candle.

Note: A foot-candle describes the same measurement as lux and can be converted to lux by the following

formula as needed: 1 foot-candle = 10.764 lux.

For calculating lux based on meters use the following:

Lux = (lumens / meters squared)

This is an important formula to understand when designing lighting because often fixtures will be specified by the

lumens they output in a given direction. In order to determine how much light will reach the participants face,

tabletop, back wall, or any other area of the room, the above formula is required. For example, a lamp rated at

3000 lumens will produce the following:

750 lux at 2 meters, which is 750 lux = (3000 lumens / 2 meters squared)

Lux meters are available in many varieties and may have special features such as recording, noting maximum

and minimum levels, and averaging illumination levels over a period of time or location.

Figure 5. Lux Meter

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 14 of 74

You will use a lux meter in assessing and remediating the lighting of your selected Immersive Cisco

TelePresence room.

Application of Video Production Lighting to Cisco TelePresence

It is important to consider the basics of video production lighting as it relates to proper illumination for video in

order to better understand the challenges of lighting for Immersive Cisco TelePresence. In broadcast studios and

on Hollywood sets, the main purpose of lighting is to provide the required illumination for the picture to be

processed correctly by the camera. The lighting must also provide accurate depiction of objects in the scene,

including their spatial relationship by showing depth within the scene. To accomplish this, it is critical to control

the intensity, color, and distribution of lighting so that it produces well-defined, high-quality images. This is

generally achieved by the use of the three-point lighting, with a key light, a fill light, and a back light. This three-

point lighting method illuminates the subject, provides shape, and separates the subject from the background.

Figure 6. Video Production Lighting

Key Light

The key light is generally the dominant light source on the subject and is the brightest source of light. This is the

main light used to illuminate the subject. Often, because this light is twice as bright as any other lighting, it

creates hard shadows and contrast. It is also the most important light on the set as it provides the source of light

from which the camera is calibrated as well as the other lighting on the set.

The key light is generally not positioned at an angle low enough to illuminate the subject’s face and this creates

shadows over the subject’s eyes creating a ‘raccoon-like’ effect. If the shadows are not illuminated by a fill light

(discussed below), the whites of the eyes are also lost along with any possibility of eye contact. In a film

production world where dramatic effects are required and eye contact is not, this is an acceptable lighting

solution.

In Immersive Cisco TelePresence, the key light is achieved by the standard commercial ceiling fixtures already

installed in the environment or additional fixtures that are added to the ceiling. However, the use of direct-lighting

fixtures increases the shadowing effects. Since reduction of this effect for better eye contact is desired, Cisco

highly recommends replacing direct-lighting fixtures, if present, with indirect fixtures that balance light throughout

the room and soften shadows.

Fill Light

Fill lighting is generally a reflected light within the studio or set that softens shadows and fills dark areas on the

subject being filmed. This is also referred to as ambient light or global illumination. Fill lighting is accomplished by

using reflectors and diffusers such as soft boxes and other tools in the gaffer’s arsenal (the gaffer is the person in

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 15 of 74

charge of lighting on a production set). Without adequate fill light, shadows appear as solid black on camera due

to the camera's limited dynamic range. Adequate fill light is imperative to avoid this.

With an Immersive Cisco TelePresence endpoint, the fill light is provided by the endpoint. The main difference

between the Cisco TelePresence endpoint integrated lighting and a traditional production fill light is that Cisco

TelePresence participants must be illuminated without eyestrain for long durations, versus the very bright lighting

used for traditional fill lights. To accomplish this, Cisco has developed light sources that are at an extremely low

angle, allowing the light to illuminate facial features with a softer and lower intensity than traditional production-

style fill lights. This allows for excellent illumination for prolonged durations without eyestrain.

Back Light

To help the subject stand out from the background and promote the perception of depth, back lighting is used.

Back lighting is performed in a two primary ways. First, a light is cast onto the back of the subject, illuminating its

outer edge or contour. This lighting gives the subject a sharp edge that is clearly brighter than the background

and allows the subject to stand out. This type of lighting is called a rim light because it places a rim of light on the

subject. Second, to provide additional separation of the subject from background, the background itself is lighted

with less intensity than the subject in the foreground (sometimes this is referred to as the fourth light). It is also lit

with subtle patterns or angles to provide reference points of focus for the camera, and ultimately the human eye,

to perceive the separation of space and depth within the scene.

The standard commercial ceiling lights in a Cisco TelePresence room also help to accomplish this goal. Since

the fixtures are mounted above the subject (in the ceiling or reflecting from the ceiling) this creates a natural top

or rim light to the subject. Also, the natural gradation of light that is cast on the back wall as the light loses

intensity from the ceiling to the floor creates a background that is illuminated properly to promote depth

perception. This separation of subject and background can be further enhanced by adding wall wash lighting to

the back wall, which can help to make the participants stand out even more on camera.

Application of Commercial Office Lighting to Cisco TelePresence

The goal of illumination in a commercial office environment is to adequately illuminate the work surface or

desktop as well as walking paths. (Office lighting is also known as task lighting.)

Office lighting provides the main lighting in conference rooms, offices, and over cubicles. These fixtures often

have more direct lighting than diffuse or indirect lighting. Commercial offices often incorporate other lighting such

as indirect perimeter fixtures or smaller diffused ceiling lights to add ambient or general illumination. In areas

where greater focus is wanted to highlight the display of items such as signage, artwork, or simply for visual

interest, specific lighting may be used such as spot lighting, walls washes, or sconces.

In recent years, the use of indirect fixtures for task and ambient lighting has become more common due to their

efficiency and to reduce carbon footprint. Creating visual interest, however, still requires the use of direct-lighting

fixtures, but technologies such as LED and CFL can provide accent lighting with lower power consumption.

Levels of illumination for an office space usually range from 200 to 800 lux on the horizontal plane, depending on

the location of the room within the building and the tasks performed within those areas. Lighting on the vertical

plane is often not measured or considered in office environments but is essential for Immersive Cisco

TelePresence.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 16 of 74

Immersive Cisco TelePresence Lighting

Immersive Cisco TelePresence lighting uses both video production and commercial lighting principles. The main

goal is to illuminate the meeting participants with sufficient light to satisfy the camera’s requirements for high

quality video capture while maintaining participant comfort. Key and back lighting comes from the overhead

lighting, which is why fixture placement is important. Supplementary key and fill lighting is supplied directly by the

Immersive Cisco TelePresence endpoint making lighting placement more flexible as compared to other solutions.

Figure 7. Cisco TelePresence Lighting in Use

There are two primary methods for measuring light levels in an Immersive Cisco TelePresence room, facial and

shoulder lighting, as illustrated in the following figure:

Figure 8. Measuring Lighting in a Cisco TelePresence Room

Callout Description

1 Fill lighting comes from the Immersive Cisco TelePresence endpoint’s integrated lighting. Key and back lighting comes

from the overhead lighting.

2 Measure facial lighting here.

3 Measure shoulder lighting here.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 17 of 74

Facial Lighting

Point the light meter sensor at the camera from where the subject will be sitting or standing. This accurately

identifies how much light is on the subject from the cameras’ perspective. If the subject is a person, the light

meter sensor is held to the persons face, perpendicular to the floor and pointed towards the camera. This type of

measurement is commonly used in video production lighting and measures the vertical plane lighting.

For Immersive Cisco TelePresence, facial lighting should be 200 to 400 lux on the vertical plane at the

participants’ faces (about 1.2 m up from a finished floor). This measurement should not include the

approximately 100 lux provided by the Immersive Cisco TelePresence endpoint’s integrated lighting. In other

words, this measurement should be taken with the Cisco TelePresence endpoint off.

Shoulder Lighting

Point the meter at the ceiling, parallel to the desk surface or floor. (This type of measurement is commonly used

in commercial lighting and measures horizontal plane lighting.) For Immersive Cisco TelePresence, shoulder

lighting should not exceed twice the value of the facial lighting. This measurement should also be taken with the

Cisco TelePresence endpoint off.

Lighting Control Systems

Lighting control systems consist of two basic types:

● Switching, which provides a fixed lighting level and uses a switch to turn lights on and off.

● Dimming, which provides variable lighting intensity and ideally uses a control system that enables you to

turn lights on and off at pre-set levels known as lighting scenes.

Dimming systems should be used for all Immersive Cisco TelePresence environments. The efficiency and

flexibility of these systems allows for very accurate and predicable lighting levels with excellent performance.

Switching systems require much greater design effort and offer less predictable and non-adjustable results. Once

a dimming system has been installed correctly, its lighting presets can be saved, called scenes, and the scenes

then function much like a switched lighting system. This enables the predictable and reproducible in-room

lighting necessary for Immersive Cisco TelePresence.

Multi-Zone Lighting Systems

Cisco recommends using a multi-zone dimming system so that you can control the level of illumination in various

areas of the room. This enables separate control for participant seating locations, backlighting, wall wash, and

any other areas in the room. Because the table shipped with Immersive Cisco TelePresence endpoints is curved,

you may have some participants sitting closer to lighting fixtures than others, and multi-zone dimmable lighting

systems enable you to adjust this through the room light controls without relocating the lighting fixtures

themselves. With a switching lighting system the best practice is to place the fixtures in a curved configuration

within the ceiling to even out the distribution of light along the table curve. Additionally, with a multi-zone dimming

control system if you have structural obstructions in the ceiling that must be avoided, you can relocate fixtures

and evenly balance the lighting in the room with the dimming system controls.

Commissioning the Lighting System

When using a dimming lighting system, the lighting system must be commissioned. This is done by adjusting the

dimmers to find and set the optimal lighting level of the room while viewing the room on video in a self-view

mode. Use a lux meter to ensure that the lighting levels are set evenly and at an ideal level for the Cisco

TelePresence cameras. Once the room lighting levels are set, calibrate the cameras to the final lighting levels.

The final level can be saved as a scene preset on the dimmer control. The scene presets should be locked (so

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 18 of 74

room users cannot change the settings) to preserve the settings at which the Immersive Cisco TelePresence

endpoint cameras were calibrated. If the room is being used for multiple functions then additional scene presets

can be established for different activities. It is recommended that no more than two or three different scenes be

created for any one room.

Occupancy Sensors

Occupancy sensors detect the presence or absence of occupants and turn lights on and off appropriately.

Ultrasonic sensors emit an inaudible signal and detect motion by the reflection of that signal; they function

effectively in partitioned spaces. Infrared sensors detect occupancy by changes in body-heat patterns; they

suffer the least from nuisance tripping but require line of sight for proper operation and are not suitable around

partitions. Sensors can be mounted on the ceiling or within a wall switch. Occupancy sensors are very cost

effective in well-defined areas, such as private and executive offices with irregular occupancy patterns, and

usually can be retrofitted.

Lighting Fixtures

Lighting fixtures, also known as luminaries, are the most important aspect of achieving a high quality room video

image and should be addressed carefully to assure that the proper lighting levels and contrast are maintained.

Cisco recommends that only indirect lighting sources be used for Immersive Cisco TelePresence key and back

lighting. Point sources and other direct lighting fixtures can cause both shadowing and glare affects that interfere

with video image quality. The following section describes recommended indirect lighting fixtures.

Note: This document limits its discussion to fluorescent lighting fixtures because these are the most

commonly available commercial lighting fixtures. LED lighting technology continues to make significant progress

and there are now a number of commercially available LED fixtures. Unfortunately, there are not a large number

of LED lighting fixtures that can easily produce the required illumination for Immersive Cisco TelePresence.

Indirect Lighting

The physical design for illumination in an Immersive Cisco TelePresence room can be simple or elaborate as

long as the technical specifications are met. Cisco has deliberately not identified specific lighting manufacturers

or fixture model numbers so that organizations have the greatest flexibility in working with local vendors to

procure appropriate lighting. That said,Cisco highly recommends indirect linear lighting fixtures as the primary

source of illumination for a Cisco TelePresence room. This type of fixture is very common and has the ability to

evenly distribute light that is both comfortable for participants and well suited for video.

Also, it is important to ensure that the selected fixtures do not produce direct lamp glare. This means that all

fixtures have a lamp shield or reflector that disperses light from the lamp source, and that no meeting participant

has a direct view of the lamp within the fixture.

Most fixtures are offered with a variety of lamp shield or reflector choices. Lamp shields can be solid, perforated,

micro-perforated, or louvered. Only fixtures with solid lamp shields are completely indirect. These are generally

the best type for Immersive Cisco TelePresence rooms. If the lamp shield has any perforation or louvers, it is

more likely an indirect/direct light fixture. The direct characteristic of an indirect/direct fixture allows as much as

10 to 30 percent direct downward light. This amount of direct light can create issues similar to or worse than

those created by point lighting and other direct fixtures. Indirect/direct fixtures can be used in Immersive Cisco

TelePresence environments but cannot be placed directly above participants or the Cisco TelePresence

endpoint. Following these lighting fixture guidelines ensures that hotspots and screen glare are avoided or

eliminated.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 19 of 74

If you must use an indirect/direct fixture with a perforated lamp shield, ask the manufacture if they offer diffusers,

which can be inserted into the lamp shield. Inserting an opaque diffuser into the lamp shield can control and

reduce the percentage of direct light output. Also, be aware that diffusers affect the overall lux output of the

fixture so be sure to calculate this variation into the lighting design.

There are a few different styles of indirect lighting fixtures and the following sections discuss the unique

advantages and disadvantages of the most commonly used types.

Asymmetric Lighting Fixtures

Cisco recommends using asymmetric lighting fixtures in Immersive Cisco TelePresence rooms. The advantage

of asymmetric fixtures is that they are efficient at distributing a greater amount of light to one side of a room,

which is desirable in an Immersive Cisco TelePresence room, as opposed to symmetric fixtures, which distribute

the same amount of light in two directions. Specifically, asymmetric fixtures are able to provide a very even

distribution of light on the side of the room where the meeting participants sit without spilling light onto the

plasma displays or directly into the endpoint cameras. Excessive light cast on a display can wash out the on-

screen image or create unwanted screen glare. Another common usage of asymmetric fixtures is for wall wash,

which is lighting focused directly onto the wall of a room to give depth and added visual interest to the room on

camera.

