chapter 8 two-dimensional problem solution.ppt

Upload: gpskumar22

Post on 04-Jun-2018

245 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    1/51

    yxxy xyyx

    2

    2

    2

    2

    2

    ,,

    02 44

    4

    22

    4

    4

    4

    yyxx

    Using the Airy Stress Function approach, it was shown that the plane

    elasticity formulation with zero body forces reduces to a single governing

    biharmonic equation. In Cartesian coordinates it is given by

    and the stresses are related to the stress function by

    We now explore solutions to several specific problems in both

    Cartesian and Polar coordinate systems

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    2/51

    Cartesian Coordinate Solutions

    Using PolynomialsIn Cartesian coordinates we choose Airy stress function solution of polynomial form

    whereAmnare constant coefficients to be determined. This method produces

    polynomial stress distributions, and thus would not satisfy general boundary

    conditions. However, we can modify such boundary conditions using Saint-Venants

    principle and replace a non-polynomial condition with a statically equivalent loading.

    This formulation is most useful for problems with rectangular domains, and is

    commonly based on the inverse solution concept where we assume a polynomial

    solution form and then try to find what problem it will solve.

    Noted that the three lowest order terms with m + n 1 do not contribute to thestresses and will therefore be dropped. It should be noted that second order terms

    will produce a constant stress field, third-order terms will give a linear distribution of

    stress, and so on for higher-order polynomials.

    Terms with m + n 3 will automatically satisfy the biharmonic equation for anychoice of constantsAmn. However, for higher order terms, constantsAmnwill have to

    be related in order to have the polynomial satisfy the biharmonic equation.

    0 0

    ),(m n

    nm

    mn yxAyx

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    3/51

    Example 8.1 Uniaxial Tension of a Beam

    x

    y

    TT

    2l

    2c

    Boundary Conditions:0),(),(

    0),(,),(

    cxyl

    cxTyl

    xyxy

    yx

    Since the boundary conditions specify constant

    stresses on all boundaries, try a second-order

    stress function of the form

    2

    02yA 0,2

    02

    xyyx

    A

    The first boundary condition implies thatA02= T/2,

    and all other boundary conditions are identically

    satisfied. Therefore the stress field solution is

    given by

    0, xyyx T

    Displacement Field (Plane Stress)Stress Field

    E

    T

    Ee

    y

    v

    ET

    Ee

    xu

    xyy

    yxx

    )(1

    )(1

    )(,)( xgyE

    Tvyfx

    E

    Tu

    0)()(02

    xgyfe

    xv

    yu xy

    xy

    oo

    oo

    vxxg

    uyyf

    )(

    )(. . . Rigid-Body Motion

    Fixity conditionsneeded to determine RBM terms

    0)()(0)0,0()0,0()0,0( xgyfvu z

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    4/51

    Example 8.2 Pure Bending of a Beam

    Boundary Conditions:

    Expecting a linear bending stress distribution,

    try second-order stress function of the form

    3

    03yA 0,6

    03

    xyyx

    yA

    Moment boundary condition implies that

    A03= -M/4c3, and all other boundary conditions

    are identically satisfied. Thus the stress field is

    Stress Field

    Fixity conditionsto determine RBM terms:

    x

    y

    MM

    2l

    2c

    c

    c x

    c

    c x

    xyxyy

    Mydyyldyyl

    ylcxcx

    ),(,0),(

    0),(),(,0),(

    0,2

    33

    xyyx yc

    M

    )(4

    3

    2

    3

    )(23

    23

    2

    33

    33

    xgyEc

    Mvy

    Ec

    M

    y

    v

    yfxyEcMuy

    EcM

    xu

    0)()(2

    30

    3

    xgyfxEc

    M

    x

    v

    y

    u

    oo

    oo

    vxxEc

    Mxg

    uyyf

    2

    34

    3)(

    )(

    0)0,(and0)0,( lulv32

    16/3,0 EcMlvu ooo

    Displacement Field (Plane Stress)

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    5/51

    Example 8.2 Pure Bending of a BeamSolution Comparison of Elasticity

    with Elementary Mechanics of Materials

    x

    y

    MM

    2l

    2c

    ]44[8,

    0,

    222

    lxyEI

    M

    vEI

    Mxy

    u

    yI

    Mxyyx

    3/2 3cI

    Elasticity Solution Mechanics of Materials SolutionUses Euler-Bernoulli beam theory to

    find bending stress and deflection of

    beam centerline

    ]4[8

    )0,(

    0,

    22 lxEI

    Mxvv

    yI

    Mxyyx

    Two solutions are identical, with the exception of thex-displacements

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    6/51

    Example 8.3 Bending of a Beam by

    Uniform Transverse Loading

    x

    y

    w

    2c

    2l

    wl wl

    Boundary Conditions:

