chapter 3 discrete random variables and probability distributions chapter 3a variables that are...

39
Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Upload: job-mcbride

Post on 12-Jan-2016

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Chapter 3

Discrete Random Variables and Probability Distributions

Chapter 3A

Variables that are random; what will they

think of next?

Page 2: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

The Road Ahead

today

Page 3: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

A Random Variable (RV)

Variable whose observed value is determined by chance

Variable that takes on values in accordance with some probability distribution

Discrete Random Variables have a finite or countably infinite range

Numerical outcome from a random experiment

A mapping from a sample space to a subset of the real numbers

Page 4: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Some Discrete Random Variables

The number of nonconforming solder connections on a printed circuit board.

In a voice communication system with 50 lines, the number of lines in use at a particular time.

A batch of 500 machined parts contains 10 that do not conform to customer requirements. Parts are selected successively, without replacement, until a nonconforming part is obtained. The RV is the number of parts selected.

The RV is the number of demands in a month for a product in inventory.

The RV is the number of customer arrivals per hour at a local bank.

The number of accidents per week observed in a factory.

Page 5: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

The Mapping Illustrated – toss a pair of dice

Let X = a random variable, the sum resulting from the toss of two fair dice; X = 2, 3, …, 12

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

S =

Page 6: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

The Mapping Illustrated – toss a pair of dice

   

2 (1,1) 1

3 (1,2) , (2,1) 2

4 (1,3) , (2,2) , (3,1) 3

5 (1,4) , (2,3) , (3,2) , (4,1) 4

6 (1,5) , (2,4) , (3,3) , (4,2) , (5,1) 5

7 (1,6) , (2,5) , (3,4) , (4,3) , (5,2) , (6,1) 6

8 (2,6) , (3,5) , (4,4) , (5,3) , (6,2) 5

9 (3,6) , (4,5) , (5,4) , (6,3) 4

10 (4,6) , (5,5) , (6,4) 3

11 (5,6) , (6,5) 2

12 (6,6) 1

Total   36

X = RV, the outcome from rolling a pair of dice number of ways

sample space

Page 7: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

The Mapping Illustrated – toss a pair of dice

Let X = a random variable, the sum resulting from the toss of two fair dice; X = 2, 3, …, 12

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

x 2 3 4 5 6 7 8 9 10 11 12p(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

= S

Pr{X = x} = f(x), f(x) is called the Probability Mass Function (PMF)

f(x)

Page 8: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Probability Histogram for the Random Variable X

Page 9: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Probability Mass Function

Page 10: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Example #1 Let x = a discrete random variable, the number of

accidents per week in the Axe E. Dentt manufacturing plant.

Given: 1( ) Pr{ } ; 0,1,2,3,4

15

xf x X x x

Pr(X = 0) = f(0) = 1/15Pr(X = 1) = f(1) = 2/15Pr(X = 2) = f(2) = 3/15Pr(X = 3) = f(3) = 4/15Pr(X = 4) = f(4) = 5/15

4

0

( ) 0

( ) 1x

f x

f x

Page 11: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Example #2

Let x = a discrete random variable, the number of days to receive a package from a Website distributor when requesting expedited delivery.

.1 if 2days

.4 if 3days

( ) .3 if 4days

.1 if 5days

.1 if 6days

x

x

f x x

x

x

Page 12: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Example #3 Let x = a discrete random variable, the number of

units produced before a reject occurs. The probability of a reject occurring is 1/5.

