circuit analisis i

Upload: cassanova-smile

Post on 04-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Circuit Analisis I

    1/4

    Circuit Analysis I with MATLAB Applications 7-9

    Orchard Publications

    Thevenin’s and Norton’s Theorems

     Figure 7.8. Circuit for Example 7.4

    Solution:

     With the resistor disconnected, the circuit reduces to that shown in Figure 7.9.

     Figure 7.9. Circuit for Example 7.4 with the resistor disconnected 

    By application of the voltage division expression,

      (7.16)

    and

      (7.17)

     Then, from (7.16) and (7.17),

    or

    (7.18)

    Next, we find the Thevenin equivalent impedance by shorting the voltage source.

     The circuit then reduces to that shown in Figure 7.10.

       170 0 V 

     j100–  85 

    50 

    100 

     j200  

     I  X 

    100 

       170 0 V 

     j100–  85 

    50  j200  

    V 1   V 2

    100 

    V 1 j200

    85 j200+-----------------------170 0

    200 90

    217.31 67  ------------------------------170 0 156.46 23 144 j61.13+= = = =

    V 250

    50 j100–-----------------------170 0

    50

    111.8 63.4– --------------------------------------- 170 0 76 63.4 34 j68+= = = =

    V TH 

      V OC 

      V 12

      V 1  V 

    2– 144 j61.13 34 j68+ –+= = = =

    V TH  110 j 6.87  – 110.21 3.6  –   = =

     Z TH  170 0 V 

  • 8/13/2019 Circuit Analisis I

    2/4

    Chapter 7 Phasor Circuit Analysis

    7-10 Circuit Analysis I with MATLAB Applications

    Orchard Publications

     Figure 7.10. Circuit for Example 7.4 with the voltage source shorted 

     We observe that the parallel combinations and are in series as shown in Figure

    7.11.

     Figure 7.11. Network for the computation of for Example 7.4

    From Figure 7.11,

    and with MATLAB,

    Zth=85*200j/(85+200j) + 50*(100j)/(50100j)

    Zth =

     1.1200e+002 + 1.0598e+001i

    or

     The Thevenin equivalent circuit is shown in Figure 7.12.

       

     j100–  85 

    50  j200  

     X  Y 

       

     j100–  85 

    50  j200  

     X  Y     

     j100–  85 

    50  j200  

     X  Y 

       

     j100–  85 

    50  j200  

     X  Y 

       

     j100–  85 

    50  j200  

     X  Y  Z 

    TH 

           85 

    50 

     j200  

     X 

     j100–  

    200 || 85  50 || j100

    85  j200 

     j100 50 

     X 

     Z TH 

      

     Z TH 

     Z TH 85 j200

    85 j200+-----------------------

    50 j100–

    50 j100–-------------------------------+=

     Z TH  112.0 j10.6  + 112.5 5.4 = =

  • 8/13/2019 Circuit Analisis I

    3/4

    Circuit Analysis I with MATLAB Applications 7-11

    Orchard Publications

    Thevenin’s and Norton’s Theorems

     Figure 7.12. Thevenin equivalent circuit for Example 7.4

     With the resistor connected at X-Y, the circuit becomes as shown in Figure 7.13.

     Figure 7.13. Simplified circuit for computation of in Example 7.4

     We find using MATLAB:

    Vth=1106.87j; Zth=112+10.6j; Ix=Vth/(Zth+100);

    fprintf(' \n'); disp('Ix = '); disp(Ix); fprintf(' \n');

    Ix = 0.5160 - 0.0582i

    that is,

    (7.19)

     The same answer is found in Example C.18 of Appendix where we applied nodal analysis to find

    .

    Norton’s equivalent is obtained from Thevenin’s circuit by exchanging and its series with

     in parallel with as shown in Figure 7.14. Thus,

    and

    V TH 110.213.6 

    112   j10.6   X 

     Z TH 

      110 j6.87 

                    

    100 

    V TH 110 j6.87 100 

     j10.6  

     X 

                    

    112   I  X 

     I  X 

     I  X 

     I  X 

    V TH 

     Z TH  100 +--------------------------------- 0.516 j0.058– 0.519 6.4  A–= = =

     I  X 

    V TH   Z TH 

     I  N   Z  N 

     I  N 

    V TH 

     Z TH ----------

    110.21 3.6  –

    112.5 5.4---------------------------------- 0.98 9  A–= = =

     Z  N   Z TH  112.5 5.4 = =

  • 8/13/2019 Circuit Analisis I

    4/4

    Chapter 7 Phasor Circuit Analysis

    7-12 Circuit Analysis I with MATLAB Applications

    Orchard Publications

     Figure 7.14. Norton equivalent circuit for Example 7.4

    7.5 Phasor Analysis in Amplifier Circuits

    Other circuits such as those who contain op amps and op amp equivalent circuits can be analyzed

    using any of the above methods.

    Example 7.5

    Compute for the circuit below where .

     Figure 7.15. Circuit for Example 7.5

    Solution:

     As a first step, we perform the , to transformation. Thus,

    and

     

     Also,

    and the phasor circuit is shown in Figure 5.16.

     I  N 

     Z  N 

    i X  t  vin t  2 30000t   V cos=

    +

    +

    0.2 mH 

    8

    2

    10

    50

    4

    i X  t 

    vC  t  vin t 

    5vC  t  10 3     F 

    t domain–   domain–

     X  L  j L j0.2 103–

    30 103

     j6 = = =

     jX C –  j–1

    C --------  j–

    1

    30 103

    10

    3------ 10

    6 –

    --------------------------------------------------  j10–= = =

    V  IN  2 0=