    Stress Field

    c

    c xy

    c

    c x

    c

    c x

    y

    y

    xy

    wldyyl

    ydyyl

    dyyl

    wcx

    cx

    cx

    ),(

    0),(

    0),(

    ),(

    0),(

    0),(

    52332

    23

    3

    03

    2

    21

    2

    205

    yA

    yxAyAyxAxA

    22321

    3

    232120

    32

    2303

    62

    222

    )3

    2(66

    xyAxA

    yAyAA

    yyxAyA

    xy

    y

    x

    2

    3

    3

    3

    32

    32

    2

    4

    3

    4

    3

    44

    3

    2

    )3

    2(

    4

    3

    5

    2

    4

    3

    xyc

    w

    xc

    w

    yc

    wy

    c

    ww

    yyxc

    wy

    c

    l

    c

    w

    xy

    y

    x

    BCs

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    7/51

    Example 8.3 Beam ProblemStress Solution Comparison of Elasticity

    with Elementary Mechanics of Materials

    x

    y

    w

    2c

    2l

    wl wl

    Elasticity Solution Mechanics of Materials Solution

    )(2

    32

    32

    )53

    ()(2

    22

    32

    3

    2322

    ycxI

    w

    cycyIw

    ycy

    I

    wyxl

    I

    w

    xy

    y

    x

    )(2

    0

    )(2

    22

    22

    ycxI

    w

    It

    VQ

    yxlI

    w

    I

    My

    xy

    y

    x

    Shear stresses are identical, while normal stresses are not

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    8/51

    Example 8.3 Beam ProblemNormal Stress Comparisons of Elasticity

    with Elementary Mechanics of Materials

    y/w- Elasticity

    y/w- Strength of Materials

    x/w- Elasticity

    x/w- Strength of Materials

    l/c= 2

    l/c= 4

    l/c= 3

    Maximum differences between the two theories exist

    at top and bottom of beam, and actual difference in

    stress values is w/5. For most beam problems where

    l>> c, the bending stresses will be much greater than

    w, and thus the differences between elasticity and

    strength of materials will be relatively small.

    Maximum difference between the two theories is w

    and this occurs at the top of the beam. Again this

    difference will be negligibly small for most beam

    problems where l>> c. These results are generally true

    for beam problems with other transverse loadings.

    xStress at x=0 y- Stress

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    9/51

    Example 8.3 Beam ProblemNormal Stress Distribution on Beam Ends

    x

    y

    w

    2c

    2l

    wl wl

    End stress distribution does not

    vanish and is nonlinear but gives

    zero resultant force.

    c

    y

    c

    ywycy

    I

    wylx

    5

    1

    3

    1

    2

    3

    53),(

    3

    323

    wylx /),(

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    10/51

    Example 8.3 Beam Problem

    x

    y

    w

    2c

    2l

    wl wl

    )()]56(2)()3

    2

    212[(2

    )()]3

    2

    3()

    5

    2

    3

    2()

    3[(

    22242

    22

    3224

    32

    32332

    xgycyy

    xlycycy

    EI

    wv

    yfc

    ycy

    xycy

    xyx

    xlEI

    wu

    oooo vxxclEI

    wx

    EI

    wxguyyf 2224 ])

    5

    8([

    424)(,)(

    Choosing Fixity Conditions 0),(),0( ylvyu ])25

    4(

    5

    121[

    24

    5,0

    2

    24

    l

    c

    EI

    wlvu ooo

    ])25

    4(

    5

    121[

    24

    5])

    25

    4(

    2[

    12

    ]562

    )[(3

    2

    2122

    )]3

    23

    ()5

    23

    2()3

    [(2

    2

    2422

    24

    224222

    3224

    3

    2

    3233

    2

    l

    c

    EI

    wlxc

    lx

    ycyyxl

    ycycy

    EI

    wv

    cycyxycyxyxxlEIwu

    ])25

    4(

    5

    121[

    24

    5)0,0(

    2

    24

    ma xl

    c

    EI

    wlvv

    EI

    wlv

    24

    5 4

    ma xStrength of Materials:

    Good match for beams where l>> c

    Displacement Field (Plane Stress)

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    11/51

    Cartesian Coordinate Solutions

    Using Fourier MethodsA more general solution scheme for the biharmonic equation may be

    found using Fourier methods. Such techniques generally use separation of

    variablesalong with Fourier seriesor Fourier integrals.