11 4

, 1,2,3...( ) 5 5

0 otherwise

x

xf x

1

1 0

1 4 1 4 1 11

45 5 5 5 5 15

x x

x x

note:

Find: Pr{X 10}Pr{20 X 30}Pr{X 15}

geometric series

Page 13: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

3-3 Cumulative Distribution Function (CDF)

Definition

Page 14: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Example #3 revisited

Find: Pr{X 10} = F(10) = .892626 Pr{20 X 30} = F(30) – F(20) = (1-.830) – (1-.820) = .99876 - .98847 = .0103Pr{X 15} = 1 – F(14) = 1 – (1 - .814) = .814 = .04398

1 1

1 1 0

1 4 1 4( ) ( )

5 5 5 5

41

1 451

45 515

i ix x x

i i i

x

x

F x f i

1

1

n

n

a rS

r

x f(x) F(x)

1 0.2 0.22 0.16 0.363 0.128 0.4884 0.1024 0.59045 0.08192 0.672326 0.065536 0.7378567 0.052429 0.7902858 0.041943 0.8322289 0.033554 0.86578210 0.026844 0.89262611 0.021475 0.91410112 0.01718 0.93128113 0.013744 0.94502414 0.010995 0.9560215 0.008796 0.96481616 0.007037 0.97185317 0.005629 0.97748218 0.004504 0.98198619 0.003603 0.98558820 0.002882 0.988471

Page 15: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Problem 3-28

Determine the cumulative distribution function of the following R.V.’s [P(xi) = 1/6 for all xi]:

Outcome a b c d e f x 0 0 1.5 1.5 2 3

0, 0

1/ 3, 0 1.5

( ) 2 / 3, 1.5 2

5/ 6, 2 <3

1, 3

x

x

F x x

x

x

F(x)1.0

2/3

1/3

0 1.5 2 3

Don’t confuse discrete with

integer!

Page 16: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Problem 3-35

Verify the following function is a CDF & determine the PMF & requested probabilities:

P(X < 3) = P(1 < X < 2) = P(X < 2) = P(X > 2) =

x

x

x

xF

31

315.

10

)(

PMF:f(0) = F(0) = 0f(1) = F(1) – F(0) = .5f(2) = F(2) – F(1) = .5 - .5 = 0f(3) = F(3) – F(2) = 1 – .5 = .5

1

.5

.5

.5

Page 17: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Example 3-8

Page 18: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Example 3-8

Figure 3-4 Cumulative distribution function for Example 3-8.

Page 19: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

A Fish Tale –A Transition to the next concept

These probability distributions are great. But what if my boss wants to know how many fish I

will sell today? I need one number not a entire distribution.

Let Z = a discrete random variable, thenumber of fish sold in one day.

.1 if 0

.3 if 1( )

.5 if 2

.1 if 3

z

zf z

z

z

Page 20: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

The Mean Number of Fish

Let Z = a discrete random variable, thenumber of fish sold in one day.

.1 if 0

.3 if 1( )

.5 if 2

.1 if 3

x

xf z

x

x

( ) (.1)(0) (.3)(1) (.5)(2) (.1)(3) 1.6E Z

Expect to sell 1.6 fish on the average!

Page 21: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

3-4 Mean and Variance of a Discrete Random Variable

Definition

Page 22: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Mean of a discrete R.V.

The mean of a discrete R.V. uses the probability of each discrete observation to weight that observation:

1 1 2 2( ) ( ) .... ( )n nP X x x P X x x P X x x

( ) ( )x

E X x f x

Page 23: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Variance of a discrete R.V.

The variance of a discrete R.V. X also uses probability to weight each observation.

2 2 2 21 1 2 2( )( ) ( )( ) .... ( )( )n nP X x x P X x x P X x x

2( ) ( ) ( )x

V X x f x 2 2( )

x

x f x

( )V X

We don’t do many derivations, but it needs to be clear to you how we get from line two to line three. Try it!

Page 24: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Problem 3-40

Determine the mean and variance P(xi=1/6) for all i:

Outcome a b c d e f x 0 0 1.5 1.5 2 3

= 0(1/3) + 1.5(1/3) + 2(1/6) + 3(1/6) = 4/3

2 2 2( ) ( )x

V X x f x

x

xxfXE )()(

= 02(1/3) + 1.52(1/3) + 22(1/6) + 32(1/6) – (4/3)2

= 1.139

Page 25: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

First Two Moments do not Determine Distribution

The mean is the first moment. The variance is the second central moment –

second moment about the mean. Two entirely different distributions can have

identical mean and variance. Very often though the first two moments

give sufficient information to do effective modeling.

