chapter 8: momentum conservation

27
Momentum Conservation Chapter 8: Momentum Conservation K = (1/2) m v 2 Work-Energy Theorem Energy Conservation p = m v Impulse-Momentum Theorem Momentum Conservation Work Impulse Distance, l

Upload: rane

Post on 13-Jan-2016

35 views

Category:

Documents


3 download

DESCRIPTION

Chapter 8: Momentum Conservation. Impulse. Work. Distance, l. K = (1/2) m v 2 Work-Energy Theorem Energy Conservation. p = m v Impulse-Momentum Theorem Momentum Conservation. 1D Collision. M. m. M. m. Elastic Collision. Energy Conservation. Loss of energy as thermal and - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 8:  Momentum Conservation

Momentum Conservation

Chapter 8: Momentum Conservation

K = (1/2) m v2

Work-Energy TheoremEnergy Conservation

p = m vImpulse-Momentum TheoremMomentum Conservation

WorkImpulse

Distance, l

Page 2: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 3: Chapter 8:  Momentum Conservation

Momentum Conservation

1D Collision

M

m

m M

Page 4: Chapter 8:  Momentum Conservation

Momentum Conservation

Elastic Collision

2 '22

2 '11

222

211 2

1

2

1

2

1

2

1 :Energy Kinetic vmvmvmvm

'22

'112211 :Momentum vmvmvmvm

Page 5: Chapter 8:  Momentum Conservation

Momentum Conservation

Energy Conservation

f2,f1,2,i1,i K KKK

QK KKK f2,f1,2,i1,i

Loss of energy as thermal andother forms of energy

Page 6: Chapter 8:  Momentum Conservation

Momentum Conservation

Example 2

m v1 + m v2 = m v1’ + m v2’

Before collision After collision

v1’ = v2’

(totally inelastic collision)

Page 7: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 8: Chapter 8:  Momentum Conservation

Momentum Conservation

Impulsive Force

Impulsive Force

Ver

y la

rge

mag

nit

ud

e

Very short time

[Example] an impulsive force ona baseball that is struck with a bathas:

<F> ~ 5000 N & t ~ 0.01 s

[Note] The “impulse’’ conceptis most useful for impulsiveforces.

Page 9: Chapter 8:  Momentum Conservation

Momentum Conservation

Impulse-Momentum Theorem

f

i

f

i

p

p

t

t

if p -p ptFJ

p t F

t

p

t

m

t m a m F

d (1)d

dd

d

d

d

)d(

d

d vv

ifif

if

if

p -pt -t F

t -t

p -p

t

p F

)(

|J |

F

)(tF

1D2D

Page 10: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 11: Chapter 8:  Momentum Conservation

Momentum Conservation

Momentum Conservation)(tF2 x

)(1 tF x

2x,if2x,2x p -pJ

1x,if1x,1x p -pJ

x

y

)()( tt 2x1x F - F 2x1x J-J

f2x,f1x,2x,i1x,i p ppp

Page 12: Chapter 8:  Momentum Conservation

Momentum Conservation

Example 3(A

) M

omen

tum

Con

serv

atio

n

(B) Energy Conservation

(A) mv = (m+M) v’(B) K1+Ug1 = K2+Ug2

Express v and v’ in terms ofm, M, g, and h.

1

2

Page 13: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 14: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 15: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 16: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 17: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 18: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 19: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 20: Chapter 8:  Momentum Conservation

Momentum Conservation

Example 1

vi = 28 m/s

vf = 28 m/s

What is the impulse given thewall ? Note: m = 0.060 kg.px, and py for the ballJ(on the wall) = - J(on the ball)

px,i

px,f

py,f

x

y

(1) Coordinates(2) J(on the ball)

px = px,f - px,i = - 2 x px,i py = py,f - py,i = 0

where: px,i = m vi sin 1.2 N*s

py,i

Page 21: Chapter 8:  Momentum Conservation

Momentum Conservation

1D/2D “Explosion’’

1 2 (or more)

Page 22: Chapter 8:  Momentum Conservation

Momentum Conservation

Center of mass

Center of Mass (c.m. or CM)

The overall motion of a mechanical system can be described in terms of a special point called “center of mass” of the system:

system. on the exerted forces

theall of sum vector theiswhere F

a M F

system

cmsystemsystem

Page 23: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 24: Chapter 8:  Momentum Conservation

Momentum Conservation

Page 25: Chapter 8:  Momentum Conservation

Momentum Conservation

CM Position (2D)

m1 m2 + m3

m1 + m2

m3

X

Xycm = 0.50 m

xcm = 1.33 m

Page 26: Chapter 8:  Momentum Conservation

Momentum Conservation

CM Position and Velocity

m v1 + m v2 = (m + m) v’(totally inelastic collision)

m m

m m

m m

m m

21

2211cm

21

2211cm

vv

vrr

r

;

m m

m m

m m

m m

21

21cm

m/s 12

m 24

vvv

xxx

xcm,

48.0 m

x

m m

m m

m m

m m

21

21

21cm

m/s 12

m 0

vvv

xxx

xcm,

t = -2 s

t = 0 s

Page 27: Chapter 8:  Momentum Conservation

Momentum Conservation

2D Collision