    )()(),( yYxXyx 02 44

    22

    4

    4

    4

    yyxx

    i

    00

    ]cosh)(sinh)[(cos

    ]cosh)(sinh)[(sin

    ]cosh)(sinh)[(cos

    ]cosh)(sinh)[(sin

    xxHFxxGEy

    xxHFxxGEy

    yyDByyCAx

    yyDByyCAx

    3

    3

    2

    2100 xCxCxCC 2

    9

    2

    87

    3

    6

    2

    540 xyCyxCxyCyCyCyC

    yx eYeX ,Choosing

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    12/51

    Example 8.4 Beam with Sinusoidal Loading

    x

    y qosinx/l

    l

    2c

    qol/ qol/

    /),(

    /),0(

    )/sin(),(

    0),(

    0),(

    0),(),0(

    lqdyyl

    lqdyy

    lxqcx

    cx

    cx

    yly

    c

    c oxy

    c

    c oxy

    oy

    y

    xy

    xx

    Boundary Conditions:

    ]cosh)(sinh)[(sin yyDByyCAx

    )]cosh2sinh(sinh

    )sinh2cosh(cosh[(cos

    ]cosh)(sinh)[(sin

    )]sinh2cosh(cosh

    )cosh2sinh(sinh[(sin

    2

    2

    2

    yyyDyB

    yyyCyAx

    yyDByyCAx

    yyyDyB

    yyyCyAx

    xy

    y

    x

    )1coth(

    )1tanh(

    ccCB

    ccDA

    l

    c

    l

    c

    l

    c

    l

    l

    cq

    Co

    coshsinh2

    sinh

    2

    2

    l

    c

    l

    c

    l

    c

    l

    lcq

    Do

    coshsinh2

    sinh

    2

    2

    Stress Field

    l

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    13/51

    Example 8.4 Beam Problem

    x

    y qosinx/l

    l

    2c

    qol/ qol/Bending Stress

    l

    c

    l

    clc

    l

    yl

    l

    cc

    l

    yl

    l

    yy

    l

    c

    l

    clc

    lyl

    lcc

    lyl

    lyy

    l

    x

    l

    cq

    lccCBccDA

    l

    c

    l

    c

    l

    c

    l

    l

    cq

    D

    l

    c

    l

    c

    l

    c

    l

    l

    cq

    C

    yyyDyB

    yyyCyAx

    ox

    oo

    x

    coshsinh

    coshcothcosh2sinh

    coshsinh

    sinhtanhsinh2cosh

    sinsinh2

    ,)1coth(,)1tanh(

    coshsinh2

    cosh

    ,

    coshsinh2

    sinh

    )]sinh2cosh(cosh

    )cosh2sinh(sinh[(sin

    2

    2

    2

    2

    2

    l

    xy

    c

    lq

    c

    yl

    xlq

    I

    My

    l

    xy

    c

    lq

    l

    x

    l

    y

    l

    y

    l

    y

    c

    lq

    BDACc

    lqD

    cl

    o

    o

    x

    oox

    o

    sin

    2

    3

    3/2

    sin

    sin2

    3sinsinhcosh

    4

    3

    0,,0,4

    3

    :

    23

    2

    3

    2

    2

    23

    2

    33

    3

    53

    5

    heoryaterialsft rength

    aseheor

    2/lx

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    14/51

    Example 8.4 Beam Problem

    x

    y qosinx/l

    l

    2c

    qol/ qol/

    oo uyyyyD

    yyyC

    yByAxEu

    ]}sinh2cosh)1[(

    ]cosh2sinh)1[(

    cosh)1(sinh)1({cos

    0)0,()0,0()0,0( lvvu ]2)1([,0 CBE

    uv ooo

    ]tanh)1(2[sin)0,( ccxE

    Dxv

    ]tanh2

    11[sin

    2

    3)0,(

    43

    4

    l

    c

    l

    c

    l

    x

    Ec

    lqxv o

    oo vyyyyD

    yyyC

    yByAxEv

    ]}cosh)1(sinh)1[(

    ]sinh)1(cosh)1[(

    sinh)1(cosh)1({sin

    For the case l>> c53

    5

    4

    3

    c

    lqD o

    Strength of Materialsl

    x

    Ec

    lqxv o

    sin2

    3)0,(

    43

    4

    Displacement Field (Plane Stress)

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    15/51

    Example 8.5 Rectangular Domain with

    Arbitrary Boundary Loading

    Boundary Conditions

    Must use series representation for Airy stress

    function to handle general boundary loading.

    )(),(

    0),(

    0),(

    0),(

    xpbx

    bx

    ya

    ya

    y

    xy

    xy

    x

    p(x)

    x

    y

    a a

    p(x)

    b

    b

    2

    0

    1

    1

    ]sinhcosh[cos

    ]sinhcosh[cos

    xCxxGxFy

    yyCyBx

    m

    mmmmmm

    n

    nnnnnn

    1

    2

    1

    2

    1

    2

    0

    1

    2

    1

    2

    1

    2

    )]sinhcosh(sinh[sin

    )]sinhcosh(sinh[sin

    )]cosh2sinh(cosh[cos

    2]sinhcosh[cos

    ]sinhcosh[cos

    )]cosh2sinh(cosh[cos

    m

    mmmmmmmm

    n

    nnnnnnnnxy

    m

    mmmmmmmm

    n

    nnnnnnny

    m

    mmmmmmm

    n

    nnnnnnnnx

    xxxGxFy

    yyyCyBx

    xxxGxFy

    CyyCyBx

    xxGxFy

    yyyCyBx

    Use Fourier series theory to handle general

    boundary conditions, and this generates a

    doubly infinite set of equations to solve for

    unknown constants in stress function form.