Page 26: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Yet Another ProblemDetermine the mean & variance of:

2 1( ) , 0,1,2,3,4

25

xf x x

( ) ( )

x

E X x f x

2*0 1 2*1 1 2*2 1 2*3 1 2*4 10 1 2 3 4

25 25 25 25 25

3 10 21 36

0 2.825 25 25 25

2 2 2( ) ( )x

V X x f x 2 2 2 2 2 21 3 5 7 9

0 1 2 3 4 (2.8) 1.3625 25 25 25 25

Page 27: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

3-4 Mean and Variance of a Discrete Random Variable

Figure 3-5 A probability distribution can be viewed as a loading with the mean equal to the balance point. Parts (a) and (b) illustrate equal means, but Part (a) illustrates a larger variance.

Page 28: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

3-4 Mean and Variance of a Discrete Random Variable

Figure 3-6 The probability distribution illustrated in Parts (a) and (b) differ even though they have equal means and equal variances.

Page 29: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Example 3-11

Page 30: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

3-4 Mean and Variance of a Discrete Random Variable

Expected Value of a Function of a Discrete Random Variable

))(())(( xEhxhE Unless the function is linear

Page 31: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

A Derivation

; [ ]

[ ] [ ] ( )

( ) ( ) ( ) ( )

[ ]

x

x

x x x

y x

Y a bX E X

E Y E a bX a bx f x

af x bxf x a f x b xf x

a bE X a b

Page 32: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

More on Expected Values It costs Axe E. Dent $700 a week to maintain a safety

officer and another $340 for each accident that the safety officer must process. What is the expected weekly cost?

Let x = a discrete random variable, the number of accidents per week in the Axe E. Dentt manufacturing plant.

Let Y = a discrete random variable, the weekly cost of maintaining a safety officer.

4

0

1( ) Pr{ } ; 0,1,2,3,4

151 8

[ ]15 3

8[ ] 700 340 $1,606.67

3

xx

y

xf x X x x

xE X x

E Y

Y = 700 + 340X E[Y] = 700 + 340 E[X]

Page 33: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

But Look Here

; [ ]

[ ] [ ] ( )

1 1( ) ( )

x

x

x x x

bY E X

Xb b

E Y E f xX x

bb f x b f x

x x

Page 34: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Keep Looking…X f(x) 1/X1 0.25 12 0.2 0.53 0.15 0.3334 0.1 0.255 0.3 0.2

sum 1E[X] = 3 0.485 = E[1/X]

1 1 1.485

3x

EX

A most important lesson has

been learned here today.

.25(1) + .2 (.5) + .15 (.333) + .1 (.25) + .3 (.2) = .485

Page 35: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

What about the Variance?

2

2

2

2

2 22

22 2 2

where [ ]

[ ] [ ]

x

y

y

x

x x

x x

Y a bX Var X

Var Y Var a bX

E Y

E a bX a b

E bX b E b X

b E x b

Page 36: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Yet another insight… Analogous to the mean’s being the center

of gravity of a distribution of mass, the variance represents, in terminology of mechanics, the moment of inertia.

The moment of inertia of an object about a given axis describes how difficult it is to change its angular motion about that axis.

Page 37: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Bonus Topic

Let X = a random variable, the number of points scored with first down and ten yards to go, at discrete points on the playing field.

Number of outcomes is 103 touchdown +7 field goal + 3 safety -2 opponent’s touchdown -7 turning the ball over to the opponent at any of 99

possible points on the field

Page 38: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

More of that bonus

Based upon a study of 2,852 first-and-ten plays by Virgil Carter and Robert Machol:

Field Position

Expected point value

95 -1.24585 -0.63775 0.23665 0.92355 1.53845 2.39235 3.16725 3.68115 4.5725 6.041

Page 39: Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3A Variables that are random; what will they think of next?

Next Class

Theoretical Discrete Distributions Uniform Binomial Geometric Poisson

and so much more…

ENM 500 studentshurrying to class.