Figure 9. Asymmetric Dispersion of Light

Callout Description

1 Opaque or micro-perforated lamp shield in an asymmetric lighting fixture.

Asymmetric fixtures are available with a single or double fluorescent lamp configuration. There are also

asymmetric fixtures available with compact fluorescent biaxial lamps. Asymmetric fixtures generally have a single

lamp shield on one side of the fixture and a reflector that distributes light as shown below:

Figure 10. Asymmetric Side Basket (One Side Only)

Asymmetric fixtures come in various sizes, which can be very beneficial given the variety of ceiling shapes and

configurations in rooms across the world. Common sizes are 2 x 2 feet (0.61 x 0.61 meters) and 1 x 4 feet (0.31

x 1.22 meters).

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 20 of 74

The only real disadvantage of asymmetric fixtures is in multipurpose meeting room applications, because light is

directed more to one side of the room than the other. The solution is to install a dimming control system with

different lighting scene presets for Immersive Cisco TelePresence meetings and for multipurpose room use.

Additionally, a row of lighting may be installed that is not in use during a Cisco TelePresence meeting but is in

use when the room is occupied for other activities.

The following figure is an example of recessed asymmetric indirect lighting in use:

Figure 11. Recessed Asymmetric Indirect Lighting

If using recessed indirect lighting, there are various sizes available:

● 2 x 2 feet (0.61 x 0.61 meters)

● 1 x 4 feet (0.31 x 1.22 meters)

● 1 x 2 feet (0.31 x 0.61 meters)

● 2 x 4 feet (0.61 x 1.22 meters)

The main difference in fixture size is illumination intensity; the smaller the size, the less intense the illumination.

Generally, the larger fixtures provide twice as much illumination as the smaller fixtures. However, there is greater

flexibility in placement when using smaller fixtures. If there are obstructions within the ceiling, the smaller fixtures

are more easily installed. Also, since the participants sit at a curved table, it is easier to follow that curvature

when using smaller fixtures. Following the table curvature is not required, but can improve the even dispersion of

light, especially if not using a switching control system. The Lumen output of a lamp and the luminarie efficiency

are also variables to consider.

Recessed indirect lighting should not be placed directly above an Immersive Cisco TelePresence endpoint or its

participant seating locations. The following figure illustrates the recommended ceiling layout of 1 x 4 feet (0.31 x

1.22 meters) indirect fixtures:

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 21 of 74

Figure 12. Recessed Indirect Lighting Layout

Callout Description

1 1 x 4 feet (0.31 x 1.22 meters) recessed indirect lighting fixture.

The following figure illustrates the recommended ceiling layout of 2 x 2 feet (0.61 x 0.61 meters) indirect fixtures:

Figure 13. Recessed Indirect Lighting Layout Following Curve of Table

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 22 of 74

Callout Description

1 2 x 2 feet (0.61 x 0.61 meters) recessed indirect lighting fixture.

Symmetric Lighting Fixtures

Another type of indirect lighting fixture is an indirect symmetric lighting fixture. Indirect symmetric fixtures can

appear very similar to asymmetric fixtures, but symmetric fixtures provide an even distribution of light on both

sides of the fixture and also, consequently, have greater potential to create screen glare than asymmetric

fixtures. Due to this, it is always recommended to place any symmetric fixtures in an Immersive Cisco

TelePresence room away from the endpoint displays.

For multipurpose rooms with a dimming control system, symmetric lighting fixtures may be an appropriate

choice, as long as the Immersive Cisco TelePresence meeting scene preset avoids casting light directly onto the

endpoint displays or into the endpoint cameras. The multipurpose scene lighting preset can have all the lights on.

There are two very common types of indirect symmetric fixtures, center basket and side basket. The center

basket type has its lamps in the center of the fixture with the lamp shield below the lamps, as shown in the

following figure:

Figure 14. Center-Basket Indirect/Direct Fixture

The side-basket type has the lamps on each side of the fixture with the lamp shields below the lamps on each

side, as shown in the following figure:

Figure 15. Side-Basket Indirect/Direct Fixture

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 23 of 74

Pendant-Style Indirect-Lighting Fixtures

Another type of indirect-lighting fixture is a pendant-style fixture as shown in the following figure:

Figure 16. Example of Pendant-Style Indirect-Lighting Fixture

This type of lighting fixture is common across commercial office spaces because of its ability to provide very

evenly diffused light across a large space. For that same reason, these fixtures perform well for Immersive Cisco

TelePresence rooms.

The performance of this fixture highly depends on its placement and the reflectivity of the ceiling. This type of

lighting fixture is designed to hang 12 to 18 inches (0.30 to 0.46 meters) below the ceiling (but not limited to that

distance), and the lamp is oriented upward, reflecting its light output off the ceiling to illuminate the rest of the

room. The distance of the fixture from the ceiling can drastically change the overall illumination of the entire room

and must be considered when deciding the height at which the fixtures will hang from the ceiling. The closer a

fixture is mounted to the ceiling, the greater the intensity of light that is cast onto the ceiling and reflected below.

Lowering the fixture from the ceiling lowers the intensity of the illumination.

When using an indirect pendant lighting fixture, the reflective properties of the ceiling must also be considered.

Whether the ceiling is a painted hard surface or consists of commercial acoustic tiles, it will have a specific LRV.

Cisco recommends the use of acoustic ceiling tiles when possible with a 70 to 90 percent LRV. The LRV is also

a large factor in the choice of lamp wattage. It is safer to over-light a room and use a dimmer in the lighting

controls than to install too little lighting and have to redesign the room to install more illumination.

Figure 17. Example of Pendant-Style Indirect-Lighting Fixtures in Use

Note: High ceilings are ideal when using a pendant-type lighting fixture.

It should be noted that these fixtures are very effective in achieving illumination in a non-invasive manner but do

have some drawbacks. Incidental direct light can be cast from the ceiling onto the plasma screens, projection

screen, tabletop, or participant’s heads and shoulders. Therefore, placement location in the ceiling is a critical

factor. When working with pendant fixtures, place the first front-most lighting fixture close enough to the endpoint

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 24 of 74

so that any direct reflections will not hit the plasma or LCD screens, and place the second front-most fixture far

enough behind the front-row participants to avoid direct light on the tops of the heads of the participants. Actual

distance depends on ceiling height, ceiling reflectivity, lamp wattage, number of lamps, and fixture performance.

Wall Wash

Often, especially in larger rooms, you may not get even coverage of light across the back wall with indirect

fixtures. This situation can result in a dark back wall and shadows in the back corners. If there is too much

contrast, or if the shadows are overly dark, the Cisco TelePresence video codec has a challenge in encoding the

video and may lower the video quality transmitted.

However, if the room and back wall are lit with exactly the same intensity, the image may have a great amount of

detail but look flat. This is because, like the human eye, cameras require variation in lighting to distinguish

between the foreground and the background. One way to this situation is to add a type of lighting called wall

wash to the room, to create variation in lighting in the background. Wall wash is direct lighting pointed at a wall

and it can dramatically improve the overall look and quality of the video captured in a room.

Figure 18. Wall Wash

When wall wash is introduced, it increases the detail of the background, fills in shadows, and provides a third

element of light which boosts the camera’s perception of depth while lowering overall contrast. This results in

high video quality with great detail and low contrast. Not only will the participants be very distinct from the

background, but the background will have greater interest.

Wall wash can also be used to enhance or call attention to specific elements of room design. You can

incorporate signage, pictures, wall hangings, etc., and direct wall wash onto these elements to highlight them.

Ceiling Soffits and Lighting Coves

In many instances a Cisco TelePresence endpoint may be installed in an executive environment that must

maintain a specific look and feel. In these cases, a more liberal lighting design can be used. Good lighting can be

achieved through many different designs. However, the basic rules for Cisco TelePresence lighting still apply.

A common design that has custom appeal and sophistication and yet yields results that meet the requirements

for Cisco TelePresence lighting are ceiling soffits or lighting coves. These are usually built into the ceiling or walls

during construction and have hidden, indirect fixtures that illuminate upward to fill the ceiling with light. This light

reflects off the ceiling (usually an eggshell white) and illuminates the entire room very evenly. Since this method

of lighting requires a cove to be built around the perimeter of the room, it easily lends itself to the addition of wall-

wash fixtures as well. This lighting design provides an elegant look within the room and produces ideal lighting

for excellent video. This is just one of many designs that can be developed to illuminate a Cisco TelePresence

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 25 of 74

room. The general rule is to use dimmable indirect lighting for Cisco TelePresence rooms but the details are up

to the designer.

Figure 19. Ceiling Soffit and Wall Wash Use in Cisco TelePresence Lighting Design

Energy Efficiency

Recently there has been a change in general commercial lighting design due to the motivation of reducing

energy usage and environmental impact. This shift has manifested in local building code changes that reduce the

overall wattage budget for commercial lighting. This can affect your Cisco TelePresence environment because

lighting is a critical factor and the local code may restrict your ability to provide adequate lighting. If this is the

case for your Immersive Cisco TelePresence room, use of asymmetrical fixtures in combination with a high-

output ballast and lamps is the most efficient solution. This combinationcan produce a great amount of light at a

lower wattage.

Conclusion

In summary, Immersive Cisco TelePresence rooms should be designed with lighting that is:

● Kelvin color temperature of 4000 or 4100K to match the built-in Cisco TelePresence endpoint lighting,

and to reproduce colors accurately on screen.

● CRI of 82 to 100.

● Facial lighting from 200 to 400 lux, with these values measured with the Cisco TelePresence endpoint off.

● Shoulder lighting not to exceed twice the values of the facial lighting, and also measured with the Cisco

TelePresence endpoint off.

● Light in all areas of the room within the camera field of view should not fluctuate more than 100 lux within

the room. In other words, lighting is evenly dispersed throughout the room. This includes lighting at the

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 26 of 74

room walls, which should be equal to or less than the facial lighting and should differ no more than 100

from rest of the room.

● Implementation of a dimming lighting control system is highly recommended to adjust the intensity of light

in the room without needing to precisely calculate the overall lighting levels in advance, and to ensure

reproducible results with preset lighting scenes.

● Regardless of fixture choices, indirect fluorescent lighting fixtures provide the best results for ambience

and amount of dispersed lighting, and asymmetric fixtures provide the most efficient and predictable

option within the range of indirect fixtures available.

It should also be noted that when the Room Remediation Assessment (RRA) for Immersive Cisco TelePresence

is performed, RRA takes into account additional factors and provides some flexibility in meeting recommended

lighting levels.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 27 of 74

Acoustics

Acoustics also play a major role in continuity and Immersive Cisco TelePresence room design. Sound quality can

vary dramatically depending on environmental factors such as the size of the room, hard surfaces in a room, and

ambient and outside noise. Microphone placement and the location of the speaker in relation to the microphone

also affect sound quality.

Imagine being in a Cisco TelePresence conference and the other TelePresence participants all have similar, high

quality rooms with good acoustics. Now a cell phone participant is conferenced in. Instantly there is a loss of

continuity in the meeting. The Cisco TelePresence meeting participants can all still hear and understand each

other, but the cell phone participant is distant, cutting in and out and talking over background noise with overall

bad audio quality. You do not even have to see the participant to notice the loss of continuity. Therefore, when

designing a room, consider its acoustic features. If one room is very quiet and subdued, with acoustic panels on

the wall, make sure that other rooms have a similar sound quality. Alternatively, if the sound quality in one room

is bright and lively, adjust the other rooms to that sound quality.

Acoustics are an important characteristic of any meeting space regardless of the involvement of audio-video

systems. Proper acoustics allow the environment to preserve and deliver sound with clarity and accuracy to the

human ear from the desired source. For example, in a concert hall, the orchestra and performers on stage are

the desired source of sound, and not the audience. Whether the source is a person, a speaker system, or any

other instrument, intelligibility of sound can be preserved or impeded based on the acoustics of the environment.

The acoustic characteristics of a room prior to preparation for Cisco TelePresence may promote sound that is

muffled, reverberant, or choppy. These undesirable effects are often due to noise from airflow from heating and

cooling systems, reverberation, or intermittent exterior noise from outside or adjacent rooms. In extreme cases

where acoustic factors are not remediated, the audio-detection algorithms used to facilitate switching in

multipoint meetings can be adversely affected, resulting in false switching to a participant who is not speaking, or

delay in switching to a participant who is speaking.

The acoustic characteristics of a room require close attention during the room selection and design process.

Preservation of spatial audio is critical to maintain a life-like virtual meeting. To achieve this objective special

emphasis is laid on acoustic elements such as ambient noise, reverberation, and sound isolation.

Acoustic Theory and Background

This section discusses how to preserve and modify sound waves for an accurate and ideal Immersive Cisco

TelePresence experience.

Sound Pressure Level in Decibels

The intensity or amplitude of sound is measured in terms of sound pressure level (SPL), an acoustic scale

independent of frequency and expressed in decibels (dB), where 0 dB is the threshold of human hearing. SPL

can also be described as a logarithmic measurement of the root mean square (RMS), or average power,

pressure of a particular sound relative to silence at 0dB. Cisco focuses on dB SPL for room assessment and

remediation.

Related to SPL is a more detailed measurement called the noise criteria (NC), which is the specific dB level of

multiple octave-band center frequencies. This measurement is highly useful in understanding the sound within an

environment, especially in troubleshooting complicated acoustics. This measurement is not required for

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 28 of 74

reviewing Cisco TelePresence environments unless unique issues are present, in which case it can be used in

addition to dB SPL.

The SPL of an enclosed environment can be measured by taking the average amplitude of all sound frequencies

across the entire environment. Sound dissipates over distance, and therefore, the distance at which the

measurement is taken from the sound source must also be noted. For example, if you were to measure the

sound from an HVAC diffuser, you would hold the acquisition microphone 1 meter from the vent and take the

SPL reading in dB, as shown in the following figure. If the measurement is 45 dB, then it should be noted as 45

dB at 1 meter from the source.