    See text for details

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    16/51

    Polar Coordinate Formulation

    Airy Stress Function Approach = (r,)

    rr

    r

    rrr

    r

    r

    1

    11

    2

    2

    2

    2

    2

    01111

    2

    2

    22

    2

    2

    2

    22

    24

    rrrrrrrr

    RS

    x

    y

    r

    Airy Representation

    Biharmonic Governing Equation

    ),(,),( rfTrfT rrTraction Boundary Conditionsr

    r

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    17/51

    Polar Coordinate Formulation

    Plane Elasticity Problem

    ru

    ruu

    re

    uu

    re

    r

    ue

    rr

    r

    rr

    121

    1

    0,2

    )()(

    2)(2)(

    rzzrr

    rrz

    r

    rrr

    e

    ee

    eeeeee

    Strainlane

    0,1

    )(1

    )(

    )(1,)(1

    rzzrr

    rrz

    rrr

    eeE

    e

    eeE

    e

    Ee

    Ee

    Stresslane

    Strain-Displacement

    Hookes Law

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    18/51

    General Solutions in Polar Coordinates

    Michell Solution

    berfr )(),(

    0)4(21212

    4

    22

    3

    2

    2

    2

    fr

    bbf

    r

    bf

    r

    bf

    rf

    Choosing the case where b= in, n= integer gives the general Michell solution

    2

    2

    43

    2

    21

    2

    2

    43

    2

    21

    16153

    1413

    1211

    1615

    3

    1413

    1211

    2

    7

    2

    654

    2

    3

    2

    210

    sin)(

    cos)(

    sin)loglog(

    cos)loglog(

    )loglog(

    loglog

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    nrbrbrbrb

    nrararara

    rrbrbrbr

    brrbrb

    rrararar

    arrara

    rrararaa

    rrararaa

    We will use various

    terms from this general

    solution to solve

    several plane problems

    in polar coordinates

    011112

    2

    22

    2

    2

    2

    22

    24

    rrrrrrrr

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    19/51

    Axisymmetric Solutions

    rrararaa loglog 232

    210

    0

    23log2

    2log2

    232

    13

    232

    13

    r

    r

    aa

    r

    ara

    aar

    ara

    CrBAaE

    ru

    BA

    rararraarE

    ur

    sincos4

    cossin

    )1(2)1(log)1(2)1(1

    3

    2331

    Stress Function Approach: =(r) Navier Equation Approach:u=ur(r)er(Plane Stress or Plane Strain)

    011

    22

    2

    rrr u

    rdr

    du

    rdr

    ud

    rCrCur

    121

    Displacements - Plane Stress Case

    Gives Stress Forms

    0,,22

    rr Br

    AB

    r

    A

    a3term leads to multivalued behavior, and is not found following the

    displacement formulation approach

    Could also have an axisymmetric elasticity problem using = a4which gives

    r=

    = 0 and

    r

    = a

    4/r 0, see Exercise 8-14

    Underlined terms representrigid-body motion

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    20/51

    Example 8.6 Thick-Walled Cylinder

    Under Uniform Boundary Pressure

    r1

    r2

    p1

    p2

    BrA

    Br

    Ar

    2

    2

    Boundary ConditionsGeneral Axisymmetric

    Stress Solution2211 )(,)( prpr rr

    2

    1

    2

    2

    2

    2

    21

    2

    1

    2

    1

    2

    2

    12

    2

    2

    2

    1 )(

    rr

    prprB

    rr

    pprrA

    2

    1

    2

    2

    2

    2

    21

    2

    1

    22

    1

    2

    2

    12

    2

    2

    2

    1

    2

    1

    2

    2

    2

    2

    21

    2

    1

    22

    1

    2

    2

    12

    2

    2

    2

    1

    1)(

    1)(

    rr

    prpr

    rrr

    pprr

    rr

    prpr

    rrr

    pprrr

    Using Strain Displacement

    Relations and Hookes Law

    for plane strain gives the

    radial displacement

    rrr

    prpr

    rrr

    pprr

    E

    r

    ABr

    Eur

    2

    1

    2

    2

    2

    2

    21

    2

    1

    2

    1

    2

    2

    12

    2

    2

    2

    1

    2

    )21(1)(1

    ])21[(1

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    21/51

    Example 8.6 Cylinder Problem Results

    Internal Pressure Only

    r1/r2= 0.5

    r/ r2

    r/p

    /p

    DimensionlessStress

    Dimensionless Distance, r/r2

    Thin-Walled Tube Case:

    pprrrr )3/5()/()()( 2

    1

    2

    2

    2

    2

    2

    1max

    t

    pro112 rrt 2/)( 21 rrro Matches with Strength

    of Materials Theory

    r1

    r2

    p

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    22/51

    Special Cases of Example 8-6

    Pressurized Hole in an Infinite Medium

    r1

    p

    22 and0 rp

    0,,2

    2

    112

    2

    11 zr

    r

    rp

    r

    rp

    r

    rp

    Eur

    2

    111

    Stress Free Hole in an Infinite Medium

    Under Equal Biaxial Loading at Infinity

    221 ,,0 rTpp

    2

    2

    1

    2

    2

    1 1,1r

    rT

    r

    rTr

    Tr 2)()( 1maxmax

    T

    T

    r1

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    23/51

    Example 8.7 Infinite Medium with a Stress

    Free Hole Under Uniform Far Field Loading

    TaT

    x

    y

    2sin2),(

    )2cos1(2

    ),(

    )2cos1(2

    ),(

    0),(),(

    T

    T

    T

    aa

    r

    r

    rr

    Boundary Conditions

    2cos)(

    loglog

    24

    2

    23

    4

    22

    2

    21

    2

    3

    2

    210

    ararara

    rrararaa

    2sin)26

    62(

    2cos)6

    122(2)log23(

    2cos)46

    2(2)log21(

    2

    24

    4

    232

    2221

    4

    234

    22212

    123

    224423212123

    r

    a

    r

    araa

    r

    araa

    r

    aara

    r

    a

    r

    aar

    aara

    r

    r

    Try Stress Function

    2sin23

    12

    2cos3

    12

    12

    2cos

    43

    1212

    2

    2

    4

    4

    4

    4

    2

    2

    2

    2

    4

    4

    2

    2

    r

    a

    r

    aT

    r

    aT

    r

    aT

    r

    a

    r

    aT

    r

    aT

    r

    r

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    24/51

    Example 8.7 Stress Results

    TaT

    x

    y

    2sin23

    12

    2cos3

    12

    12

    2cos

    43

    1212

    2

    2

    4

    4

    4

    4

    2

    2

    2

    2

    4

    4

    2

    2

    r

    a

    r

    aT

    r

    aT

    r

    aT

    r

    a

    r

    aT

    r

    aT

    r

    r

    1

    2

    3

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    Ta /),(

    Ta /),(

    0)30,(,)0,(

    )2cos21(),(

    oaTa

    Ta

    Ta

    r

    /)2,(

    r/a

    ,

    Ta 3)2/,(ma x

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    25/51

    Superposition of Example 8.7

    Biaxial Loading Cases

    = +

    T1

    T2

    T1

    T2

    Equal Biaxial Tension Case

    T1= T2= T

    Tension/Compression Case

    T1= T , T2= -T

    2sin23

    1

    2cos3

    1

    2cos43

    1

    2

    2

    4

    4

    4

    4

    2

    2

    4

    4

    r

    a

    r

    aT

    r

    aT

    r

    a

    r

    aT

    r

    r

    2

    2

    1

    2

    2

    1 1,1

    r

    rT

    r

    rTr

    Tr 2)()( 1maxmax

    TaaTaa 4)2/3,()2/,(,4),()0,(

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    26/51

    Review Stress Concentration Factors

    Around Stress Free Holes

    T

    T

    r1 TaT

    x

    y

    TT

    T

    T

    TT

    T T

    45o

    K = 2 K = 3

    K = 4

    =

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    27/51

    Stress Concentration Around

    Stress Free Elliptical HoleChapter 10

    x

    ySx

    b

    a

    a

    bS 21

    max

    0

    5

    10

    15

    20

    25

    0 1 2 3 4 5 6 7 8 9 10

    Eccentricity Parameter, b/a

    Stres

    sConcentrationFactor

    Circular Case

    ()max/S

    Maximum Stress Field

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    28/51

    Stress Concentration Around Stress Free

    Hole in Orthotropic MaterialChapter 11

    Isotropic Case

    Orthotropic Case Carbon/Epoxy

    x(0,y)/S

    SS

    x

    y

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    29/51

    2-D Thermoelastic Stress Concentration

    Problem Uniform Heat Flow Around

    Stress Free Insulation HoleChapter 12

    x

    y

    q

    a

    cos2

    1

    sin2

    1

    sin2

    1

    3

    3

    3

    3

    3

    3

    r

    a

    r

    a

    k

    qaE

    r

    a

    r

    a

    k

    qaE

    r

    a

    r

    a

    k

    qaE

    r

    r

    sin),(ma xk

    qaEa

    Stress Field

    kqaEa /)2/,(max

    Maximum compressive stress on hot side of hole

    Maximum tensile stress on cold side

    2/2/

    Steel Plate: E= 30Mpsi (200GPa) and = 6.5in/in/oF (11.7m/m/oC),qa/k= 100oF (37.7oC), the maximum stress becomes 19.5ksi (88.2MPa)

