chapter 3 math 3

Upload: nourhangamal

Post on 02-Jun-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Chapter 3 math 3

    1/50

    1

    Arab Academy for Science, Technology and Maritime Transport

    College of Engineering and Technology

    Department of Basic and Applied Science

    Mathematics (3)

    BA223Chapter (3)Laplace Transforms

    Prepared by:

    Hossam Shawky

    Associate Prof. of Engineering Mathematics

    Fall 2014-2015

  • 8/10/2019 Chapter 3 math 3

    2/50

    2

    Chapter (3)

    Laplace Transforms

    Laplace: Newton of France [1749-1827]

    Definition:

    Suppose that )t(f is a piecewise continuous function, defined for 0t . TheLaplace transform of )t(f is denoted )t(fL and defined as

    0s),s(Fdt)t(fe)t(fL

    0

    st

    ,

    provided that 0)s(FLims

    .

    Time Domain L.T Frequency Domain

    )t(f )s(F I.L.T

    Sufficient conditions for existence of Laplace transform:

    1) A function )t(f is a piecewise continuous function on ),0[ .2) A function )t(f is of exponential order for Tt ,

    i.e 0T,0c,0M,Me

    )t(fct

    tLim

    .

    So, neither

    t1L nor 2teL exists.

  • 8/10/2019 Chapter 3 math 3

    3/50

    3

    A function is called piecewise continuous on an interval if the interval can be brokeninto a finite number of subintervals on which the function is continuous on each open

    subinterval and has a finite limit at the endpoints of each subinterval. Below is a

    sketch of a piecewise continuous function.

    Recall

    (1) 1e0 (2) e (3) 0e (4) cke

    dtekt

    kt

    Laplace transforms for some basic functions:

    s

    K

    s

    10K

    s

    eKdteKKL]1[

    0st

    st

    0

    as,

    as

    1

    )as(

    10

    )as(

    e

    dtedteeeL]2[0

    t)as(

    0

    t)as(

    0

    atstat

    Result:

    as

    1

    eL at

  • 8/10/2019 Chapter 3 math 3

    4/50

    4

    Examples:

    2s

    1eL t2

    ,

    2s

    1eL t2

    dtettL]3[ st0

    nn

    dtsdxst xLet

    0x0 tat , x tas

    1n

    x

    0

    n

    1n

    x

    0

    nn

    s

    )1n(dxex

    s

    1dxs

    1e

    s

    xtL

    where is the Gamma function.

    !n)1n( (n is a positive integer number)

    1n

    n

    s

    !ntL

    (n is a positive integer number)

    Example

    6

    5

    s

    !5tL

    22

    atat

    as

    s

    )as)(as(

    asas

    2

    1

    as

    1

    as

    1

    2

    1eeL

    2

    1atcoshL]4[

  • 8/10/2019 Chapter 3 math 3

    5/50

    5

    22

    atat

    as

    a

    )as)(as(

    asas

    2

    1

    as

    1

    as

    1

    2

    1eeL

    2

    1atsinhL]5[

    22

    iatiat

    as

    s

    )ias)(ias(

    iasias

    2

    1

    ias

    1

    ias

    1

    2

    1eeL

    2

    1atcosL]6[

    22

    iatiat

    as

    a

    )ias)(ias(

    iasias

    i2

    1

    ias

    1

    ias

    1

    i2

    1eeL

    i2

    1atsinL]7[

    Properties of Laplace Transforms

    Property No.1: Linearity of the transformation

    If )s(F)t(fL 11 and )s(F)t(fL 22 , then

    )s(FC)s(FC)t(fLC)t(fLC)t(fC)t(fCL 221122112211

  • 8/10/2019 Chapter 3 math 3

    6/50

    6

    Sheet (15)

    F ind the Laplace transform of each of the following functions

    No.1 t3sinh4t3cos5t3e23)t(f 4t2

    Solution:

    3s

    34

    9s

    s5

    s

    72

    2s

    2

    s

    3

    3s

    34

    9s

    s5

    s

    !43

    2s

    12

    s

    3)s(F

    225

    225

    No.22t2 )3e5()t(f

    Solution:

    s

    9

    2s

    30

    4s

    25)s(F

    9e30e25)t(f t2t4

    No.32)t2cost2(sin)t(f

    Solution:

    16s

    4

    s

    1)s(F

    t4sin1t2cost2cost2sin2t2sin)t(f

    2

    22

    No.4 t3cos)t(f 2

    Solution:

    36s

    s

    s

    1

    2

    1)s(F

    )t6cos1(2

    1)t(f

    2

  • 8/10/2019 Chapter 3 math 3

    7/50

    7

    Recall:

    (1) BsinAsinBcosAcos)BAcos(

    (2)

    BsinAsinBcosAcos)BAcos(

    (3) BsinAcosBcosAsin)BAsin(

    (4) BsinAcosBcosAsin)BAsin(

    From the above four equations, we get

    (5) )BAcos()BAcos(2

    1BcosAcos by adding (1) +(2)