Figure 20. Measuring Sound from an HVAC System in a Cisco TelePresence Room

Callout Description

1 Sound measurement device

Human Range of Hearing Frequencies

Hearing is one of two human senses that Cisco TelePresence stimulates to evoke the feeling of sharing the

same place and time. The ears receive various sounds and vibrations from the environment that carry details

referencing time and space. The number of vibrations or cycles per second produced is called the frequency of

the sound. These frequencies are measured in hertz (Hz). A sound with a low frequency has a low pitch, such as

a large drum, while a sound with a high frequency will have a high pitch, such as a piccolo.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 29 of 74

Human Hearing

Humans have a limited range of frequencies in which they can hear. The human ear is generally sensitive to

sound waves with frequencies in the range from 20 Hz to 20 kHz, which is known as the human hearing range.

For reference, the following table describes the type of sounds that reside in the different frequency ranges.

Table 1. Sounds in Various Frequency Ranges

Frequency Range Sound

20 to 32 Hz The human threshold of hearing, more likely to be felt rather than heard.

32 to 90 Hz Rhythm frequencies, the range of lower and upper bass notes.

512 Hz to 2.5 kHz Range of most human speech. These are the critical voice frequencies.

3 to 8 kHz Range in which plosive and sibilant sounds reside and give more presence to voice.

8 to 20 kHz Upper thresholds of human hearing, including tones like bells and cymbals.

When hearing is discussed, it is should be understood what or who is doing the hearing. When sound is

measured on a scientific quantitative level, it is different than when humans are the ones doing the hearing. The

following table contains examples of these two methods, scientific and human hearing, in the measurement of

sound:

Table 2. Scientific Measurement and Human Perception of Sound

Measurement Scientific Quantitative Human Perception

Frequency of sound Specific Frequency of a Sound Wave, for example 4kHz.

Tone or Pitch, for example a high pitched sound.

Amplitude of sound Amplitude of air pressure created by sound waves, for example 90 dB SPL.

Loudness or Volume of the Sound, for example, very loud or with high volume.

The main reason to understand this difference in the quantitative characteristics of sound and the human

perception of sound, known as also as psychoacoustics, is that the human perception is not a linear scale and

ultimately quite complex. In scientific terms, the human ear does not have a flat spectral response to all sound

pressure levels. Generally, the lower range of frequencies has a lower perception of volume in comparison to

higher frequencies. For example, a 250-Hz sound wave at 60 dB seems more quiet to a person than a 2 kHz

sound wave at the same decibel level. Therefore, sound pressure levels are frequency weighted so that the

measured level matches the perceived levels more closely.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 30 of 74

Figure 21. Frequency Response of the Human Ear

In sound processing, the commonly used weighting schemes (or filters) are A-weighting and C-weighting. Using

the A-weighting filter on a sound pressure meter attempts to match the meters response to that of the human

ear. An A-weighted sound pressure level is expressed as SPL dBA. The C-weighted filter is flatter and better

matches the human ear’s response to lower frequencies at a greater amplitude. This filter can be used to

measure peak noise levels that low frequency machinery may make. The sound pressure level measured with C-

weighted filtering is expressed as SPL dBC.

Note: For more detailed information on this subject, research the equal-loudness contour, which is not

discussed in this guide.

In a Cisco TelePresence environment, both the A-weighted and C-weighted sound pressure levels are measured

in various zones of the room over a preset interval. (Your Cisco TelePresence or Video Advanced Technology

Certified Partner is trained to perform this type of assessment.)

Human Speech

A very interesting fact is that the range of human hearing is much broader than the range of human speech; the

human voice ranges from only about 500 Hz to 2 kHz. This range of human speech is further defined as the

critical voice frequency range. It is within this range that the perceived volume or loudness of a person’s voice is

measured. This can be defined as the root-mean-square (RMS) value of the human voice and the area of

greatest amplitude. Human speech on average is at an amplitude between 60-65 dBA SPL, so it is important to

measure this range in any environment where human speech is the primary source of audio. For sound to be

intelligible, the amplitude of the intended source must be at least 20 to 30 dBA higher than that of the

background and ambient sounds, and in this case the voice must be this much louder than the background

noise. Therefore, if human speech is 60 to 65 dBA on average, the background sounds should be lower than 40

to 45 dBA. This is not a specific requirement for Immersive Cisco TelePresence but a fact related to the quality of

human hearing and speech intelligibility. The greater the amplitude of the background noise, the harder for the

human ear to discern the difference between it and the human voice and to hear accurately. Of course, sounds

which are 20 to 30 dBA lower than the human voice can still be heard, however they are considered unintelligible

and the human brain will tend to ignore these sounds.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 31 of 74

Another element of human voice that is important (and subject to the amplitude differences explained above) is

harmonics. These frequencies can reside above and below the critical voice frequencies. Harmonics consist of

the fundamental frequency, which is the lowest frequency produced by a source, and multiples of that frequency.

Harmonics are important because they provide richness and add personality to each individual voice. In addition,

these frequencies are the first to be affected by competing sounds in the background noise. That is why it is

often hard to discern who is speaking in a loud environment. It is not the volume of the voice but the distinct

personality of the voice that is lost.

Reverberation

When sound waves are generated in an enclosed environment, they continue to reflect from surface to surface

until the energy is completely absorbed. As the sound reflects within the environment, it will be audible for a

period and eventually fall off to a point that it becomes inaudible or silent. This reflection of sound is called

reverberation.

Figure 22. Reverberation

Reverberation is measured as the rate of time for sound to decay by 60 decibels (RT60). Measuring RT60

requires the generation of enough sounds waves (usually pink noise or chirps) to fill an environment and then a

pause in the sound generation. At the pause, the rate at which the sound decays by 60 dB describes the RT60.

This measurement is very effective in predicting the sound quality of an environment.

Ideal conditions for human speech intelligibility are an RT60 value of 300 to 500 milliseconds for all frequencies

between 125 Hz and 4 kHz. An extreme in either direction - too much reverberation or too little - can be

detrimental to speech intelligibility, and since Cisco TelePresence is generally located in a meeting room in which

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 32 of 74

the human voice is the main source of audio, an ideal sound-quality design preserves the human range of

frequencies and isolates this range from interruptions.

Echo

Reverberation and echo are different phenomena. Echo is defined similarly to reverberation with one important

difference: echo occurs only when the reflection of sound reaches the same location as the original source of the

sound.

Figure 23. Echo

Reverberation and Echo in Cisco TelePresence Rooms

A common problem with rooms larger than the Cisco recommended dimensions is excessive reverberation.

Large rooms with smooth surface areas such as glass or long parallel walls reflect more sound and in some

cases create a noticeable echo, giving the room a ‘boomy’ or ‘echoy’ effect. Additionally, rooms with hard floors

or hard-finished ceilings have more reverberation due to the increased hard-surface areas present. Generally

reverberation is more of a concern for participants in the room than for the audio being shared with the other side

of the Immersive Cisco TelePresence meeting.

If reverberation levels increase beyond 700 milliseconds (ms) in the critical voice frequency range, the Cisco

TelePresence endpoint may not perform as desired. In addition to creating a noisy environment that is

uncomfortable for human hearing and interferes with speech intelligibility, very reverberant environments may

cause phantom video switching, system echo, or a gating effect on the sound in the Cisco TelePresence system.

These issues are defined as follows:

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 33 of 74

● Phantom switching describes the action of a video segment switching into the call when no person is

present, or no person is speaking, in that particular segment. This effect requires a significant level of

reverberation in the voice frequency range. It is often triggered by a flutter echo or standing sine wave in

the path of the microphones. It can be caused by two parallel hard surface walls on either sides of the

room and exaggerated by a highly reverberant sound environment.

● System echo is generally caused when a loud sound from the speaker has a prolonged RT60 value that

is ultimately reflected to the microphone, retuning it to the original source. The echo cancellation within

the Cisco TelePresence codec is specifically designed to eliminate this effect; however, a buildup of

reflections or a sustained reflection of sound may occasionally last longer than the threshold of the echo

cancellation. This effect is rare and requires very high levels of reverberation, coupled with a very loud

sound source such as yelling for longer than thirty seconds. System echo occurs most often in

environments with glass walls or large windows.

● Gating or suppression of sound occurs when the noise cancellation within the system can no longer

distinguish between the background noise and speech. This effect is usually caused by the presence of

loud ambient or background noise in excess of 55 dBA. However, the buildup of sound reflections in a

reverberant environment can simulate the increase of ambient noise. As people talk in a reverberant

environment, the sound reflections multiply, creating a perceived loudness in which people begin to speak

louder to be heard over the reflections. This cycle continues until the ambient sound levels are increased

to an excessive level. Very high ceilings can also cause this phenomenon.

Many factors pertain to the reverberation time within an environment. The most common factors are size,

orientation, construction and finish of materials, and objects in the environment. In general, the larger the space,

the more the reverberation. Also, the greater the number of hard surfaces, the more the reverberation. Other

characteristics, such as multiple angles in a room, can also promote higher reverberation times.

The effect of reverberation on the sound quality of an environment and the intelligibility of human speech is

generally defined as lively or flat: environments with longer reverberation times are called lively, and those with

shorter reverberation times are called flat.

Lively Sound Environments

In a very lively environment, sound will echo and be difficult to discern. It may also have a higher perceived

volume.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 34 of 74

Figure 24. Lively Sound Environment

Flat Sound Environments

A very flat sound environment will eliminate the harmonics that give speech its uniqueness and personality. The

sound quality will lose its presence and become dull or drab. It may also be perceived as lower volume.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 35 of 74

Figure 25. Flat Sound Environment

Building for Acoustic Isolation

This section discusses the factors that pertain to the sound isolation and privacy of the environment. Sound

quality is very much dependant on the construction of the room environment. The construction materials of the

environment directly relate to the amount of sound isolation an environment has.

Sound Transmission Class

The sound transmission class (STC) is a single-number rating of a construction material’s ability to prevent the

transmission of sound waves. Specifically, STC describes how much a sound will be diminished as it travels

through the material at each of the following frequencies: 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, and 4 kHz. For

example, if a wall has an STC of 40, then a sound that is 60 dB will diminish to 20 dB by the time it transfers from

one room to the next.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 36 of 74

Figure 26. Sound Transmission Through Walls

Callout Description

1 Sound reaches wall at 60 dB SPL

2 Wall rated at 40 STC

3 Sound transmitted through wall at 20 dB SPL

Generally, walls in commercial office spaces have an STC rating near 40. Taking into consideration the

discussion regarding human speech levels, this means that human speech will diminish from 60-65 dB to 20-25

dB by the time it passes through the wall. Ultimately the sound will be much lower and unintelligible but still

audible. This is where the decision must be made regarding the amount of privacy that is desired. Is

unintelligibility of the transmitted sound good enough, or does your organization want the sound to be completely

inaudible? If inaudibility is desired, the walls should have a minimum rating of 65 STC. This type of sound

isolation requires materials that are denser than normal, separation of structural elements, and absorbent

insulation.

As a general rule, you need to double the existing material to increase the STC rating by 5. Therefore, acoustic

materials such as sound barriers and acoustic paneling are better means of improving isolation than is doubling

the thickness of existing walls.

Noise-Reduction Coefficient

The noise-reduction coefficient (NRC) is a single-number rating that represents the amount of sound energy that

a surface will absorb. An NRC of 0 indicates no absorption, whereas an NRC of 1 indicates complete absorption

of sound. NRC is generally used to rate carpeting, ceiling tile, acoustic paneling, and other treatments and

sound-absorbing materials.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 37 of 74

The NRC value does not relate directly to STC; however, it relates closely to the absorption coefficient (AC),

which is used to rate some acoustic materials. The difference is that the NRC is a single-number value, whereas

the AC has a rating for each frequency from 125 Hz to 4 kHz. This level of accuracy is good to have when

looking at materials that have vastly different absorbent characteristics at different frequencies, or when trying to

reduce a very specific frequency within a space. These scenarios are rare occurrences, and the use of an NRC

value should be sufficient in most situations.

For a room that needs acoustic remediation, Cisco recommends using acoustic panels with an NRC rating of

0.75 or greater. This approach enables a relatively small number of panels to be used for highly efficient sound

remediation.

Figure 27. Acoustic Paneling to Reduce Reverberation and Sound Transmission

Callout Description

1 Sound being absorbed by an acoustic panel.

Impact Insulation Class

The impact insulation class (IIC) is a rating similar to STC but is specific to flooring and ceilings. IIC rating

measures the resistance to the transmission of impact noise such as footfalls, chairs dragging, and dropped

items. The IIC rating represents the amount of sound energy required to transfer sound through a structure. An

IIC rating of 40 would require more than 40 decibels of sound energy to travel through a structure.

The one place this measurement is important is in an environment with raised flooring such as technical floors.

These types of floors are made of materials such as wood, metal, or porcelain that may add echoes or more

easily transmit sound. Carpet can perform some of the same remediation functions as acoustic paneling when

echoes off the flooring or sound transmission through the floor cause problems.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 38 of 74

Office Environment Acoustic Concerns and Resolutions

Most commercial office environments are not built with acoustics in mind. Two common issues discovered in

commercial room environments are ambient sound levels that are too high and reverberation levels that are too

great. Each environment is unique and has its own idiosyncrasies; however, most acoustic issues fall into these

two categories, and can be resolved with the elements below.

High Ambient Noise Levels

The background noise level should be less than 36 dBA and 54 dBC for a Cisco TelePresence room. This level

is an ideal threshold for background noise in most audio-video communication environments. However, sound

levels are usually higher in a commercial office environment. Because of this, Cisco recommends lowering

background noise to at least 45 dBA and 60 dBC. The Cisco TelePresence system will continue to operate

properly with background noise at even higher levels; however, the sound quality begins to suffer. Background

noise above 45 dBA begins to compete with the intelligibility of human speech, and these noises become

distracting for participants. The Cisco TelePresence system may be able to filter out the background noise for

participants at the other end of the call, but the in-room experience is still degraded for the local participants, who

must endure a meeting in a loud environment. In extreme cases, such as when background levels exceed 55

dBA for a sustained period of time, gating or sound-suppression effects may occur in the Cisco TelePresence

audio. These effects occur when the system can no longer distinguish between background noise and speech,

ultimately causing the system to suppress most sound because it identifies that sound as background noise.

The most common causes of background noise are as follows:

● Noise from HVAC air movement

● Noise from HVAC machinery or other machinery

● External sounds such as street traffic

● Adjacent room noise (server rooms, break rooms, bathrooms, or kitchens)

The first step is to identify the source of the sound. Once this has been identified, a path for remediation can be

defined.