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    30/51

    Nonhomogeneous Stress Concentration Around Stress

    Free Hole in a Plane Under Uniform Biaxial Loading

    with Radial Gradation of Youngs Modulus Chapter 14

    n= 0 (homogeneous case)

    n= 0.2

    n= 0.4

    n= 0.6

    b/a= 20

    = 0.25n= -0.2

    n

    oa

    rErE

    )(

    -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.41

    1.5

    2

    2.5

    3

    3.5

    Power Law Exponent, n

    StressConcentrationFactor,K

    homogeneous case

    b/a= 20

    = 0.25

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    31/51

    Three Dimensional Stress Concentration

    ProblemChapter 13

    x

    y

    z

    a

    S

    S

    Normal Stress on thex,y-plane (z= 0)

    5

    5

    3

    3

    )57(2

    9

    )57(2

    541)0,(

    r

    a

    r

    aSrz

    Sa zz)57(2

    1527)()0,( ma x

    04.2

    )(3.0 max

    S

    z

    1.9

    1.95

    2

    2.05

    2.1

    2.15

    2.2

    0 0.1 0.2 0.3 0.4 0.5

    Poisson's Ratio

    StressConcentrationFactor

    Two Dimensional Case:(r,/2)/S

    Three Dimensional Case:z(r,0)/S, = 0.3

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    32/51

    Wedge Domain Problems

    )2sin2cos( 2121622 baaar

    2sin22cos22sin22cos222

    2sin22cos222

    21216

    212162

    212162

    ababaaa

    baaa

    r

    r

    x

    y

    r

    Use general stress function solution to include

    terms that are bounded at origin and give

    uniform stresses on the boundaries

    Quarter Plane Example (= 0 and = /2)

    x

    y

    S

    r

    0)0,()0,( rr r

    )2sin2

    2cos1(2

    )2sin2cos2

    22

    (2

    )2sin2cos2

    22

    (2

    S

    S

    S

    r

    r

    Sr

    r

    r

    )2/,(

    0)2/,(

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    33/51

    Half-Space ExamplesUniform Normal Stress Overx0

    x

    y

    T

    r Try Airy Stress Function

    2sin22126 rbra

    2cos2

    2sin22

    216

    216

    ba

    ba

    r

    Trr

    rr

    r

    r

    ),(,0),(

    0)0,()0,(

    Boundary Conditions

    )2cos1(2

    )22(sin2

    )22(sin2

    T

    T

    T

    r

    r

    Use BCs To Determine Stress Solution

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    34/51

    Half-Space Under Concentrated Surface

    Force System (Flamant Problem)

    x

    y

    Y

    X

    r

    C

    Try Airy Stress Function

    Boundary Conditions

    Use BCs To Determine Stress Solution

    sin)log(

    cos)log(

    1512

    1512

    rbrrb

    rarra

    21

    eeForces YX

    rr

    rr

    C

    r

    r

    0),(,0),(

    0)0,()0,(

    0

    ]sincos[2

    r

    r YXr

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    35/51

    Flamant Solution Stress Results

    Normal Force Case

    Dimensionless Distance,x/a

    y/(Y/a)

    xy/(Y/a)