    (6) )BAcos()BAcos(2

    1BsinAsin by subtracting (2) -(1)

    (7) )BAsin()BAsin(2

    1BcosAsin by adding (3) +(4)

    (8) )xcos()xcos( , since )xcos( is an even function

    (9) )xsin()xsin( , since )xsin( is an odd function

    (10) )xcosh()xcosh( , since )xcosh( is an even function

    (11) )xsinh()xsinh( , since )xsinh( is an odd function

    (12) 1at2cosh2

    1atcosh2

    (13) 1at2cosh2

    1atsinh 2

  • 8/10/2019 Chapter 3 math 3

    8/50

    8

    Sheet (15)

    F ind the Laplace transform of each of the following functions

    No.5 )3t3cos()t(f

    Solution:

    9s

    3

    2

    3

    9s

    s

    2

    1)s(F

    t3sin

    2

    3t3cos

    2

    1

    3sint3sin

    3cost3cos)t(f

    22

    No.6 t2sinh)t(f 2

    Solution:

    1t4cosh2

    1)t(f

    s

    1

    16s

    s

    2

    1)s(F

    2

    No.7 t6cost3sin)t(f

    Solution:

    ]t3sint9[sin2

    1)t6t3sin()t6t3sin(

    2

    1)t(f

    9s

    3

    81s

    9

    2

    1)s(F

    22

  • 8/10/2019 Chapter 3 math 3

    9/50

    9

    No.8 t5sint3sin)t(f

    Solution:

    ]t8cost2[cos2

    1

    )]t5t3cos()t5t3[cos(21)t(f

    64s

    s

    4s

    s

    2

    1)s(F

    22

    No.9 t6cost3cos)t(f

    Solution:

    81s

    s

    9s

    s

    2

    1)s(F

    ]t9cost3[cos2

    1

    )]t6t3cos()t6t3[cos(2

    1)t(f

    22

    Property No.2: F irst Shi f ting Theorem [s-shi f ting]

    If )s(F)t(fL , then )as(F)}t(fe{L at

    Proof:

    )s(Fdt)t(fe)t(fL0

    st

    )as(Fdt)t(fedt)t(fee)t(feL0

    t)as(

    0

    atstat

  • 8/10/2019 Chapter 3 math 3

    10/50

    10

    No.10 t4sine)t(f t2

    Solution:

    16)2s(

    4}t4sine{L

    16s

    4}t4{sinL

    2

    t2

    2

    No.11 t4sine)t(f 2t

    Solution:

    64)1s(

    1s

    1s

    1

    2

    1}t4sine{L

    64s

    s

    s

    1

    2

    1}t4{sinL

    ]t8cos1[2

    1t4sin

    2

    2t

    2

    2

    t2

    No.12 )t6cos5t3sin4(e)t(f t3

    Solution:

    36)3s()3s(5

    9)3s(12)}t(f{L

    36s

    s5

    9s

    34}t6cos5t3sin4{L

    22

    22

  • 8/10/2019 Chapter 3 math 3

    11/50

    11

    No.132t )t2sinhe()t(f

    Solution:

    s

    1

    16s

    s

    2

    1

    4)1s(

    4

    2s

    1)}t(f{L

    s

    1

    16s

    s

    2

    1}t2{sinhL

    ]1t4[cosh2

    1t2sinh

    4)1s(

    2}t2sinhe{L

    4s

    2}t2{sinhL

    2s

    1}e{L

    t2sinht2sinhe2e)t(f

    22

    2

    2

    2

    2

    t

    2

    t2

    2tt2

    No.14 t4sint2sine)t(f t2

    Solution:

    36)2s(

    2s

    4)2s(

    2s

    2

    1)}t(f{L

    36s

    s

    4s

    s

    2

    1}t4sint2{sinL

    ]t6cost2[cos2

    1

    )]t4t2cos()t4t2[cos(2

    1t4sint2sin

    22

    22

  • 8/10/2019 Chapter 3 math 3

    12/50

    12

    No.15 t6cost3sine)t(f t3

    Solution:

    9)3s(

    3

    81)3s(

    9

    2

    1

    )}t(f{L

    9s

    3

    81s

    9

    2

    1}t6cost3{sinL

    ]t3sint9[sin2

    1

    )]t6t3sin()t6t3[sin(2

    1

    t6cost3sin

    22

    22

    No.16t5 3.t)t(f

    Solution:

    6

    t5

    65

    5t)3(ln

    )3lns(

    !5}3t{L

    s!5}t{L

    tet3lne5t)t(f

  • 8/10/2019 Chapter 3 math 3

    13/50

    13

    Property No.3: Derivatives of Transforms

    If )s(F)t(fL , then )s(Fsd

    d)t(ftL

    Proof:

    )s(Fdt)t(fe)t(fL0

    st

    )t(ftLdt)t(ftedt)t(fet

    dt)t(fes

    dt)t(fesdd)s(F

    sdd

    0

    st

    0

    st

    0

    st

    0

    st

    )s(Fsdd

    )t(ftL

    Result:

    )s(Fsd

    d)t(ftL

    2

    22

    In general:

    )s(Fsd

    d)1()t(ftLn

    nnn

    Recall:

    v

    uy 2v

    vuuvy

  • 8/10/2019 Chapter 3 math 3

    14/50

    14

    No.17 t2sint)t(f

    Solution:

    22222

    2

    )4s(

    s4

    )4s(

    s220

    4s

    2

    ds

    d}t2sint{L

    4s2}t2{sinL

    No.18 t3cost)t(f 2

    Solution:

    42

    22222

    22

    2

    22

    22

    22

    22

    2

    )9s(

    s2)9s(2)s9(]s2[)9s(}t3cost{L

    )9s(s9

    dsd

    )9s()s2s(1)9s(

    dsd}t3cost{L

    9s

    s

    ds

    d}t3cost{L

    9s

    s}t3{cosL

  • 8/10/2019 Chapter 3 math 3

    15/50

    15

    No.19 t3coste)t(f t2

    Solution:

    222t2

    22

    2

    22

    2

    22

    2

    2

    2

    9)2s(

    9)2s(}t3coste{L

    )9s(

    9s

    )9s(

    s9

    )9s(

    ]s2.s[1).9s(

    9s

    s

    ds

    d}t3cost{L

    9s

    s

    }t3{cosL

    No.20 t2sinte)t(f 2t3

    Solution:

    22

    2

    2

    2t3

    222

    2

    22

    2

    22

    2

    2

    2

    2

    ]16)3s[(

    )3s(16

    )3s(

    1

    2

    1}t2sinte{L

    )16s(

    )s16(

    s

    121

    )16s(

    ]s2.s[1).16s(

    s

    1

    2

    1

    16s

    s

    s

    1

    ds

    d

    2

    1}t2sint{L

    16s

    s

    s

    1

    2

    1}t2{sinL

    ]t4cos1[2

    1

    t2sin

  • 8/10/2019 Chapter 3 math 3

    16/50

    16

    No.21t37et)t(f

    Solution:

    8

    t37

    8

    7

    )3s(

    !7

    }e.t{Ls

    !7

    }t{L

    No.22t42

    e)1t()t(f

    Solution:

    )4s(

    1

    )4s(

    2

    )4s(

    !2)}t(f{L

    s

    1

    s

    2

    s

    !2}1t2t{L

    e]1t2t[)t(f

    23

    23

    2

    t42

    No.23 )3

    t3cos(t)t(f

    Solution:

    2222

    2

    2222

    2

    22

    22

    )9s(

    s.33

    )9s(

    s9

    2

    1

    )9s(

    ]s2.3[0.

    2

    3

    )9s(

    ]s2.s[1).9s(

    2

    1

    9s

    3

    2

    3

    9s

    s

    2

    1

    ds

    d)}3t3cos(.t{L

    9s

    3

    2

    3

    9s

    s

    2

    1)}3

    t3{cos(L

    t3sin2

    3t3cos

    2

    13

    sint3sin3

    cost3cos)3

    t3cos(

  • 8/10/2019 Chapter 3 math 3

    17/50

    17

    No.24 t3cosht2cost)t(f

    Solution:

    22

    2

    22

    2

    22

    2

    2

    t3t3

    ]4)3s[(

    4)3s(

    ]4)3s[(

    4)3s(

    2

    1)}t(f{L

    )4s(

    4s}t2cost{L

    4s

    s}t2{cosL

    )]ee)(t2cos.t(

    2

    1)t(f

    Property No.4: Transform I ntegration

    If )s(F)t(fL , thens

    )s(Fdx)x(fL

    t

    0

    No.25 }dx)x3sinx({L

    t

    0

    Solution:

    9s

    3

    s

    1

    s

    1}dx)x3sinx({L

    9s

    3

    s

    1)s(F

    t3sint)t(f

    22

    t

    0

    22

  • 8/10/2019 Chapter 3 math 3

    18/50

    18

    No.26 }dx)x2sinhe({L

    t

    0

    2x

    Solution:

    t2sinht2sinhe2e)t2sinhe()t(f 2tt22t

    From No.13

    s

    1

    16s

    s

    2

    1

    4)1s(

    4

    2s

    1)s(F

    22

    s

    1

    16s

    s

    2

    1

    4)1s(

    4

    2s

    1

    s

    1}dx)x2sinhe({L

    22

    t

    0

    2x

    No.27 }dxx3cosxe{L

    t

    0

    x2

    Solution:

    t3coset)t(f t2

    From No.19

    22

    2

    ]9)2s[(9)2s()s(F

    22

    2t

    0

    x2

    ]9)2s[(

    9)2s(

    s

    1}dx)x3cos.e.x({L

  • 8/10/2019 Chapter 3 math 3

    19/50

    19

    No.28

    t

    0

    x2t2dx)x3cose(e)t(f

    Solution:

    dx)x3cos.e({L)}t(f{L

    t

    0

    x2

    9s

    s}t3{cosL

    2

    9)2s(

    2s

    }t3cos.e{L 2

    t2

    9)2s(

    2s

    s

    1dx)x3cos.e({L

    2

    t

    0

    x2

    9s

    s

    )2s(

    1)}t(f{L

    2

  • 8/10/2019 Chapter 3 math 3

    20/50

    20

    Property No.5:

    If )s(F)t(fL , then sd)s(F

    t

    )t(fL

    s

    ,

    Provided thatt

    )t(fLim

    0t exists

    Recall:

    (1)

    C

    a

    stansd

    as

    a 122

    (2)

    2

    1tan

    (3)

    11

    2cottan

    No.1t

    t4sin)t(f

    Solution:

    4

    scot

    4

    stan

    24

    stantan

    4

    stands

    16s

    4}

    t

    t4sin{L

    16s

    4}t4{sinL

    1111

    s

    1

    s

    2

    2

  • 8/10/2019 Chapter 3 math 3

    21/50

    21

    No.2t

    tsine)t(f

    t

    Solution:

    )1s(cot)1s(tan2

    )1s(tands

    1)1s(

    1}

    t

    tsin.e{L

    1)1s(

    1}tsin.e{L

    1s

    1}t{sinL

    11

    s1

    s

    2

    t

    2

    t

    2

    No.3t

    ee)t(f

    t3t2

    Solution:

    2s

    3sln

    3s

    2sln1ln

    3s

    2sln

    3s

    2slnLim

    3s

    2sln]3sln2s[ln

    ds3s

    1

    2s

    1}

    t

    ee{L

    3s

    1

    2s

    1}ee{L

    s

    ss

    s

    t3t2

    t3t2

  • 8/10/2019 Chapter 3 math 3

    22/50

    22

    No.4t

    t4cost6cos)t(f

    Solution:

    36s

    16sln

    16s

    36sln1ln

    16s

    36sln

    16s

    36slnLim

    16s

    36sln

    16sln

    2

    136sln

    2

    1

    ds16s

    s

    36s

    s}

    t

    t4cost6cos{L

    16ss

    36ss}t4cost6{cosL

    2

    2

    2

    2

    2

    2

    2

    2

    ss

    2

    2

    s

    22

    s

    22

    s2

  • 8/10/2019 Chapter 3 math 3

    23/50

    23

    No.5t

    t4cose)t(f

    t3

    Solution:

    3s

    16sln

    16s

    3sln1ln

    16s

    3s

    ln16s

    3s

    lnLim16s

    3s

    ln

    16sln2

    13slnds

    16s

    s

    3s

    1)}t(f{L

    16s

    s3s

    1}t4cose{L

    2

    2

    22ss

    2

    s

    2

    s

    2

    2

    t3

    Unit Step Function:

    ot0

    ot1)t(u

    s

    1)}t(u{L

  • 8/10/2019 Chapter 3 math 3

    24/50

    24

    at0

    at1)at(u

    ases

    1)}at(u{L

    Property No.6: Second Shi f ting Theorem (t-shi f ting)

    If )s(F)t(fL , then )s(Fe)at(u)at(fL as ,

    No.6 s34

    3 es!3)}3t(u)3t{(L

    No.7s

    2 e4s

    2)}t(u)t(2{sinL

    No.8s3)3t(4 e

    4s

    1)}3t(ue{L

  • 8/10/2019 Chapter 3 math 3

    25/50

    25

    Expressing the function )t(f in terms of a Unit step function:

    Let,

    ctb)t(f

    bta)t(fat0)t(f

    )t(f3

    2

    1

    , then

    ......)bt(U)t(f)t(f)at(U)t(f)t(f)t(U)t(f)t(f 23121

    No.9

    5t1

    5t20

    2t01

    )t(f

    Solution:

    s5s2

    s5s2sst2

    0st

    2

    0

    5

    2 5

    t5st

    0

    st

    ee1

    s

    1

    e0s

    11e

    s

    1

    s

    ]e[

    s

    ]e[

    dte0dtedt)t(fe)}t(f{L

  • 8/10/2019 Chapter 3 math 3

    26/50

    26

    Another solution

    s5s2s5s2 ee1s

    1es

    1es

    1

    s

    1)s(F

    )5t(u)2t(u)t(u

    )5t(u]01[)2t(u]10[)t(u1)t(f

    No.10 )}2t(u)3t2{(L

    Solution:

    7)2t(23]2)2t[(23t2 s2

    2e.

    s

    7

    s

    1.2)}2t(u]7)2t(2{[L

    No.11 )}3t(u)1t3{(L 2

    Solution:

    8)3t(31]3)3t[(3)1t3(

    64)3t(48)3t(9)1t3( 22

    s3

    23

    2 e.s

    64

    s

    1.48

    s

    !2.9)}3t(u.]64)3t(48)3t(9{[L

    No.12)}2t(u)t2{(L

    2

    Solution:

    2]2t[)t(

    4)2t(4)2t(t 22

    )2t(4)2t(2]4)2t(4)2t[(2t2 222

    s2

    23

    2 e.s

    1.4

    s

    !2

    s

    2)}2t(u)]2t(4)2t(2{[L

  • 8/10/2019 Chapter 3 math 3

    27/50

    27

    No.13 )}3t(u)4t4t{(L 2

    Solution:

    )}3t(u)2t{(L)}3t(u)4t4t{(L 22 5)3t(2]3)3t[(2t

    25)3t.(10)3t()2t( 22

    s3

    23

    2 e.s

    25

    s

    1.10

    s

    !2)}3t(u]25)3t.(10)3t{[(L

    No.14 )}2t(u]t5e2{[L

    2t3

    Solution:

    2)2t(t

    6)2t(3]2)2t[(3t3

    4)2t(4)2t(t 22

    s2

    23

    6

    2)2t(36

    es

    20

    s

    1.20

    s

    !2.5

    3s

    1.e2

    )}2t(u]20)2t(20)2t(5e.e2{[L

    No.15 )}t(ut2{sinL

    Solution:

    2)t(2])t[(2t2

    s

    2e.

    4s

    2)}t(u)t(2{sinL)}t(u]2)t(2{sin[L

  • 8/10/2019 Chapter 3 math 3

    28/50

    28

    No.16

    )2

    t(u)et(sinL t

    Solution:

    )2

    t(ue2

    )2

    t(sin)2

    t(u).et(sin 2)2

    t(t

    )2

    t(ue.e2

    sin).2

    tcos(2

    cos).2

    tsin( 2t

    2

    2tue.e

    2tcos)t(f 2

    t2

    s22

    2e

    1s

    1.e

    1s

    s)s(F

  • 8/10/2019 Chapter 3 math 3

    29/50

    29

    No.17

    1t4

    1t02)t(g

    Solution:

    )1t(u2)t(u2

    )1t(u].24[)t(u.2)t(g

    (i) ss e1s

    2e.

    s

    2

    s

    2)}t(g{L

    (ii) )3s(t3 e1)3s(

    2)}t(g.e{L

    (iii)

    )e1(s2

    s1}dx)x(g{L s

    t

    0

    (iv)

    s

    22

    s

    2

    ss

    s

    e.s

    2

    s

    2e.

    s

    2

    s

    2

    ).e1()e(s

    2

    )e1(s

    2

    ds

    d)}t(g.t{L

  • 8/10/2019 Chapter 3 math 3

    30/50

    30

    Inverse Laplace Transforms

    )s(F)t(fL )t(f)s(FL 1

    Sheet (17)

    F ind the I nverse Laplace transform of each of the following

    functions

    No.1s

    3)s(F

    Solution: 3s

    3

    L1

    No.22s

    1)s(F

    Solution:t21 e

    2s

    1L

    No.3 2s1)s(F

    Solution: ts

    1L

    2

    1

    No.44s

    s)s(F

    2

    Solution: t2cos4s

    sL

    2

    1

    No.59s

    3)s(F

    2

    Solution:

    t3sin9s

    3L 21

  • 8/10/2019 Chapter 3 math 3

    31/50

    31

    No.64s

    s)s(F

    2

    Solution:

    t2cosh4s

    sL

    2

    1

    No.79s

    3)s(F

    2

    Solution:

    t3sinh9s

    3L

    2

    1

    No.84s

    1)s(F

    Solution:

    !3

    t

    s

    1L

    3

    4

    1

    No.99s

    1)s(F2

    Solution:

    t3sin3

    1

    9s

    1L

    2

    1

  • 8/10/2019 Chapter 3 math 3

    32/50

    32

    No.107s

    1)s(F

    2

    Solution:

    t7sinh7

    1

    7s

    1L

    2

    1

    Recall: )as(F)}t(fe{L at

    No.119)2s(

    )2s()s(F2

    Solution:

    t3cos.e9)2s(

    2sL t2

    2

    1

    No.129)4s(

    1)s(F

    2

    Solution: t3sin.e.3

    1

    9)4s(

    1L t4

    2

    1

    Completion Square

    9)2s(13s4s 22

    16)3s(25s6s 22

    7)2s(3s4s 22

    4/1)2/1s(ss 22

  • 8/10/2019 Chapter 3 math 3

    33/50

    33

    No.1325s8s

    )2s()s(F

    2

    Solution:

    ]t3sin2t3[cose

    t3sine31.6t3cos.e

    9)4s(

    1L6}

    9)4s(

    4s{L

    9)4s(

    6)4s(L

    25s8s

    2sL

    t4

    t4t4

    2

    1

    2

    1

    2

    1

    2

    1

    No.145s2s

    )3s2()s(F

    2

    Solution:

    ]t2sin21t2cos2[et2sine

    21t2co.e2

    4)1s(

    1L

    4)1s(

    )1s(L2

    4)1s(

    1)1s(2L

    4)1s(

    3]1)1s[(2L

    5s2s

    3s2L

    ttt

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

  • 8/10/2019 Chapter 3 math 3

    34/50

    34

    Recall: )s(Fe)at(u)at(fL as

    No.15

    s

    2 e13s4s

    )3s2(

    )s(F

    Solution:

    )t(u)t(3sin3

    1)t(3cos2e

    e.13s4s

    )3s2(L

    ]t3sin3

    1t3cos2[et3sine

    3

    1t3cose2

    9)2s(

    1

    L9)2s(

    )2s(

    L2

    9)2s(

    1)2s(2L

    9)2s(

    3]2)2s[(2L

    13s4s

    3s2L

    )t(2

    s

    2

    1

    t2t2t2

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    No.16s3

    4e

    )5s(

    s)s(F

    Solution:

    t6

    5

    2

    1et

    !3

    t.e.5

    !2

    t.e

    )5s(

    1L5

    )5s(

    1L

    )5s(

    5)5s(L

    )5s(

    sL

    t523

    t52

    t5

    4

    1

    3

    1

    4

    1

    4

    1

    )3t(u)3t(6

    5

    2

    1e)3t(e.

    )5s(

    sL )3t(52s3

    4

    1

  • 8/10/2019 Chapter 3 math 3

    35/50

    35

    I nverse Laplace Transform using Partial fractions:

    )s(QofdegreesPofdegree

    sQ

    sP

    Purpose:

    To transform

    basA

    bassQ

    basB

    bas

    A

    bassQ 22

    cbsas

    BAs)cbsas(sQ

    2

    2

    cbsas

    DCs

    cbsas

    BAscbsassQ

    222

    22

    Find the unknowns A,B,C,. Using the Heaviside Method:

    We can get all the unknowns if 1bassQ

    No.17)2s)(1s(

    s)s(F

    Solution:

    )2s(

    B

    )1s(

    A

    )2s)(1s(

    s

    3

    2

    2s)1s(

    sB,

    3

    1

    1s)2s(

    sA

    2s1s

    3s2

    2s

    1

    1s

    1

  • 8/10/2019 Chapter 3 math 3

    36/50

    36

    t2t111 e3

    2e

    3

    1

    )2s(

    3

    2

    L)1s(

    3

    1

    L)2s)(1s(

    sL

    No.18)3s)(2s)(1s(

    s)s(F

    2

    Solution:

    3s

    C

    2s

    B

    1s

    A

    )3s)(2s)(1s(

    s2

    ,2

    1

    1s)3s)(2s(

    sA

    2

    41

    4

    2s)3s)(1s(

    sB

    2

    2

    9

    )1)(2(

    9

    3s)2s)(1s(

    sC

    2

    t3t2t111

    21

    e2

    9e4e

    2

    1

    3s2

    9

    L2s

    4L

    1s2

    1

    L

    )3s)(2s)(1s(

    sL

    Find the unknowns A,B,C,. using the general Method:

    Steps:

    (1) * Q(s)

    (2) Sub. By zeros of Q(s)

    (3) Compare Coefficients

  • 8/10/2019 Chapter 3 math 3

    37/50

    37

    Sheet (17)

    F ind the I nverse Laplace transform of each of the following

    functions

    No.192)4s)(3s(

    s)s(F

    Solution:

    122 )4s(

    C

    )4s(

    B

    3s

    A

    )4s)(3s(

    s

    )4s)(3s(C)3s(B)4s(As

    )4s)(3s(*

    2

    2

    A33s 4s 4BB4

    Coeff2s 3CCA0

    t4t4t3

    1

    2

    11

    2

    1

    e3te4e3

    )4s(

    3L

    )4s(

    4L

    3s

    3L

    )4s)(3s(

    sL

    No.20)4s)(2s(

    s)s(F

    2

    Solution:

    4s

    CBs

    )2s(

    A

    )4s)(2s(

    s22

    )4s)(2s(* 2

    )2s)(CBs()4s(As 2

    2s 4

    1AA82

    Coeff2

    s 4

    1

    BBA0

  • 8/10/2019 Chapter 3 math 3

    38/50

    38

    Coeff0s

    2

    1CC210C2A40

    t2sin2

    1.

    2

    1t2cos

    4

    1e

    4

    1

    4s

    1L

    2

    1

    4s

    sL

    4

    1e

    4

    1

    4s

    2

    1

    s4

    1

    L2s4

    1

    L)4s)(2s(

    sL

    t2

    2

    1

    2

    1t2

    211

    21

    No.21)3s(s

    1)s(F

    Solution:

    3s

    B

    s

    A

    )3s(s

    1

    3

    1A ,

    3

    1B

    t3t3111 e13

    1e

    3

    1

    3

    1

    3s

    3

    1

    Ls

    3

    1

    L)3s(s

    1L

  • 8/10/2019 Chapter 3 math 3

    39/50

    39

    No.22)9s(s

    1)s(F

    2

    Solution:

    9s

    CBs

    s

    A

    )9s(s

    122

    s)cBs()9s(A1

    )9s(s*

    2

    2

    0s 9

    1AA91

    Coeff :s2 9

    1BBA0

    Coeff :s1 C0

    t3cos19

    1t3cos

    9

    1

    9

    1

    9s

    s9

    1

    Ls

    9

    1

    L)9s(s

    1L

    2

    11

    2

    1

  • 8/10/2019 Chapter 3 math 3

    40/50

    40

    By Inspection Method:

    (1)

    bs

    1

    as

    1

    )ab(

    K

    )bs)(as(

    K2222

    (2)

    bs

    BAs

    as

    BAs

    )ab(

    1

    )bs)(as(

    BAs2222

    (3)

    bs

    s

    as

    s

    )ab(

    K

    )bs)(as(

    Ks2

    2

    2

    2

    22

    2

    as

    a

    bs

    b

    )ab(

    K

    bs

    b1

    as

    a1

    )ab(

    K

    bsb)bs(

    asa)as(

    )ab(K

    22

    22

    2

    2

    2

    2

    (4)

    bs

    1

    as

    1

    )ab(

    K

    )bs)(as(

    K

    (5)as

    a

    bs

    b

    )ab(

    K

    )bs)(as(

    Ks

    No.23)4s)(1s(

    1)s(F 22

    Solution:

    4s

    1

    1s

    1

    3

    1

    )4s)(1s(

    12222

    t2sin2

    1

    tsin3

    1

    )4s)(1s(

    1

    L 221

  • 8/10/2019 Chapter 3 math 3

    41/50

    41

    No.24)4s)(2s(

    s)s(F

    22

    Solution:

    4s

    s

    2s

    s

    2

    1

    )4s)(2s(

    s2222

    t2cost2cos2

    1

    )4s)(2s(

    sL

    221

    No.25)4s)(2s(

    4s3)s(F22

    Solution:

    t2sin2

    1.4t2cos3

    t2sin2

    1.4t2cos3

    2

    1

    )4s)(2s(

    4s3L

    4s

    4

    4s

    s3

    2s

    4

    2s

    s3

    2

    1

    4s

    4s3

    2s

    4s3

    2

    1

    )4s)(2s(

    4s3

    22

    1

    2222

    2222

    No.26 )4s)(2s(

    s

    )s(F 22

    2

    Solution:

    2s

    2

    4s

    4

    2

    1

    )4s)(2s(

    s2222

    2

    t2sin2

    1.2t2sin

    2

    1.4

    2

    1

    )4s)(2s(

    sL

    22

    21

  • 8/10/2019 Chapter 3 math 3

    42/50

    42

    No.2716s

    s)s(F

    4

    Solution:

    4s

    s

    4s

    s81

    )4s)(4s(

    s

    16s

    s22224

    t2cost2cosh8

    1

    )4s)(4s(

    sL

    22

    1

    No.28 )4s2s)(1s(

    7s7s3

    )s(F 2

    2

    Solution:

    4s2s

    CBs

    1s

    A

    )4s2s)(1s(

    7s7s322

    2

    )4s2s)(1s(* 2

    )1s)(CBs()4s2s(A7s7s3

    22 1s 1AA3773

    Coeff2s : 2BBA3

    Coeff0s : 3CCA47

    4s2s

    3s2L

    1s

    1L

    )4s2s)(1s(

    7s7s3L

    2

    11

    2

    21

    t3sine3

    1t3cose2e

    3)1s(1L

    3)1s()1s(2Le

    3)1s(1)1s(2Le

    ttt

    21

    21t

    21t

  • 8/10/2019 Chapter 3 math 3

    43/50

    43

    No.29)ss2s(

    5s2s)s(F

    23

    2

    Solution:

    1s

    C

    )1s(

    B

    s

    A

    )1s(s

    5s2s

    )1s2s(s

    5s2s22

    2

    2

    2

    2)1s(s*

    )1s(CsBs)1s(A5s2s 22 0s A5 1s 4BB4

    Coeff2s 4cCA1

    tt

    1

    2

    11

    3

    21

    e4te45

    1s

    4L

    )1s(

    4L

    s

    5L

    ss2s

    5s2sL

    No.30 2

    3

    )1s(

    2s

    )s(F

    Solution:

    )s(Flims

    I.L.T doesnt exist

  • 8/10/2019 Chapter 3 math 3

    44/50

    44

    Applications

    Solution of Ordinary Differential Equations by means

    of Laplace Transform

    Property No.7: Transform Differentiation

    If )s(F)t(fL , then

    )0(f)s(Fstd

    )t(fdL

    ,

    )0(f)0(fs)s(Fstd

    )t(fdL 2

    2

    2

    Sheet (18)

    Using Laplace transform of differentiation, find the transformation of thefunctions

    No.1 atcos

    Solution:

    22 as

    a}at{sinL

    0)0(f

    0as

    a.s)}at(sindtd{L

    22

    22 as

    as}atcosa{L

    22 as

    s}at{cosL

  • 8/10/2019 Chapter 3 math 3

    45/50

    45

    No.2 atsinh Solution:

    22

    as

    s}at{coshL

    1)0(f

    1as

    s.s)}at(cosh

    dt

    d{L

    22

    22

    222

    as

    ass}atsinha{L

    22

    as

    a}at{sinhL

    Sheet (18)

    Solve the following D.E. using Laplace transforms

    No.3t4

    e)t(y2td

    yd , 0)0(y

    Solution:

    Take L.T for both sides

    4s

    1)s(Y2)]o(y)s(sY[

    4s

    1)s(Y2]o)s(sY[

    4s

    1]2s)[s(Y

    )2s)(4s(1)s(Y

    By Inspection

    2s

    1

    4s

    1

    6

    1

    t2t4 ee6

    1)t(y

    Check 0]11[6

    1)0(y

  • 8/10/2019 Chapter 3 math 3

    46/50

    46

    No.4t2

    2

    2

    e3)t(y3td

    yd4

    td

    yd 0)0(y)0(y

    Solution:

    Take L.T for both sides

    2s

    1.3)s(Y3)]0(y)s(sY[4)]0('y)0(sy)s(Ys[ 2

    2s

    3]3s4s)[s(Y 2

    2s3)]3s)(1s)[(s(Y

    2s

    C

    3s

    B

    1s

    A

    )2s)(3s)(1s(

    3)s(Y

    Using Heaviside method

    2

    1

    )3)(2(

    3A

    10

    3

    )5)(2(

    3B

    5

    1

    )5)(3(

    3C

    2s

    51

    3s

    103

    1s

    21

    )s(Y

    t2t3t e

    5

    1e

    10

    3e

    2

    1)t(y

  • 8/10/2019 Chapter 3 math 3

    47/50

    47

    No.5t32

    2

    2

    et)t(y9dt

    dy6

    dt

    yd

    2)0(y

    6)0('y

    Solution:

    Take L.T for both sides

    3

    2

    )3s(

    !2)s(Y9)]0(y)s(sY[6)]0('y)0(sy)s(Ys[

    3

    2

    )3s(

    !2)s(Y9]2)s(sY[6]6s2)s(Ys[

    32

    )3s(2126s2]9s6s)[s(Y

    3

    2

    )3s(

    2126s2])3s)[(s(Y

    25

    25

    25

    )3s(

    12

    )3s(

    2

    )3s(

    2

    )3s(

    18]3)3s[(2

    )3s(

    2

    )3s(

    18s2

    )3s(

    2)s(Y

    t3t34

    t3 te12e2!4

    t.e2)t(y

  • 8/10/2019 Chapter 3 math 3

    48/50

    48

    No.6 )2t(u)t(y6dt

    dy5

    dt

    yd2

    2

    0)0(y)0(y

    Solution:

    Take L.T for both sides

    s22 es

    1)s(Y6)]0(y)s(sY[5)]0('y)0(sy)s(Ys[

    s22 es

    1)s(Y6]0)s(sY[5]00)s(Ys[

    s22 e

    s

    1]6s5s)[s(Y

    s2es

    1)]3s)(2s)[(s(Y

    s2e)3s)(2s(s

    1)s(Y

    3s

    C

    2s

    B

    s

    A

    )3s)(2s(s

    1

    6

    1A

    2

    1B

    3

    1C

    s2e3s

    3

    1

    2s2

    1

    s

    6

    1

    )s(Y

    )2t(ue31e

    21

    61)t(y )2t(3)2t(2

  • 8/10/2019 Chapter 3 math 3

    49/50

    49

    No.7 )2t(u)2t()t(ytd

    yd2

    2

    0)0(y)0(y

    Solution:

    s2

    2

    2 es

    1)s(Y)]0('y)0(sy)s(Ys[

    s2

    2

    2 es

    1)s(Y]00)s(Ys[

    s2

    2

    2 es

    1]1s)[s(Y

    s222

    e)1s(s

    1)s(Y

    1s

    1

    s

    1

    1

    1

    )1s(s

    12222

    s222

    e1s

    1

    s

    1)s(Y

    )2t(u)]2tsin()2t[()t(y

    0)5707.1(y)2(y

    ]2)22

    sin[(]2)22

    {[()22(y

    12

  • 8/10/2019 Chapter 3 math 3

    50/50

    No.8 The differential equation of the R-L circuit connected in series is given by

    t2cos)t(Ritd

    idL

    Determine the electric current i(t) where L=1 Henry, R=2 ohms and i(0)=0.

    Solution:

    t2cos)t(i2dt

    di

    Take L.T for both sides

    4ss)s(I2)]0(i)s(sI[

    2

    4s

    s)s(I2]0)s(sI[

    2

    4s

    s]2s)[s(I

    2

    )4s)(2s(

    s)s(I

    2 See sheet 17 Problem No. 20 Lec.12

    t2sin2

    1.2

    1t2cos

    4

    1e

    4

    1)t(i t2