If ambient noise levels are too high, use the following tables to troubleshoot the cause and apply a remedy.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 39 of 74

Noise from Air Movement

Table 3. Noise from Air Movement

Symptom Possible Issue Possible Resolution

Whooshing or whistling sound coming from vent or diffuser

Inappropriate diffuser type Change diffuser to a plaque style diffuser that is NC30 rated.

Velocity of airflow is too great Increase the number of supply diffusers or increase the size of the ducting.

Too many bends in the ducting Shorten the path of the ducting and use sweeps rather than 90 degree turns.

Whooshing sound above the ceiling but not from the diffusers

Velocity of airflow is too great Increase the number of supply diffusers or increase the size of the ducting

Too many bends in the ducting Shorten the path of the ducting and use sweeps rather than 90 degree turns.

Ducting does not contain sound dampening Add a sound-dampening liner to the ducting.

Encase the ducting in a sound enclosure and use sound-dampening materials.

Environment requires high air velocity Add sound-dampening material to the ceiling to reduce sound transference from the ducting into the room.

Noise from Machinery

If the source of the noise is from HVAC machinery rather than HVAC airflow, this can be a more difficult to

remediate. Use the following table to identify possible resolutions if this is an issue.

Table 4. Noise from HVAC Machinery

Symptom Possible Issue Possible Resolution

Humming or clicking sound when the air handler is on

Variable air volume (VAV) unit installed too close to, or above, the room

Move the VAV unit to the hallway or over another room. Make sure the wall extends to the structural deck.

Air handler is located close to the room Relocate the air handler if possible. If not, and if the air handler is located adjacent to the room, make sure the wall extends to the structural deck. If not, and if the air handler is located over the room, provide additional insulation to the ceiling.

Other mechanical component (not HVAC related)

If other mechanical sounds cannot be relocated, make sure the walls extend to the structural deck and provide insulation to the ceiling.

Walls are vibrating and a humming sound is present

Air handler or main duct is located near or above the room

Avoid using this room for Immersive Cisco TelePresence.

If this room must be used, relocate the air handler. Otherwise, you may not be able to resolve this issue.

Noise from Adjacent Rooms

Often rooms are located near an adjacent space that generates noise at a level that can become disruptive to

the meeting room. Generally these types of issues should be identified during the room selection process and

help determine whether or not to use that room. However, in some instances, these rooms must be used due to

limitations on available space or proximity to intended users. Refer to the following table to remediate noise from

adjacent environments.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 40 of 74

Table 5. Noise from Adjacent Environments

Symptom Possible Issue Possible Resolution

Noise from street traffic through windows

Windows do not have a high enough STC rating

Options include:

● Replace windows with higher STC rated windows such as dual-pane windows.

● Cover windows with drywall and include adequate insulation.

● Cover windows with acoustic paneling backed with insulation.

● Cover windows with heavy drapery.

● Plant trees and shrubs outside the window to reduce sounds.

Noise from plumbing of adjacent bathroom or kitchen

Wet walls inherently have noise Options include:

● Double the drywall and include a sound-barrier material to help reduce the sound of a wet wall.

● Leave a large air gap (3 inches or 7.62 cm) and build another dense wall with sound-barrier material.

Noise from adjacent server or mechanical room

Machine noise creates a humming and may cause noise cancellation of lower frequencies

Options include:

● Ensure that the wall is attached to the structural deck of the ceiling.

● Provide insulation to the wall.

● Provide insulation above the ceiling in both rooms.

● Install acoustic paneling in the server room to absorb some sound.

● Double the drywall and include a sound-barrier material to help reduce the sound of a wet wall.

● Leave an air gap (3 inches or 7.62 cm) and build another inner wall with sound-barrier material.

Noise from adjacent break room or workspace

Voices heard through walls or over the ceiling through the ceiling tiles

Options include:

● Make sure that the wall is attached to the structural deck.

● Provide insulation to the wall.

● Provide insulation above the ceiling in both rooms.

● Install acoustic paneling in both rooms to absorb some sound.

● Double the drywall and include a sound-barrier material to help reduce the sound of a wet wall.

● Leave a large air gap (3 inches) and build another inner wall with sound-barrier material.

Sound heard through door Door does not have adequate STC rating

Door jam does not have acoustic gasket or skirt

Options include:

● Replace the door with heavier material with a higher STC rating.

● Install a sound gasket on the door jam and add a skirt to the door.

Reverberation Remediation

The Immersive Cisco TelePresence endpoint itself can reduce reverberation levels simply by being installed in

what was empty space because Immersive Cisco TelePresence endpoints tend to be physically large and curved

in form factor, and so reduce the number of parallel hard surfaces that face each other in the room. The addition

of chairs and participants also reduces overall reverberation. However, if the room selected has significant

reverberation issues, the common resolutions are described in the table below:

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 41 of 74

Table 6. Common Reverberation Issues and Resolutions

Issue Possible Resolutions

Larger than recommended room size

Options include:

● Decrease the room size with a wall or acoustic partition (this is the optimum way to decrease reverberation). By effectively decreasing the room size, the amount of wall surface that creates reverberation is decreased, so reverberation is decreased as well.

● Add acoustic panels to the walls. Be sure to place panels so that no two parallel flat, unpaneled surfaces remain facing each other.

Excessive glass walls or windows

Options include:

● Cover windows with drapes, blackout shades, blinds, or other window treatments which are both light blocking and sound absorbing.

● Cover windows with drywall and finish with fabric acoustic panels.

● Adhere acoustic panels to the windows or glass walls. These panels can be double-sided to maintain visual appeal.

● Install acoustic panels to the opposing walls from the floor to the ceiling so there are no parallel hard surfaces.

● Place the Cisco TelePresence endpoint in front of the windows.

Hard-surface flooring Options include:

● Replace or cover the flooring with carpeting.

● Strategically place fabric acoustic panels in the room. This option is the best and least invasive approach for reducing reverberation. For floor sound remediation, these panels may need to extend from the floor to the ceiling.

Hard-surface ceilings Options include:

● Strategically place fabric acoustic panels in the room. These panels may need to reach from the floor to the ceiling.

● Replace the ceiling with an acoustic tile ceiling or install an acoustic ceiling below the hard-surface ceiling.

● Install a sectional acoustic ceiling or floating acoustic panels in the ceiling along with fabric acoustic panels on the walls.

High ceilings Options include:

● Cover walls with fabric acoustic paneling from the floor to the ceiling.

● Install a sectional acoustic ceiling or floating acoustic panels in the ceiling cavity along with fabric acoustic panels on the walls.

● Lower the ceiling to help reduce reverberation.

Acoustic Panel Placement

The following images represent a progression of acoustic-panel treatments from minimal through complete floor-

to-ceiling treatments. How much, or how completely, you add acoustic paneling depends on how much sound

needs to be remediated in the selected room.

As mentioned previously, in rare instances, phantom switching can be noticed in lively room environments. For

this type of issue, there is a need to eliminate the flutter echo or standing sine wave between the two side walls.

The placement of acoustic panels on one or both side walls will eliminate the parallel hard surfaces and, in turn,

eliminate this issue.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 42 of 74

Figure 28. Acoustic Panels on Opposite Walls Only

In situations with many hard surfaces, windows, or high ceilings, more panels can be used. These can be placed

in an alternating pattern on the walls around the room. The goal is to remove any remaining parallel hard

surfaces in the room, as shown in the following figure:

Figure 29. Acoustic Panels Strategically Placed on Walls

Some organizations do not like having gaps in the panels and prefer a more symmetrical solution. Use of a track

system with the acoustic fabric to continue the material around the room can accommodate this preference. This

approach provides more sound absorption, so the room may begin to sound too flat. If this is the case, lower the

overall vertical length of the panel to allow some reverberation, as shown in the following figure:

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 43 of 74

Figure 30. Acoustic Panels Covering Most of the Wall Surfaces

In rooms with large glass walls or hard-surface ceilings (such as drywall or smooth plaster ceilings), it may be

beneficial to continue the acoustic panels or fabric coverings from the floor to the ceiling. However, this approach

produces a very flat sound environment and should not be used if significant reverberation is not already present

in the room.

Figure 31. Acoustic Panels Covering Walls Completely

Adding furniture, plants, wall hangings, and other décor to a room can also significantly reduce reverberation in a

room. Any items that provide additional reflection and absorption of sound reduce overall reverberation.

Conclusion

Acoustics are an important element in Immersive Cisco TelePresence room design. Immersive Cisco

TelePresence rooms require close attention to room acoustics during the selection and design process to ensure

that acoustic quality and sufficient sound isolation are achieved.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 44 of 74

Heating, Ventilation, and Air Conditioning for Cisco TelePresence

Heating, ventilation, and air conditioning (HVAC) is an important element of your Cisco TelePresence

environment and should be considered at the onset of your room selection process.

In most commercial office environments, an important integrated element of any building is the management of

air quality and temperature through HVAC systems. Although many areas of the world do not enlist all three

components due to their local climates and temperatures, most use at least one or more HVAC systems in their

facilities. The main purpose of an HVAC system is to maintain indoor air quality and regulate temperature for

both people and equipment.

The goal of an HVAC system in an Immersive Cisco TelePresence room is to ensure that the room is

comfortable for its participants while providing ventilation and compensating for the heat generated by the Cisco

TelePresence endpoint. Additionally, the Immersive Cisco TelePresence room should have independent HVAC

controls so the system can be used at any time, including outside normal working business hours, when many

international meetings are held.

Note: For HVAC definitions, please see the HVAC appendix in this guide.

General Rules for HVAC

The ventilation required in a room depends on many factors such as the frequency with which the room is used

and the number of people normally using the room. For example, a small conference room may require more

ventilation than that of an office of the same size due to the number of occupants commonly present. As a

general rule, a ventilation system should change the air in the room once every 10 minutes. For example, to

change air every 10 minutes in a 10 x 20 foot (3.05 x 6.10 meter) room with an 8 foot (2.44 meters) ceiling height

(which is 1600 cubic feet or 45.31 cubic meters), use this calculation:

1600 cubic feet / 10 minutes = 160 cubic feet per minute (CFM)

45.31 cubic meters / 10 minutes = 4.53 cubic meters per minute

Therefore, a 160-CFM exhaust fan is required for the room (or an exhaust fan that can move 4.53 cubic meters

per minute.)

The cooling required in a room depends on many other factors as well. As a general rule, 30 BTUs of cooling are

needed for every square foot (or 0.09 meters squared). Rooms with windows and rooms that are located near

heat sources such as server rooms with large amounts of equipment running require more cooling than rooms

without additional heart sources. Also, each person in a room accounts for approximately an additional 225 BTUs

of heat. Additionally, electrical equipment inside a room also raises the cooling requirements. For example, with

30 BTUs of cooling for every square foot (and 322.41 BTUs for every square meter) of floor space:

Example in Feet

● 10 x 20 foot room = 200 square feet

● 200 square feet x 30 = 6000 BTUs of cooling required

Example in Meters

● 3.05 x 6.10 meters = 18.61 square meters

● 18.61 square meters x 322.41 = 6000 BTUs of cooling required

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 45 of 74

Another detail to consider is the length of time the space is occupied per use. The BTU/hr level of a typical

Immersive Cisco TelePresence endpoint assumes the following:

● Adequate size room for the Cisco TelePresence endpoint and occupants

● Room location is not subject to additional radiant energy (such as windows or heat from an adjacent

room)

● Proper number of air supplies and returns provided

● Placement of air supplies and returns for optimized circulation and heat dissipation

● Room meets Immersive Cisco TelePresence design palette guidelines

If the room does not allow these conditions to be met, additional cooling may be required beyond what is listed in

the Cisco TelePresence endpoint’s installation guide. The BTU/hr output for each Immersive Cisco TelePresence

endpoint is reported as the typical use scenario based on metrics from Cisco’s existing deployed rooms and

takes into consideration a diversity factor defined by the use of these rooms and the average of various building

envelopes. Specifically, in this scenario the average room is used periodically throughout a typical 10-hour

business day, and each of these use periods may last 1 to 3 hours with periods of nonuse in between. During the

hours of use, the HVAC requirements are greater than during the period between meetings, and these

requirements are averaged across the 24-hour day. For efficiency, energy conservation, and meeting participant

comfort, the room HVAC systems must be designed to manage these waves of cooling without being

overdesigned and so providing too much cooling.

Having independent HVAC controls is also important in a Cisco TelePresence room. Cisco TelePresence

systems are frequently used to communicate with international offices and business partners in different time

zones, and so Immersive Cisco TelePresence endpoints are often in use outside normal daytime office hours.

Use of an Existing HVAC System

Some existing HVAC systems are already capable of compensating for the heat output of the Cisco

TelePresence endpoint. However, the existing system may also be generating unwanted sound at the air

registers that is above the maximum ambient noise levels for Cisco TelePresence meetings. Therefore, special

sound-dampening registers and baffles are recommended such as the use of an NC30-rated (or, better, NC20-

rated) plaque-style diffuser, as shown below.

Figure 32. NC30-Rated Plaque-Style Diffuser

Noise from the existing ducts and mechanical equipment should be evaluated as well. The target ambient noise

should be 36 dBA or less at the registers and cannot exceed 45 dBA or 60 dBC. Noise above the maximum

levels requires remediation because it will affect the Immersive Cisco TelePresence experience, and

organizations should consult their facilities departments or an HVAC engineer to assist in evaluating and

designing an acceptable solution to reduce ambient noise generated by the HVAC system.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 46 of 74

For optimal diffuser performance, a straight section of duct needs to serve the diffuser. An elbow or kinked duct

just before the diffuser often leads to poor air distribution and increased noise.

Also, when possible, dampers, extractors, and other air-flow-control devices should not be placed near the

diffuser outlet. Air-flow equipment installed near the diffuser dramatically increases noise that the diffuser cannot

remediate because the diffuser quiets sound from airflow and not machinery.

The location of the HVAC registers is also very important to accommodate the heat output of the Cisco

TelePresence endpoint and to keep sound levels within requirements. Cisco recommends locating the return

registers above the Cisco TelePresence endpoint to allow natural dissipation of heat as it rises into the return.