    DimensionlessStress

    x

    y

    Y

    r= constant

    or in Cartesian

    components

    222

    2

    222

    32

    222

    2

    2

    )(

    2cossin

    )(

    2sin

    )(

    2cos

    yx

    Yxy

    yx

    Yy

    yx

    yYx

    rxy

    ry

    rx

    0

    sin2

    r

    rr

    Y

    y= a

    aYy /2

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    36/51

    Flamant Solution Displacement Results

    Normal Force Case

    011

    sin2

    )(11

    sin2

    )(1

    rr

    r

    rr

    rr

    r

    r

    u

    r

    uu

    r

    Er

    Y

    E

    u

    rr

    u

    Er

    Y

    Er

    u

    ]cos)1(coslog2sin)2

    )(1([

    ]sinlog2cos)2

    )(1[(

    rE

    Yu

    rE

    Yur

    )1(2),()0,( EY

    ruru rr

    ]log2)1[(),()0,( rE

    Yruru

    On Free Surface y= 0

    Y

    Note unpleasant feature of 2-D model that

    displacements become unbounded as r

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    37/51

    Comparison of Flamant Results with

    3-D Theory - BoussinesqsProblem

    x

    yz

    P

    0

    )1(24

    )21(

    4

    2

    2

    2

    u

    R

    z

    R

    Pu

    zR

    r

    R

    rz

    R

    Pu

    z

    r

    5

    2

    5

    3

    2

    3

    2

    2

    2

    3,

    2

    3

    2

    )21(

    )21(3

    2

    R

    rzP

    R

    Pz

    zR

    R

    R

    z

    R

    P

    zR

    R

    R

    zr

    R

    P

    rzz

    r

    5

    2

    5

    2

    2325

    3

    2

    2

    3

    2

    2

    2

    2

    3

    2

    2

    2

    2

    22

    2

    3,

    2

    3

    )(

    )2)(21(3

    2,

    2

    3

    )(

    )2()21(

    3

    2

    )(

    )2()21(

    3

    2

    )1(24

    ,21

    4,

    21

    4

    R

    Pxz

    R

    Pyz

    zRR

    xyzR

    R

    xyz

    R

    P

    R

    Pz

    zRR

    zRy

    zR

    R

    R

    z

    R

    zy

    R

    P

    zRR

    zRx

    zR

    R

    R

    z

    R

    zx

    R

    P

    R

    z

    R

    Pw

    zRR

    z

    R

    Pyv

    zRR

    z

    R

    Pxu

    xzyz

    xyz

    y

    x

    Cartesian Solution

    Cylindrical Solution

    Free Surface Displacements

    R

    PRuz

    2

    )1()0,(

    Corresponding 2-D Results

    ]log2)1[()0,( rE

    Pru

    3-D Solution eliminates the

    unbounded far-field behavior

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    38/51

    Half-Space Under Uniform Normal

    Loading Overaxap

    x

    y

    aa 12

    cossin2

    cossin

    sin2

    sin

    cossin2

    cos

    2

    32

    22

    r

    Y

    r

    Y

    r

    Y

    rxy

    ry

    rx

    dp

    d

    dp

    d

    dp

    d

    xy

    y

    x

    cossin2

    sin2

    cos2

    2

    2

    ]2cos2[cos2

    cossin2

    )]2sin2(sin)(2[2

    sin2

    )]2sin2(sin)(2[2

    cos2

    12

    1212

    2

    1212

    2

    2

    1

    2

    1

    2

    1

    pd

    p

    pd

    p

    pd

    p

    xy

    y

    x

    dx

    r

    d

    dY=pdx=prd/sin

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    39/51

    Half-Space Under Uniform Normal

    Loading - Results

    Dimensionless Distance, x/a

    Dim

    ensionlessStress

    y/p

    xy/p

    0 1 2 3 4 5 6 7 8 9 100

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    Dimensionless Distance,y /

    DimensionlessMaximumS

    hearStress

    a

    Distributed Loading

    max/p

    Concentrated Loading

    max/(Y/a)

    max- Contours

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    40/51

    Generalized Superposition Method

    Half-Space Loading Problems

    x

    y

    aa

    t(s)

    p(s)

    dsysx

    sxstys

    ysx

    sxspy

    dsysx

    sxstyds

    ysx

    spy

    dsysx

    sxstds

    ysx

    sxspy

    a

    a

    a

    axy

    a

    a

    a

    ay

    a

    a

    a

    ax

    222

    2

    222

    22

    222

    2

    222

    3

    222

    3

    222

    2

    ])[(

    ))((2

    ])[(

    ))((2

    ])[(

    ))((2

    ])[(

    )(2

    ])[(

    ))((2

    ])[(

    ))((2

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    41/51

    Photoelastic Contact Stress Fields

    (Uniform Loading)(Point Loading)

    (Flat Punch Loading) (Cylinder Contact Loading)

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    42/51

    Notch/Crack Problemy

    = 2-

    r

    Stress Free Facesx

    ])2cos()2sin(cossin[ DCBAr

    ])2sin()2()2cos()2(sincos[)1(

    ])2cos()2sin(cossin[)1(

    2

    2

    DCBAr

    DCBAr

    r

    0)2,()2,()0,()0,( rrrr rrBoundary Conditions:

    ,2,1,0,12

    0)1(2sin nn

    At Crack Tip r0:

    Try Stress Function:

    )(,)( 12 rOrO ntDisplacemeStress

    Finite Displacements and Singular Stresses at Crack Tip 1<

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    43/51

    Notch/Crack Problem Results

    )2

    sin3

    1

    2

    3(sin)

    2cos

    2

    3(cos

    1

    4

    3

    )2

    cos2

    3(cos)

    2sin3

    2

    3(sin

    1

    4

    3

    )2

    cos3

    5

    2

    3(cos)