Supply diffusers can then be placed slightly behind the participant seating locations. The following figure

illustrates optimal placement of the HVAC registers.

Figure 33. Recommended HVAC Circulation

Callout Description

1 Seating area

2 Cold-air outflow

3 Warm-air inflow

4 Cisco TelePresence unit

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 47 of 74

Zoning and Capability to Rezone HVAC

Larger office building locations commonly use zone HVAC systems that cover an entire floor or large area.

Inclusion of a Cisco TelePresence room in an HVAC zone with other rooms is not recommended because of the

localized heat output of the Cisco TelePresence endpoint. Check with facilities personnel to determine whether

the HVAC system can be rezoned and ideally rezone the Immersive Cisco TelePresence room so that it has its

own zone with independent controls.

The most common way to rezone a room into its own zone is to use a variable air volume (VAV) system with a

local thermostat. VAV provides a method for independently controlling the capacity and airflow rate of each of an

HVAC system’s zones. It makes air conditioning more efficient by regulating the amount of cooling targeted at

any specific room or area. A VAV system can be contrasted with a constant air volume (CAV) system.

In a VAV system, VAV boxes regulate the cooling to specific zones. A VAV box has a valve that constricts to

allow less air through, or opens to allow more air. For example, when at maximum cooling, the VAV terminal unit

damper is completely open. When the cooling is decreased, the damper closes until the minimum is reached.

When a VAV box constricts its valve to let less air through, it decreases the amount of energy consumed by the

fans that direct the air around the building.

Modern VAV boxes come with advanced control equipment that supports automated changes to airflow as

efficiency dictates. This control equipment is also linked to central computers for the entire HVAC system for a

building. Small pressure sensors detect the pressure of air in the VAV box, and hinges open and close its doors

to manipulate airflow and air volume.

Rooms that contain equipment, have windows that face the sun, or hold a large number of people have an

increased cooling load relative to rooms with minimal equipment, people, or windows, and VAV systems are

designed to accommodate these differences.

Most HVAC zone systems have timers that shut off the HVAC system after normal business hours to save

power. Verify with facilities personnel the capability to turn on the HVAC system in the Cisco TelePresence room

after hours. You should not run the Cisco TelePresence system without the HVAC system in use because the

endpoint can overheat and become damaged.

If the existing HVAC zone system does not compensate for the BTU/hr requirements for the endpoint and cannot

be rezoned or used outside preset business hours, an independent HVAC solution may be required for the Cisco

TelePresence room.

Common HVAC Cooling Issues and Resolutions

Depending on the type and configuration of the HVAC system and its control system, a variety of solutions may

be available to provide additional cooling (Table 7). Be sure to consult the appropriate HVAC professionals when

determining which solutions are appropriate for a specific facility.

Table 7. HVAC Issues and Resolutions

Existing HVAC System Possible Resolution

Adequate capacity already In place without separate Immersive Cisco TelePresence Room Controls

Options include:

● Update the control system to provide additional cooling to the intended room.

● Install an additional VAV system to allow independent control of this room. The VAV box should be located away from the room to avoid issues from additional noise. A dedicated thermostat also is required for this space.

● Reallocate cooling from other zones to this space to provide additional cooling.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 48 of 74

Existing HVAC System Possible Resolution

Inadequate capacity Options include:

● Upgrade the existing HVAC system (a costly solution).

● Install a supplemental split-style air conditioning system.

● Install a supplemental cassette-style air conditioning system. However, this solution also adds a new noise concern for the room.

Supplemental Cooling

Supplemental cooling is an option if the main HVAC system cannot be rezoned and additional cooling is needed.

Split air conditioners can be more cost effective than changing central air conditioning systems, and because the

compressor sits outside of the room, split systems are much quieter than cassette-type systems. Many split air

systems are available that produce 45 dB of noise for up to 24,000 BTU/hr of cooling. However, they are typically

more expensive than a cassette-type system. Either type of supplemental air conditioning system — split or

cassette — can provide independent cooling to the room without modification to the existing central air system.

Note: Installing a mini split air conditioner is more complicated than installing a cassette system, but is far less

complicated than installing a new central air system.

For a Cisco TelePresence room, it is always recommended to avoid installing any air conditioner along the same

wall as the Cisco TelePresence endpoint. The main reason is that if any leakage of water in the drain tubes

occurs, then the seepage is not next to the Cisco TelePresence endpoint. The preferred location is behind, or on,

the wall behind the participant seating locations. This approach also follows the recommended placement of

traditional air supply diffusers and promotes the natural dissipation of heat with returns or vents placed above the

Cisco TelePresence endpoint.

Conclusion

In summary, regardless of choice, ensure the following:

● Appropriate BTU/hr of cooling

● Appropriate noise level (less than 45 dB of noise in the room)

● Appropriate location of the system and ducting to reduce ambient noise in the room

Be sure to keep in mind that the goal of the HVAC system is to ensure that the meeting room is comfortable (that

is, less than 76°F [24°C]) and inviting to its participants, while keeping ambient noise levels to a minimum. The

challenge in recent times is to accomplish this goal efficiently with the least energy consumption possible.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 49 of 74

Aesthetics

Aesthetic Principles

The physical components in a Cisco TelePresence room give the space its identity. They define who the end

user is and what the room says about the company, and provide an opportunity for corporate branding.

Upgrades to the room aesthetics, in parallel with lighting and acoustics, produce the overall quality of the

Immersive Cisco TelePresence experience.

Figure 34. Basic Room Design

By following the design concepts outlined here, an Immersive Cisco TelePresence room will meet the standards

for a high quality Immersive Cisco TelePresence experience. Cisco TelePresence rooms can have a customized,

sophisticated appearance while still maintaining Immersive Cisco TelePresence audio and video capture and

transmission recommendations.

Figure 35. Specialized Room Design

Choice and Customization in Design

Organizations are advised to deploy rooms based on the requirements and expectations of their users.

Adaptation of lighting, acoustics, and aesthetics help achieve the expected experience. Organizations are also

advised to design their Immersive Cisco TelePresence rooms to reflect their corporate culture as well as the local

culture of the places in which the Cisco TelePresence room is located. Consulting with your organization’s

corporate branding team is encouraged.

While it is always the organization’s prerogative to determine the look of their Cisco TelePresence rooms,

designs do need to comply with basic room design guidelines to work optimally with the Immersive Cisco

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 50 of 74

TelePresence technology. To achieve this balance, these guidelines welcome aesthetic creativity in execution,

and each organization should consider adding a personal signature to its rooms’ appearance.

How to Approach Aesthetic Design for Immersive Cisco TelePresence

Aesthetic room design for Immersive Cisco TelePresence addresses visual enhancements to the meeting room,

including wall color, lighting scheme, visual improvement of remediation materials such as acoustic panels, and

decorative accents.

Addressing the aesthetics of a space creates a more comfortable meeting environment and enhances the in-

room experience. Room design can also create on-camera interest and improve the on-camera visual

perception. Aesthetic design choices are also powerful tools for reinforcing a company’s corporate identity.

Within a physical space, visual perception and interpretation are addressed from a three-dimensional viewpoint

involving the relationship between distance, scale and openness. If the room is devoid of everything other than

the Immersive Cisco TelePresence endpoint — in an essentially empty environment — the experience may feel

stark and cold. That feeling may be amplified if the space is large. A person using an undecorated room will have

a vastly different experience than a person using the same room with added design elements. Below is an

example of a well-designed Cisco TelePresence room that has a unique personality of its own.

Figure 36. Elements in Aesthetic Room Design

The design approach for an Immersive Cisco TelePresence room has to be planned for two purposes:

● The local in-room experience

● The remote on-camera experience

While designing the Cisco TelePresence in-room experience for the comfort of the end user, consider how that

room will appear on camera to other sites engaged in a meeting. The on-camera experience relies on the

technology’s interpretation of that room. Remote locations will see only what is within the camera’s field of view

and, therefore, have an abridged view of the design elements introduced into the room, so aesthetic elements

should maintain continuity along the back wall behind the participants and carry that continuity through all Cisco

TelePresence screens.

Certain design elements enhance the way that a room appears on camera. The addition of textures and layering

of decorative elements within the camera’s field of view helps make the two-dimensional image shown to remote

participants appear more three-dimensional on the screen. These elements include the use of wallpaper, fabrics,

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 51 of 74

furniture, decorative pieces, artwork, plants, and signage. In Cisco TelePresence meetings with multiple sites

connected to the same meeting, room aesthetics provide visual reference points to identify participant locations.

Wall Color

Wall color is very important because the Cisco TelePresence image captured is filled to a large extent by the

room wall behind the participants. This places particular demands on the color of that area to reproduce well on

camera, convert efficiently to video, and be comfortable for participants in the room. Cisco has tested a broad

spectrum of hues to identify the characteristics of paint colors that complement the codec and plasma

technology, work well with the skin tones of the participants on camera, and feel comfortable in person. These

form the approved wall colors, which are available in the Cisco TelePresence Room Design Palettes Quick

Reference Guide. Extensive tests have shown that the Cisco approved wall colors create optimal images on the

Cisco TelePresence display. Organizations sometimes ask, ”Can we leave the walls white and save some

money on the painting?” This may seem like a way to save costs; however, when the total impact is understood,

it is clear that this is not a great way to save money. Plasma displays require a large amount of energy to

produce white pixels. If most of the background is white, the endpoint will consume more energy, which is a cost

factor. More energy consumption also means greater heat output and more HVAC compensation required,

another cost point. There are also additional factors that affect the experience. When the plasma screen expends

a greater amount of energy producing white, there is less energy available to render other parts of the images

such as the participants’ faces. Therefore, the video quality will be diminished. Lastly, white, black, and patterned

high-contrast backgrounds introduce the potential for areas of glare and are more challenging to the video

encoding process. These areas can create jitter or may require a greater amount of bandwidth on the network to

process.

Working with the approved wall colors, there are several creative options that can upgrade the room to a

customized environment with design elements such as accent colors, wall coverings, fabric, and wood panels.

Color Matching

There are several competing color systems that have been developed to communicate an accurate

representation of color. Unfortunately, there is no universal color standard in use globally today, and most of

these color systems were designed predominantly to address printing ink rather than paint. The approach to

mixing paint is vastly different.

Specific colors from the North American paint manufacturer Benjamin Moore & Co. have been approved for use

with the Cisco TelePresence Room Design Palettes Quick Reference Guide. Color matching should be

performed by requesting paint card samples from Benjamin Moore & Co. and obtaining a color match from a

local paint manufacturer. True color accuracy can be achieved only by having an actual paint sample in hand.

Colors viewed on monitors or printed from electronic presentations vary based on the color calibration of the

equipment used.

Aesthetics and Room Remediation

Remediation addresses the baseline requirements to tune the environment for an optimal Immersive Cisco

TelePresence experience. Remediation solutions are also an opportunity to introduce aesthetics into the room to

add style. Care should be taken to ensure elements in the background are not highly patterned, such as with

checkerboard or paisley prints, or cluttered with too many multi-colored objects, which can degrade the overall

image clarity. The following sections describe the recommended combination of room remediation with aesthetic

design.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 52 of 74

Exterior Windows

To avoid introducing conflicting light temperature zones, it is recommended that windows to the exterior should

be blocked to eliminate the strong blue light that will be brought into the room by the sun. Overhead lighting

should be consistent with the color temperature of the integrated lighting in the Cisco TelePresence endpoint.

Large exterior windows in a space affect the lighting and acoustics of a room. If a large window along the back or

a side wall is visible on camera, window treatments should be used to block the outdoor light. Depending on the

desired look, wide architectural panels may be installed. These panels can hold opaque materials and maintain

the structure of the room. Window treatments that are not recommended are tightly woven materials and

patterned fabrics, horizontal blinds, and narrow vertical blinds.

Interior Windows

Interior windows do not need to be covered unless they are large enough to affect lighting and acoustics. In

these instances, cover the windows with fabric-finished vertical panels or vertical blinds. Usually, the greatest

effect that a small interior window has on an Immersive Cisco TelePresence meeting is the distraction of seeing

people walk by the room through the glass. Additionally, window tints, or your corporate logo or other desirable

graphic elements, can be applied directly onto the window glass to provide privacy and freedom from outside

distractions.

Doorways

Due to the positioning of the Cisco TelePresence cameras, a parallax effect is visible, especially when observing

horizontal and vertical lines on the left and right screens. Parallax, in the context of Cisco TelePresence,

manifests as straight lines in the camera view that appear bent or angled instead of strictly horizontal or vertical.

The best way to address this discrepancy is to distract the eye by building up the background with other objects

and giving the eye something else on which to focus. The shallower the room, the less noticeable the parallax

effect appears because horizontal lines, such as floor and baseboard lines, do not appear on camera. However,

you do not have to cover up architectural elements such as doors, interior windows, outlet plates, or baseboards.

These are physical items, indigenous to a room and act as identifiers to help associate viewers in the setting, as

shown in Figure 40.

Figure 37. Door Placement in an Immersive Cisco TelePresence Room.

Furniture and shelves with interesting objects break up the horizontal plane at the back of the room.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 53 of 74

Acoustic Panels

An organization may want or need less reverberation or sound transmission in the Immersive Cisco

TelePresence room and opt to place acoustic panels in the room. Use of fabric-wrapped acoustic sound panels

can add aesthetic appeal as well as sound dampening properties.

Fabrics with a subtle weave and minimal pattern variation render better on camera than flat, solid surfaces. The

fabric covering the acoustic panels should match the complementary or field color described in the Cisco

TelePresence Room Design Palettes Quick Reference Guide. The fabric should also be viewed on the Cisco

TelePresence screen to check how the pattern renders and to check for color accuracy on camera. The Cisco

TelePresence Room Design Palettes Quick Reference Guide also provides samples of fabrics that have been

extensively tested and perform very well as an acoustic and aesthetic solution on camera and off.

Creative Wall Treatments

Immersive Cisco TelePresence works best with the pre-tested range of colors and fabrics specified in the Cisco

TelePresence Room Design Palettes Quick Reference Guide. Within these design palettes there are several

creative wall treatments to upgrade rooms from a utilitarian deployment to a highly customized, sophisticated

room experience.

Note: Questions regarding the viability of creative finishes or requests to use colors outside the existing color

palettes should be addressed to your room design and remediation partner, or Cisco Advanced Services during

room remediation as an additional service.

Wall Coverings

Wall coverings come in various materials, textures, and patterns. Selecting a wall covering in the approved

colors instead of paint offers a greater array of options to introduce a different look and feel in the room

environment. Patterns and textures should be subtle enough to show variances but should not have so much

contrast that they are distracting on camera. Several companies produce eco-friendly wall coverings that are

good options for Leadership in Environment and Energy Design (LEED) Green Building Rating System

compliance.

Wood Panels

Wood panels produce excess sound reverberation due to the polished, reflective nature of the panels, and these

effects are magnified in larger room sizes. However, wood panels can still be used in a Cisco TelePresence

environment if they are strategically placed. Acoustic paneling applied at the level of the microphones will

dampen the effects of the wood, with the areas above and below the acoustic treatment done in wood paneling,

as shown below:

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 54 of 74

Figure 38. Strategic Use of Wood Paneling Combined with Acoustic Wall Treatment

Cisco TelePresence Room Design Palettes

Cisco has developed the Cisco TelePresence Room Design Palettes, which are available in the Cisco

TelePresence Room Design Palettes Quick Reference Guide, for Immersive Cisco TelePresence. These room

design palettes take into consideration all the previous concepts in this guide while allowing flexibility with a

variety of options. The Cisco TelePresence Room Design Palettes are a complete design package optimized for

Immersive Cisco TelePresence. This design package implements a three color approach, as well as fabrics and

carpets. The three colors are defined as the Field, Complement, and Detail colors, as follows:

● Field is the main color in the camera’s field of view.

● Complement is an optional color that can be applied within the room for enhanced visual interest.

● Detail is an optional color recommended for trim elements, such as baseboards, door frames, etc.

The approved fabrics can be applied with both the Field and Complement colors, while reducing optical effects

that otherwise often happen with textured fabrics on camera. The carpet choices in each palette also work with

the matching colors in the palette and are generally darker in tone to help ground the environment and tie all

design elements together.

Table 8. Cisco TelePresence Room Design Palette Application

Finish Application Notes

Field color Main color used within field of view

of the camera.

Eggshell finish highly recommended.

Preferred Light Reflectance Value (LRV) range of 21.5 – 73.9.

Complement color Second most used color within field

of view of the camera.

Eggshell finish highly recommended.

Preferred Light Reflectance Value (LRV) range of 21.5 – 73.9.

Detail color Only used for trims and fine detail

areas.

Eggshell finish highly recommended.

Preferred Light Reflectance Value (LRV) range of 21.5 – 73.9.

Should appear only marginally within the camera’s field of view when

applied as described.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 55 of 74

Finish Application Notes

Fabric Treatment for acoustic panels. All fabrics should be ordered and applied without backing.

Acoustically transparent mesh may be required underneath to

prevent acoustic panel fiber colors from altering the fabric hues.

Carpet Treatment for floor. Installation pattern defined for each.

Walnut table Cisco TelePresence TX series

table color option.

Can be used with all Cisco TelePresence design palettes, but is best

when used with the table color specified for that design palette.

Maple table Cisco TelePresence TX and CTS

series table color option.

Can be used with all Cisco TelePresence design palettes, but is best

when used with the table color specified for that design palette.

Modifiable Aesthetic Elements

There are several highly customizable elements of design to enhance the visual experience of an Immersive

Cisco TelePresence meeting. To optimize the aesthetics in the Immersive Cisco TelePresence room, here are

some modifiable aesthetic elements that can be introduced:

Accent, Complimentary, and Detail Colors: Work with the Cisco TelePresence Room Design Palettes Quick

Reference Guide for complimentary and detail wall colors. Organizations can then opt to add their brand colors

as accents throughout the room.

Furniture: Furniture can be added to identify the purpose for the space and the identity of the end user. For

example, if the furniture that is added is a long rectangular table and four chairs placed around it, the space feels

like a conference room. The same space filled with a few lounge chairs, a coffee table, and ottomans feels like a

social setting instead of being a work-related space. Examine the amount of space available for adding furniture

pieces to the room. Some suggested furnishings that work well in the Cisco TelePresence room environment are

additional seating, credenzas, bookshelves, side tables, and coat racks.

Decorative Accents: To add visual interest and depth to a room, include decorative accents. Items to consider

placing in a room are vases, corporate awards, table art, books, clocks, and other items with interesting shapes.

Wall Art: Wall art helps balance the room as a whole. Given the camera’s field of view, chances are that the art

will not appear on camera, but it serves to address to in-person experience, as shown in the following figure:

Figure 39. Wall Art in an Immersive Cisco TelePresence Room

Plants: Plants offer a pleasant touch to any room environment. Consider the height and leafiness of the plant as

how well as how its shape works on screen. Flowers also introduce a nice touch of color to a room. Depending

on the organization, plants can be real or artificial. Furthermore, plants can help integrate the Cisco

TelePresence endpoint into the space. Placement of a plant on the side of the endpoint helps connect the

endpoint to the room and breaks up the void between the endpoint and the side wall, as shown in the following

figure:

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 56 of 74

Figure 40. Use of Plants in a Cisco TelePresence Room

Additionally, plants are often used in the back corners of a Cisco TelePresence room to enhance depth

perception for the on-camera experience.

Hospitality: Items related to supporting the comfort of the people in the meeting room can be added as part of

the in-person experience and as decorative elements on screen. Items to consider are water trays, coasters,

mint dishes, pens, note pads, napkins, and tissue boxes.

Signage: Signage is an opportunity for branding and also may assist in the identification of the room’s location.

Optimal positioning of signage is so that it appears in the middle of the center TelePresence screen. Signage

should not be made of highly reflective materials or obstructed by the participants when seated. The position of

signage should be gauged with the cameras in mind.

Branding In Cisco TelePresence Room Design

To build brand recognition companies enlist marketing expertise, modify corporate practices, and invest billions

of advertising dollars to distinguish themselves in the marketplace. Branding efforts applied to a Cisco

TelePresence room also have the potential to accelerate return on investment (ROI) because the organization’s

brand now receives broader exposure than beyond the four walls of the physical room. Every Cisco

TelePresence meeting in which the room is engaged becomes an opportunity to relay corporate identity.

Integration of Aesthetics in a Cisco TelePresence Room

Interior office environments have the potential to influence the attitudes, behavior, and decision making of people

who come into contact with these spaces. Creating the right environment can boost employee morale and

positively affect key stakeholders such as customers, partners, and the media.

Before beginning to assess how to fill the background of the camera view, be sure that the chairs around the

Cisco TelePresence table are in place. These will act as reference points, indicating where your Cisco

TelePresence participants will be seated.

With the Cisco TelePresence table and chairs in place and the camera field-of-view parameters marked out,

assess the best location for aesthetic items in the background of the on-screen image. Choose the placement of

objects based on fit for the space and consider the functionality of the aesthetic objects as well.

It is not recommended to place background items symmetrically or directly behind the Cisco TelePresence

participant seating positions because the objects may appear to be touching or attached to the heads of meeting

participants, distracting people on the other side of the Cisco TelePresence meeting. Choose areas on camera

that are behind the participants’ shoulders.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 57 of 74

Be aware of the distribution of objects on each screen. If a large object is placed on one edge of the camera view

and the other edge is not addressed, this can leave the transmitted image looking unbalanced. The attention of

the participants on the other side will gravitate to the most prominent object in the frame.

Be cognizant of color distribution as well. When adding a colorful object to the background, think about where the

eye of the Cisco TelePresence participants at the other endpoint will be drawn. Likewise with color, try to create

a balance among all three Cisco TelePresence screens so attention is not drawn to a single very intensively

colored object only on one screen.

After you have established a plan for determining the placement of objects within the camera view, step back

and assess the room as a whole. To balance the room as a physical space, the wall area above the maximum

camera height will need to be addressed. If signage is placed within the camera field of view, notice that the

signage sits far below a natural height at which wall art is typically placed on walls. Compensate for this

phenomenon by adding wall art at its natural height. Think about placing additional framed photos, artwork, or

sculptures around the room that reconcile the upper half of the wall with the decorations you have placed on the

lower half of the wall.

Décor to Avoid in an Immersive Cisco TelePresence Room

You should specifically avoid certain items as background elements in an Immersive Cisco TelePresence room.

In particular, you should avoid items that are distracting to participants or difficult for the video to process,

resulting in diminished video quality or loss of the overall Immersive Cisco TelePresence experience, as listed in

the following table:

Table 9. Décor to Avoid in an Immersive Environment

Décor to Avoid Affect on Video or in Person

Oversized furniture Large pieces of furniture can take up precious space for local participants. Over video, these can seem overbearing or daunting because only a small portion of the piece can be seen in the camera view. They also tend to create numerous large background shadows that increase areas of high contrast.

Dark furniture Dark furniture tends to create numerous areas of high contrast that are difficult for video to process.

Reflective or shiny elements

Light reflections in an Immersive Cisco TelePresence environment should be controlled such that they do not reflect light into the cameras or on displays to avoid issues such as glare, lens flares, or undesirable points of interest in the room that distract from participants being the focal point.

Highly repetitive patterned materials or fabrics

Highly repetitive patterns should be avoided unless the pattern is small enough such that the pattern blends into the background when seen from 10 feet (3 meters) away. If patterns are visible from that distance, they tend to look very busy and distracting over video. In extreme cases, they can create a moiré pattern or other undesirable visual effects in the video transmitted.

Excessive vertical or horizontal patterns

These types of patterns draw attention away from the participants and to the background. They exaggerate any misalignment of the endpoint’s cameras and in some cases can make even well-aligned cameras seem misaligned.

Conclusion

The design of your Immersive Cisco TelePresence room has many considerations but also offers the ability to

personalize the room to suit organizational expectations and identity. Organizations should consult their design

and remediation partner, facilities department, and their preferred architectural firm to implement these

Immersive Cisco TelePresence room design recommendations.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 58 of 74

Immersive Room Design Implementation

The recommended order of room design implementation, as shown in the following figure, is:

1. Room Selection

2. Heating, Ventilation, and Cooling (HVAC) & Room Remediation

3. Aesthetic Design

Room Selection

Many considerations are necessary when choosing a room for Immersive Cisco TelePresence because the room

affects the quality of the experience and so should be assessed carefully.

When Cisco’s recommendations and guidelines are followed, they help reduce complexity, cost, and time to

deployment. Room selection criteria are:

● Dedicated or Multipurpose Meeting Space

● Physical Elements of the Room Environment

● Room Dimensions

● Location

● Construction Characteristics

● Lighting

● Acoustics

Note: Consultation with the facilities personnel of the building in which the prospective room is located is

usually needed to assess all room selection criteria.

Cost Versus Immersive Experience

As with many projects, there is a budget scheduled for the Cisco TelePresence room remediation and

deployment. However, many factors that may seem unimportant ultimately affect the overall Immersive Cisco

TelePresence experience. With a full understanding of the overall impact, it is clear that seemingly small details

are very important to the experience and are worth the expense to implement. The table below compares the

cost and impact of room design choices.

Table 10. Cost vs. Immersive TelePresence Experience

Characteristic Observations and Comments Cost Effect on Immersive Experience

Continuity Continuity is the most important element in Immersive Cisco TelePresence room design. It is also the simplest and least expensive element to achieve.

LOW HIGH

Lighting Lighting can be inexpensive with good results, but this is one area where it is worthwhile to spend a little more. Great lighting

LOW - MEDIUM HIGHEST

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 59 of 74

Characteristic Observations and Comments Cost Effect on Immersive Experience

is the key to great video.

Acoustics Acoustic remediation creates much more pleasing sound, both in the room and on the other side of the Cisco TelePresence meeting. Cost ranges from low to medium, from basic acoustic panels to custom panels, respectively.

LOW - MEDIUM MEDIUM

HVAC Look for rooms with few HVAC remediation requirements. Addition of VAV boxes or control systems or rezoning of the existing HVAC system is usually sufficient, but purchasing an entirely new HVAC system is usually very expensive.

LOW - HIGH HIGH

Room size and orientation

Look for a room size in the recommended size range for the endpoint and with no or few windows to keep remediation costs down. Interior rooms are preferred because they can be less costly to remediate and maintain cooling more easily.

MEDIUM MEDIUM

Dedicated or Multipurpose Meeting Space

A dedicated Immersive Cisco TelePresence room is a room completely designed around the use of the Cisco

TelePresence endpoint. There are many advantages to dedicating a room for Cisco TelePresence, including:

● Ability to match all Cisco’s room recommendations for a constant, continual, Immersive Cisco

TelePresence experience

● Absence of other technology and devices that may interfere with a Cisco TelePresence meeting

● Assurance that the room will always be properly configured for a Cisco TelePresence meeting

● Assurance that the Cisco TelePresence endpoint is available for use and that the room’s potential ROI is

achieved

● Assurance that no distractions are present in the room that would break the continuity of the experience

Below are two examples of dedicated, fully Immersive Cisco TelePresence rooms. Although these rooms are

different in shape, flooring, and type of Cisco TelePresence endpoint installed, the similarity in lighting, colors,

and artwork creates a fully Immersive Cisco TelePresence experience.

Figure 41. Dedicated Immersive Cisco TelePresence Room Examples

San Jose Kiev

Dedicated Cisco TelePresence rooms offer the most predictable and overall highest quality Immersive Cisco

TelePresence experience.

Multipurpose rooms can also be used for Immersive Cisco TelePresence meetings as long as the rooms follow

continuity principles, have been properly prepared, and meet all Immersive Cisco TelePresence room

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 60 of 74

recommendations. However, the higher number of variables in a multipurpose room due to its flexible use leads

to a less predictable meeting environment.

Figure 42. Multipurpose Immersive Cisco TelePresence Room Examples

Sydney

Cairo

Smaller, personal endpoints can also provide an Immersive Cisco TelePresence experience if they follow

continuity principles, have been properly prepared, and meet all Immersive Cisco TelePresence room

recommendations. However, an important additional consideration is whether or not the network connection into

the personal room has sufficient bandwidth to support Cisco TelePresence traffic.