    2sin5

    2

    3(sin

    1

    4

    3

    BAr

    BAr

    BAr

    r

    r

    )cos31(2

    cos2

    )cos1(2

    sin2

    3

    )cos1(2

    sin2

    3)cos1(

    2cos

    2

    3

    )cos31(2sin2)cos3(2cos2

    3

    r

    B

    r

    A

    r

    B

    r

    A

    r

    B

    r

    A

    r

    r

    y

    = 2-

    r

    Stress Free Facesx

    Transform to Variable

    Note special singular behavior of stress field O(1/r) Aand Bcoefficients are related to stress intensity factors and are useful in fracture

    mechanics theory

    Aterms give symmetric stress fieldsOpening or Mode I behavior

    Bterms give antisymmetric stress fieldsShearing or Mode II behavior

    C k P bl R lt

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    44/51

    Crack Problem Results

    Contours of Maximum Shear Stress

    Mode I (Maximum shear stress contours) Mode II (Maximum shear stress contours)

    Experimental Photoelastic Isochromatics

    Courtesy of URI Dynamic Photomechanics Laboratory

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    45/51

    Mode III Crack ProblemExercise 8-32

    y

    r

    x

    ),(,0 yxwwvu

    011

    2

    2

    22

    22

    w

    rr

    w

    rr

    ww

    2sin

    2,

    2cos

    2,

    2sin

    r

    A

    r

    ArAw zrz

    Anti-Plane Strain Case

    2/1rOStresses Again

    z - Stress Contours

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    46/51

    Curved Beam Under End Moments

    b

    a

    b

    a

    rr

    rr

    Mrdr

    dr

    ba

    ba

    0

    0)()(

    0)()(

    a

    b

    r

    MM

    0

    ])log()log()log([4

    )]log()log()log([4

    2222

    2

    22

    22

    2

    22

    r

    r

    abr

    aa

    b

    rb

    a

    b

    r

    ba

    N

    M

    r

    aa

    b

    rb

    a

    b

    r

    ba

    N

    M

    Dimensionless Distance,r/a

    DimensionlessStress

    a2

    MTheory of Elasticity

    Strength of Materials

    b/a = 4

    rrararaa loglog 232

    210

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    47/51

    Curved Cantilever BeamP

    ab

    r

    cos)(

    sin)3(

    sin)(

    22

    3

    22

    22

    3

    22

    22

    3

    22

    r

    ba

    r

    bar

    N

    P

    r

    ba

    r

    bar

    N

    P

    r

    ba

    r

    bar

    N

    P

    r

    r

    Dimensionless Distance, r/a

    Dimen

    sionlessStress,

    a/P

    Theory of Elasticity

    Strength of Materials

    = /2 b/a = 4

    b

    a r

    b

    a

    b

    a

    b

    a

    b

    a

    b

    a r

    rr

    rr

    drr

    baPrdrr

    Pdrr

    rdrrdrr

    Pdrr

    ba

    ba

    0)2/,(

    2/)()2/,(

    )2/,(

    0)0,()0,(

    )0,(

    0),(),(

    0),(),(

    sin)log( 3 rDrCrr

    BAr

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    48/51

    Disk Under Diametrical Compression

    +

    P

    P

    D=

    +

    Flamant Solution (1)

    Flamant Solution (2) Radial Tension Solution (3)

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    49/51

    Disk ProblemSuperposition of Stresses

    P

    P

    2

    y

    x

    1 r1

    r211

    2

    1

    )1(

    1

    3

    1

    )1(

    12

    1

    1

    )1(

    sincos2

    cos2

    sincos2

    r

    P

    r

    P

    rP

    xy

    y

    x

    0,2 )3()3()3(

    xyyxD

    P

    4

    2

    2

    4

    1

    2

    4

    2

    3

    4

    1

    3

    4

    2

    2

    4

    1

    2

    )()(2

    1)()(2

    1)()(2

    r

    xyR

    r

    xyRP

    DryR

    ryRP

    Dr

    xyR

    r

    xyRP

    xy

    y

    x

    22

    2,1 )( yRxr

    22

    2

    2

    )2(

    2

    3

    2

    )2(

    2

    2

    2

    2

    )2(

    sincos2

    cos2

    sincos2

    r

    P

    r

    P

    r

    P

    xy

    y

    x

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    50/51

    Disk ProblemResults

    0)0,(

    1)4(

    42)0,(

    442)0,(

    222

    4

    2

    22

    22

    x

    xD

    D

    D

    Px

    xDxD

    DPx

    xy

    y

    x

    0),0(

    1

    2

    2

    2

    22),0(

    2),0(

    y

    DyDyD

    Py

    DPy

    xy

    y

    x Constant

    (Theoretical maxContours) (Photoelastic Contours)(Courtesy of URI Dynamic Photomechanics Lab)

    x-axis (y= 0) y-axis (x= 0)

    P

    P

    2

    y

    x

    1 r1

    r2

  • 8/14/2019 Chapter 8 Two-Dimensional Problem Solution.ppt

    51/51

    Applications to Granular Media ModelingContact Load Transfer Between Idealized Grains

    (Courtesy of URI Dynamic Photomechanics Lab)

    P

    P

    P

    P

    Four-contact grain