Figure 43. Personal Immersive Cisco TelePresence Room Examples

Winnipeg

Genoa

Physical Elements of the Room

The size, configuration, orientation, and location of doors, windows, and adjacent rooms and the placement of

the Cisco TelePresence endpoint are all physical elements that need to be considered when selecting a room for

Immersive Cisco TelePresence. It is beneficial to have layout drawings with the physical dimensions of each

room that is being considered easily accessible during room selection.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 61 of 74

Room Dimensions

The dimensions of the room to be considered are depth, width, and height. Also, accessibility must be

considered.

Note: For more information on specific maximum and minimum room dimensions, please refer to the

installation guide for the endpoints you are considering deploying.

In general:

● Rooms that are larger than the maximum recommended size for an Immersive Cisco TelePresence

endpoint do not provide optimal acoustic characteristics and may require remediation such as acoustic

paneling. Additionally, the maximum width is limited to avoid large areas of wall surface directly across

from each other that may promote reverberation and degrade the audio quality.

● The maximum depth of the room is also limited due to the angle of the Cisco TelePresence camera. The

Cisco TelePresence camera has a slight downward tilt to improve perspective and eye contact. At 30 feet

(9.15 meters) away from the camera there is no longer an adequate viewing area for an average person

to be seen. In addition, with rooms longer than 26 feet (7.01 meters), the camera will view more floor

space than wall space (except with the TX 9200 series and CTS 3200 series endpoints) and this affects

the contrast and quality of the Cisco TelePresence experience.

● Ceilings higher than 10 feet (3.05 meters) can create undesirable acoustic characteristics and may need

remediation.

● Ceilings lower than 8 feet (2.44 meters) may not be able to accommodate the physical height of the Cisco

TelePresence endpoint itself, as well as fire sprinklers and other such ceiling-mounted items.

● The minimum required height and width of a room is due to the physical footprint of the Cisco

TelePresence endpoint.

● The minimum depth of the room is to accommodate the space between the wall and the back edge of the

Cisco TelePresence participant seating table and chairs.

● Rectangular rooms are preferred but irregular shaped rooms can be accommodated. Odd angles, curved

walls, and pillars can create unusual acoustic effects that may also require additional sound remediation.

● Access requirements for disabled persons may mandate a specific minimum space to allow access for a

standard wheel chair. Please be sure to review building codes and access laws in your area.

The following figure illustrates the room and endpoint dimensions to consider, except for ceiling height. This

figure is given as an example only. For endpoint room dimensions and details, refer to the respective installation

guide on Cisco.com.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 62 of 74

Figure 44. Room Dimensions To Consider

Callout Description

1 The room width.

2 The room depth.

3 This is the back wall. For systems that use a free-standing lighting reflector there is a minimum distance between the free-standing reflector and the back wall of the room.

4 The distance between the light reflector, if used, and the table edge.

5 The space between the table for participant seating and the rear wall. Consideration should be given to local fire codes and disability compliance to ensure there is adequate egress.

6 The maximum width of the endpoint, including any lighting reflector if used.

7 Distance between the endpoint camera and the table edge at the outermost chair position.

8 The position of the back of the endpoint.

Location

Doors

Doors should be on the left or right side walls or on the wall behind the participants. Preferably, the doors should

be out of camera view to help prevent disruption of the consistency of the Cisco TelePresence experience. Doors

should not be behind the Cisco TelePresence endpoint.

Windows

Ideally, Cisco TelePresence rooms should have no windows. If the room does have windows, the glass should

not comprise more than 20 percent of the total wall space. In an Immersive Cisco TelePresence room,

reverberation and lighting levels need to be controlled, and windows present many problems. Windows increase

reverberation in the room and let in uncontrolled light. Windows may need to be treated for both acoustic and

lighting factors.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 63 of 74

Placement of The Room in the Building

Rooms with exterior walls or windows may allow too much noise from street or local airline traffic, wind and

weather, or neighboring businesses. Any outside noises that can be heard in the Cisco TelePresence room may

cause undesirable noise levels and affect the Cisco TelePresence experience. For this reason, rooms in the

interior of the building are recommended for Immersive Cisco TelePresence. Likewise, the doors and walls of an

Immersive Cisco TelePresence room should be away from areas of high foot traffic to limit intrusive noise.

HVAC systems can also produce sound that needs to be remediated depending on where the HVAC system

components are in relation to the Cisco TelePresence room.

In addition, proximity and accessibility for the intended participants needs to be considered to help ensure

optimum use of the Immersive Cisco TelePresence room. For example, if the Cisco TelePresence endpoints are

geared toward use by executives, the executives may place a premium on having the room physically located

next to or near their offices to optimize both the use of the Cisco TelePresence room and their personal time.

Adjacent Rooms

Adjacent rooms need to be evaluated to verify if additional acoustic remediation is required to isolate noise

coming into or going out of these rooms. Sound levels within the room must be under 45 dBA and 60 dBC to

enable a high-quality Cisco TelePresence experience.

Consider and evaluate adjacent rooms and infrastructure such as break rooms, elevators, and large conference

rooms as they can increase the noise levels inside the Cisco TelePresence room.

Additionally, privacy should be a factor when evaluating adjacent rooms. Cisco TelePresence participants will

expect a certain level of privacy, as with other conference rooms, and extra remediation should be considered to

keep conversations inside the Cisco TelePresence room confidential.

Acoustic Evaluation

Noise from HVAC ducts and mechanical equipment should be evaluated in choosing a room as a candidate for

Cisco TelePresence.

The ideal ambient noise level is 36 dB or less, as measured by an SPL meter that is one meter away from each

register. This goal may be difficult to achieve when dealing with an older HVAC system or one that was not

designed with the comfort of sound in mind. The Immersive Cisco TelePresence endpoint will perform properly

when the ambient sound is greater than 36 dB and will still meet Cisco’s Room Remediation requirements at 45

dB. However, noise greater than 45 dB becomes distracting to participants and ultimately diminishes the overall

experience.

Cisco highly recommends the use of NC30-rated plaque-style diffusers for adequate airflow and minimal noise

from the airflow into the room from the HVAC system. Also, the use of sound boots or duct wrapping may be

recommended in situations with increased air velocity that creates undesirable sound. Diffusers may be added to

accommodate greater airflow without increased noise. Consultations with your facilities department or an HVAC

engineer may be needed to assist in designing an acceptable solution to reduce ambient noise generated by the

HVAC system. Provide HVAC engineers with the BTU output outlined in the Cisco TelePresence endpoint

installation guides. This information, in combination with details of the room’s location and environment will

enable them to design adequate cooling for the room.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 64 of 74

Construction Characteristics

Think of an Immersive Cisco TelePresence room as a confidential area. Outside conversations should not be

heard inside the room, and inside conversations should not be heard outside the room. Therefore, careful

attention needs to be paid to the construction materials of the room being considered for Immersive Cisco

TelePresence. Also, understand that the materials from which the room was made effect the acoustic properties

of the room and may be well or poorly suited to a high-quality Cisco TelePresence experience.

For an Immersive Cisco TelePresence experience, all walls should have an STC rating greater than 40. Cisco

TelePresence rooms in high-traffic areas or with loud adjacent rooms require walls with a rating higher than STC

40. Additionally, walls should reach toward the structural deck of the floor, and not end right above false ceiling

tiles, to help isolate unwanted noise from adjacent rooms.

The wall, ceiling, and floor materials in an Immersive Cisco TelePresence room all work collectively to provide an

overall NRC rating for the room.

You may be able to use a room with hard surfaces, such as wood or marble floors and glass walls, if acoustic

considerations are addressed and compensated for by the materials of other surfaces in the room. For example,

a wood or marble floor can be accommodated if the walls are covered with acoustic fabric panels and the ceiling

tiles have a higher NRC rating to reduce reverberation. Similarly, a glass wall can be accommodated if the

remaining walls are covered with acoustic panels and the floor is carpeted. If necessary, add an additional heavy

curtain that matches the Field color of the room to compensate for a glass wall and reduce reverberation.

Wall Materials

Normal drywall surfaces are recommended for Immersive Cisco TelePresence rooms. Drywall with an NRC of

0.1 is adequate for an Immersive Cisco TelePresence room. Lower-rated wall materials should not be used

because they allow unwanted sound to leak into the room from adjoining rooms and hallways, reducing the

quality of the Immersive Cisco TelePresence experience. Standard drywall with a smooth finish or slight texture

is preferred, and wall materials with heavy textures are highly discouraged due to how they reproduce visually on

camera.

Cinder block, brick, and glass walls are highly reverberant materials and are not recommended because they

require additional acoustic treatment.

Ceiling Materials

Standard office ceiling tiles with an NRC rating of 0.70 or higher are recommended for Immersive Cisco

TelePresence rooms because they help absorb reverberation and unwanted noise. Verify the NRC rating of the

ceiling tiles with your organization’s facilities department. Plaster or drywall ceilings are not recommended

because they increase the reverberation in the room, causing undesirable sound conditions. If plaster or drywall

is used in the ceiling, further remediation may be required.

Noise that can be heard in an Immersive Cisco TelePresence room that is coming from above the ceiling tiles

requires remediation such as sound batting or acoustic fabric in place of, or above, the ceiling tiles.

Flooring Materials

Standard office carpeting is recommended for its sound absorbing properties. Other surfaces such as linoleum,

hardwood, or marble are highly reflective and usually require remediation to reduce reverberation.

Rooms with raised floors can be accommodated as Immersive Cisco TelePresence rooms but need to be

evaluated to verify that the floor can handle the weight of the Cisco TelePresence endpoint. Additionally, raised

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 65 of 74

floors may increase the sound resonance in the room, therefore, raised floors may require remediation to keep

sound levels within Immersive Cisco TelePresence requirements.

Power Outlets

Power outlets in the room must be of the appropriate type, sufficient in total number, and designed to carry the

amperage for the Cisco TelePresence endpoint intended for the room. If the type and number of power outlets

do not match what is needed for the endpoint, new or additional power outlets must be installed in the room.

Network Access

Immersive Cisco TelePresence endpoints usually require a Gigabit Ethernet port (RJ-45 UTP) installed on the

wall behind the endpoint. This port connects the Cisco TelePresence endpoint to the organization’s network

infrastructure. The RJ-45 UTP port, if not already present and in the correct location, is installed during the build-

out of the Immersive Cisco TelePresence room.

Network access for in-room participants can be provided through a wireless access point or with wired

connectivity using an additional RJ-45 UTP port combined with a switch. If used, switches should not generate

more than 45 dB of sound within the Cisco TelePresence room.

Indirect Lighting

When evaluating a room for Immersive Cisco TelePresence, the first step is to verify whether the room’s current

lighting fixtures are indirect lighting fixtures or some other type. You can determine the type of fixture with a

visual inspection, however the level to which the fixtures are indirect versus indirect/direct cannot be determined

visually. You need to get the model number of the fixture and research it for verification. Many indirect fixtures

may appear to be completely indirect but can provide a significant amount of direct downlighting.

The next step is to verify that the placement of the light fixtures provides optimum lighting conditions, which are:

● Kelvin color temperature of 4000 or 4100K to match the built-in Cisco TelePresence endpoint lighting,

and to reproduce colors accurately on screen.

● CRI of 82 to 100.

● Facial lighting from 200 to 400 lux, with these values measured with the Cisco TelePresence endpoint off.

● Shoulder lighting not to exceed twice the values of the facial lighting, and also measured with the Cisco

TelePresence endpoint off.

● Light in all areas of the room within the camera field of view should not fluctuate more than 100 lux within

the room. In other words, lighting is evenly dispersed throughout the room. This includes lighting at the

room walls, which should be equal to or less than the facial lighting and should differ no more than 100

from rest of the room.

● Implementation of a dimming lighting control system is highly recommended to adjust the intensity of light

in the room without needing to precisely calculate the overall lighting levels in advance, and to ensure

reproducible results with preset lighting scenes.

● Regardless of fixture choices, indirect fluorescent lighting fixtures provide the best results for ambience

and amount of dispersed lighting, and asymmetric fixtures provide the most efficient and predictable

option within the range of indirect fixtures available.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 66 of 74

If the room is at a site that has not been remodeled within the past 15 years, the light fixtures are likely to be

direct-lighting fixtures. These direct fixtures are designed to illuminate work surfaces, tabletops, and walking

paths, but they do not provide evenly dispersed lighting. Direct-lighting fixtures create hotspots and require

remediation. If these are present, some direct-lighting fixtures can be converted to indirect-lighting sources with

light diffusers that cover the lamps, so an option is to have local facilities personnel check with the manufacturer

of your current lighting to see whether existing direct-lighting fixtures can be converted into indirect-lighting

sources, as a cost-saving alternative to replacing the existing fixtures. Also, check with your facilities department

to determine whether they have indirect lighting fixtures that can be used for the new Immersive Cisco

TelePresence room before you purchase new fixtures.

Lighting Control Systems

Dimming lighting control systems should be used for all Immersive Cisco TelePresence rooms. The efficiency

and flexibility of these systems allows for very accurate and predicable lighting levels with excellent performance.

Switching control systems require a much greater design effort and offer less predictable and non-adjustable

results. Once a dimming system has been commissioned appropriately, lighting levels can be saved as scene

presets that function much like a switching control system. This enable precision design with simple in-room

control.

Direct Lighting

Direct lighting fixtures are suited for accent lighting only in an Immersive Cisco TelePresence room due to the

hotspots of illumination and other undesirable visual effects they create on camera.

Direct lighting is designed specifically to illuminate horizontal surfaces. It is also designed to minimize horizontal

light distribution to avoid shinning light into the eyes. This type of fixture is often seen in hallways and corridors,

and less often in offices and over cubicles where desktops or flooring requires illumination. Since these lights are

direct by nature, the light is focused directly downwards and results in the illumination focusing on the tops of

people’s heads and shoulders rather than the face and torso. Direct lighting often translates on screen as a glare

or a glow across surfaces. Below is guidance on two common types of direct lighting fixtures:

Table 11. Common Commercial Office Direct-Lighting Fixtures

Light Fixture Remediation Comments

Parabolic Louvers Diffuser kit Available from some manufacturers.

Recessed Can Lights

Use only as accent lighting Useful as a design element but not for primary illumination.

Figure 45. Parabolic Louver Lighting

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 67 of 74

Callout Description

1 Direct parabolic louver lighting.

2 Lighting diffuser kit over parabolic louver lighting.

If parabolic louver lighting fixtures must be used, avoid placing them directly over meeting participants. In a Cisco

TelePresence room, these fixtures can be used on the perimeter of the room to add wall wash or perimeter

illumination in the back of room. Often these fixtures are used in the back of a large Immersive Cisco

TelePresence room to illuminate the back area where shadows would be present.

Can lighting is also not recommended as primary lighting in a Cisco TelePresence room because it creates

hotspots, but it is suitable for accent lighting such as wall wash or to illuminate adornments. This use, as accent

lighting, can provide an excellent means of creating depth perception within the room and add to the meeting

experience.

Figure 46. Recessed Can Lighting for Accent Lighting

Replacing Lighting Fixtures

If the light fixtures in the selected Cisco TelePresence room need to be replaced, give special consideration to

selecting the new lighting solution. Ceiling height and space above the ceiling tiles will affect the indirect lighting

fixtures that can be used.

With lower ceiling heights, hanging pendent light fixtures may not leave adequate space above the Immersive

Cisco TelePresence endpoint or participants’ heads.

With recessed light fixtures, the air space above the ceiling tiles must have adequate clearance to accommodate

the light fixtures and still adhere to local building and fire codes.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 68 of 74

Room Design Models

The practical application of aesthetics in an Immersive Cisco TelePresence room comes into play when

considering how the participants who will use the space. A company may have a different design approach for

the look and feel of an environment that is meant to be used by its executives than for an environment to be used

for frequent conferences by knowledge workers.

How each flexible aesthetic element can be used to create a specific environmental effect is summarized in the

table below:

Table 12. Room Design Models

Aesthetic Element

Executive Level Room Design Professional Level Room Design Classic Level Room Design

Example

Lighting Custom overhead indirect lighting

fixtures combined with lighting coves

and scene-type lighting presets as

well as back wall and aesthetic-

element accent lighting.

Indirect overhead lighting fixtures

combined with back wall and

aesthetic-element accent lighting.

Commercial indirect overhead lighting

fixtures.

Color, Fabrics, and Carpet

Cisco TelePresence design palette

with field, complimentary, and detail

colors in the room.

Cisco TelePresence design palette

with field and complimentary colors in

the room.

Cisco TelePresence design palette

with field color only in the room.

Furniture Space permitting, incorporate a

selection of credenzas, bookshelves,

side tables, or coat racks.

Space permitting, incorporate

additional seating, bookshelves, or

side tables.

No additional furniture needed.

Decorative Accents

Vases, corporate awards, table art,

books, clocks, and items with

interesting shapes.

Vases, corporate awards, and items

with interesting shapes.

No additional accents needed.

Wall Art Add art on the walls to help create

balance in the room as a whole as

well as provide the advantage of

carrying the continuity of the room

across all three screens for

multipoint scenarios.

Consider adding wall art to help carry

the continuity of the room across all

three screens for multipoint

scenarios.

Consider adding wall art to help carry

the continuity of the room across all

three screens for multipoint

scenarios.

Plants (Optional) Plants can help integrate

the Cisco TelePresence endpoint

into the space when placed on the

sides of the system by the lighting

facade. This placement helps

connect the system to the room and

breaks up the void between the

system and the back wall. Plants are

often used in the back corners of an

Immersive Cisco TelePresence

room to help enhance the depth

perception for the on-camera

experience.

(Optional) Plants offer a pleasant

organic touch to any room

environment. Consider the height and

leafiness of a plant and how well its

shape works on screen. Depending

on an organization’s corporate policy,

plants can be real or artificial.

No plants needed.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 69 of 74

Aesthetic Element

Executive Level Room Design Professional Level Room Design Classic Level Room Design

Hospitality Hospitality items that support a

meeting can be added as part of the

in-person experience or as

decorative accents on screen. Items

to consider are: conference desk

pads, a mint dish, pens, note pads,

napkins, or a box of tissues.

Hospitality items that support a

meeting can be added as part of the

in-person experience or as decorative

accents on screen. Items to consider

are: water glasses, coasters, pens,

note pads, napkins, or a box of

tissues.

No special hospitality items needed.

Signage Add signage as a means of

identifying the location to

participants at the other end of the

call.

Make sure that signage does not

use high-reflectivity materials such

as glass and polished metals. Also

check that signage is not obstructed

when participants are seated.

Add signage on the back wall as a

means of identifying the location to

participants on the other end of the

Cisco TelePresence call. Optimal

positioning of signage is in the center

of the center screen.

Add signage on the back wall as a

means of identifying the location to

participants on the other end of the

Cisco TelePresence call. Optimal

positioning of signage is in the center

of the center screen.

Use these flexible elements to tailor your room design to the needs, preferences, and brand of your organization.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 70 of 74

Appendix A: HVAC Components and Systems

HVAC Components

Air conditioning is part of a larger entity called an HVAC system, which encompasses heating, ventilation, air

conditioning, and control systems. There are several HVAC components that make up an HVAC System. These

components should be reviewed during the room selection and room remediation process. Below are

descriptions and definitions for these components.

Duct Types

Ducts are used to deliver and remove air. The airflows include supply air, return air, and exhaust air. Air ducts

are generally rectangular or round and are made from a variety of materials. When ducts are accurately sized

and the duct system is correctly designed, the air will be delivered to the rooms and spaces with little noise or

airflow resistance.

Galvanized Steel

Most ducts are made of galvanized steel. Galvanized steel can be easily bent and cut, which allows bends and

curves to be created as needed. In addition, many features are available in default sizes and shapes. Galvanized

steel ducts are usually wrapped with fiberglass thermal insulation. The insulation helps reduce heat loss or gain

and prevents water vapor from condensing on the outside of the duct when a duct is used for cold air in air

conditioning. Insulation also has a particular effect on the Immersive Cisco TelePresence experience since

insulation can help reduce noise from air movement within the duct work. Duct liner and fiberglass installation

both reduce noise through the duct walls.

Duct Board

The main types of duct board are polyurethane and fiberglass.

Polyurethane duct board is not as common as galvanized steel, but ducts that are rectangular are often made

from duct board. One benefit is to this type of ducting is that it does not require additional insulation.

Polyurethane duct board has built-in properties that provide sound damping. The duct is made through a forming

process using water or gas. The panels are then coated with aluminum. The ducts are installed using a flange

system.

Fiberglass duct board provides built-in thermal insulation and excellent sound absorption, which helps reduce the

noise of an HVAC system. The cut boards are generally rectangular and closed off with staples or metal-backed

tape.

Flexible Ducting

A variety of flexible ducting types are available. Generally, flexible plastic is laid over a metal wire coil to make a

round, flexible duct. The duct can be insulated with fiberglass insulation to help reduce heat transfer from the

duct as well as noise. Flexible ducting makes it easy to attach the supply air outlets to the ducting. One

disadvantage of flexible ducting is that pressure loss is greater than with other types of ducting. This means that

the installation needs to be kept to short ducting runs with few turns.

Ducting Systems

The two duct systems most commonly used are perimeter duct systems and extended plenum duct systems.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 71 of 74

Perimeter Duct Systems

In a perimeter duct system, the supply outlets are located around the outer edge of the structure, close the floor

of the outside wall or on the floor itself.

There are two basic perimeter duct systems used today:

● Perimeter-loop duct system

● Radial perimeter duct system

The perimeter-loop duct system is characterized by feeder supply ducts and extends outward from the furnace

plenum to a loop duct running around the perimeter.

In a radial perimeter duct system, the feeder supply duct extends from the furnace plenum to the warm-air supply

outlets located on the outside walls or the floor next to the outside walls.

Extended Plenum Systems

In the extended plenum system, a large rectangular duct extends straight out from the furnace plenum and

generally in a straight line down the center of the basement, attic, or ceiling. Round or rectangular supply ducts

extend as branches from the plenum extension to the plenum, which permits a better airflow rate with reduced

resistance because of the large duct diameter. The branching ducts are usually located between structural joints

in the floor or ceiling.

Other Main Duct Components

In addition to the ducting itself, the duct system has other components such as vibration isolators, dampers, air

terminals, take-offs, and terminal units.

Vibration isolators reduce the vibration that blowers create. Vibration isolators are installed before and after the

air handlers and are made of a flexible rubber-like substance that reduces the vibration the air handlers transmit

through the duct system.

Dampers provide a means of adjusting the volume of airflow through the duct system. Dampers can be fitted in

the ducts and can be manual or automatic.

Take-offs are fittings that allow part of the flow from the main duct to be diverted to a duct branch. Take-offs

allow the air to be diverted to the various diffusers, grilles, and registers in the system.

Terminal units are in branch ducts. Normally, there is one terminal unit per thermal zone. VAV boxes are one

type of terminal unit. They may also have a heating or cooling coil.

Air Terminals

Air terminals are the supply and return outlets. Diffusers are the most common type. Grilles and registers are

also used. For the return, exhaust grilles are used, and some also incorporate an air filter, which is then called a

filter return.

Diffusers

Diffusers are very common in heating, ventilating, and air conditioning systems. Diffusers are used on both all-air

and air-water HVAC systems, as part of the room air distribution subsystems, and serve the following purposes:

● Deliver of ventilation and air conditioning

● Evenly distribute the flow of air in the desired directions

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 72 of 74

● Enhance mixing of room air into the air being discharged

● Attach air jet(s) to a ceiling or other surface

● Create low-velocity air movement in the occupied portion of room

● Accomplish the preceding functions while producing the minimum amount of noise

Diffusers may be round, rectangular, or linear slot diffusers. Linear slot diffusers take the form of one or more

long, narrow slots (hence the name) that are often semi-concealed in the ceiling.

Occasionally, diffusers are used in a reverse fashion, as air returns. More commonly, grilles are used as return or

exhaust air inlets.

Registers

Registers are devices attached to an air-distributing duct for the purpose of discharging air into the space being

heated or cooled. A register is an opening that discharges air in a confined jet, whereas a diffuser is an outlet

that discharges air in a spreading jet. Both registers and diffusers can be placed at a number of locations in a

room, including in the floor, in the baseboard, low on the side wall, on the windowsill, high on the side wall, or in

the ceiling.

For heating, the preferred location is in the floor, at the baseboard, or at the low side wall of the outside wall,

preferably under a window. For cooling, the preferred location is high on the inside wall or the ceiling. For year-

round air conditioning in homes, a compromise location is the floor, baseboard, or low side wall at the exposed

wall, especially if adequate air velocity in an upward direction is provided at the supply outlet. Registers are

generally interchangeable with vented grilles.

Thermostats

A thermostat is a device for regulating the temperature of a system so that the system's temperature is

maintained near a desired set point. Thermostats start and stop the system depending on the room temperature

set. The thermostat does this by controlling the flow of heat energy into or out of the system. That is, the

thermostat switches heating or cooling devices on or off as needed to maintain the correct temperature.

Thermostats contain a sensor that operates based on its expansion or contraction. As the temperature rises, the

sensor expands, which causes the cooling system to engage. As the temperature drops, the sensor contracts

and causes the system to shut down. Duct thermostats have sensors that extend into the wall of the duct. An

instrument head is connected that is accessible for adjustment or inspection. These sensors can be helpful for

cooling specific areas or rooms.

Common sensors include:

● Bi-metal mechanical sensors

● Expanding wax pellets

● Electronic thermistors

● Electrical thermocouples

The thermostat can control the heating or cooling apparatus using direct mechanical control, electrical signals, or

pneumatic signals.

HVAC System Types

There are many different types of HVAC systems. The following are commonly found in commercial buildings. As

these systems can be quite complex, it is always recommended to consult with an HVAC engineer to ensure that

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 73 of 74

an adequate HVAC system is designed or already in place for the intended Immersive Cisco TelePresence

room.

Central Air Handler System with Forced Air

Air distribution systems based on the forced-air principle of delivery use a system of ducts to deliver the heated

or cooled air to the various rooms and spaces in the structure.

A forced-air or warm-air heating system uses air as its heat-transfer medium. These systems use ductwork and

vents as a means of air distribution. The return plenum carries the air from several large return vents to a central

air handler for reheating. The supply plenum directs heated air from the central unit to the rooms that the system

is designed to heat. Regardless of type, all air handlers consist of an air filter; blower; heat exchanger, element,

or coil; and controls. As in any other kind of central heating system, thermostats are used to control forced-air

heating systems.

Forced-air heating is the type most commonly installed in North America. It is less common in Europe,

particularly in the United Kingdom, where it is typically referred to a warm-air heating.

Independent Room Air Conditioning System

Air conditioning packs consist of an internal device and an external unit for the individual air conditioning of a

single room. The different versions of internal devices offer many options for air conditioning. These internal

devices are available in wall-mounted versions as well as cassette units for integration into ceilings.

Split Air Conditioning Systems

Ductless or split-system air conditioners, often called mini-split air conditioners, are frequently used in

commercial applications in situations where extending or installing additional ductwork is not practical. These

systems are composed of two units, with one part installed directly in the room to be cooled (either in the ceiling

or the wall), and the other part located outside or away from the room. These systems generally operate quietly

since the noisy part of the system is installed away from the room.

Cassette Room Air Conditioning Systems

Cassette air conditioning devices are designed for installation in larger rooms. Except for the air outlets, the

entire technology hides discretely behind the suspended ceiling. A three-stage fan with an automatic operating

mode selection regulates the temperature in the room. The cooling air can be distributed through four adjustable

outlet apertures, even in larger rooms. Changes in the settings can made using a remote control. Cassette-type

systems are very effective but may produce more noise than desirable. Their advantage is that these systems

are independently controlled and self-contained in one unit.

Independent Room Heat Systems

Space heaters are essentially spot heaters that heat a single room. A wide variety of space heaters exist, using

different kinds of fuel. Some have supplemental fans to help distribute heat. The characteristics of the space to

be heated determine if one is appropriate.

Unless operated exclusively by electricity, space heaters should always be vented to the outside. The

combustion process creates harmful by-products (including carbon monoxide) in addition to large amounts of

water vapor, and it is important that these pollutants be removed from the room.

Cisco TelepResence Room Design Guide

© 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 74 of 74

Printed in USA C07-643449-02 04/12