chapter 1 - differential equations

Upload: abdul-addahary

Post on 07-Aug-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/20/2019 Chapter 1 - Differential Equations

    1/27

    CHAPTER 1 DIFFERENTIAL EQUATIONS 

    1.1 INTRODUCTION

    1.1.1 DIFFERENTIAL EQUATIONS

    • What is the meaning of differential equations?

    • In sciences and engineering, mathematical models are developed to aid in

    understanding of physical phenomena.

    EXA!LE 1

     Any equations containingn

    n

    d y

    dx, we called differential equations. The differential equations

    can be written as (i  2 0dy

     x ydx

    − =   2 0 xy y′ − =

    (ii2

    2

    2  sin 0

    d y xy y x

    dx− =   2 sin 0 xyy y x′′ − =

    1 | P a g e

    So"e of a##li$ations in%ol%ed in t&is 'orld(

    free fall of ob!ect

    radioactive decay

    electric circuit

    management

    rate of change in temperature

    mi"ing problem in tan#

    DEFINITION

     An equation containing the derivatives of one or more

    dependent variables, with respect to one or more independent

    variables, is said to be Differential Equations )DE*.

    $athematical models often yield an equation that

    contains some derivatives of an un#nown function

    which is called differential equations.

  • 8/20/2019 Chapter 1 - Differential Equations

    2/27

    • In order to tal# further about differential equations, we shall classify differential

    equations by t+#e, order and linearit+.

    EXA!LE ,

    %rdinary &ifferential 'quations (%&' An equation that involve onl+ ordinar+ deri%ati%es

    of one or more dependent variable with respect to a sin-le inde#endent %ariale. )uch

    that

    EXA!LE /

    *artial &ifferential 'quations (*&' An equation that involve #artial deri%ati%es of one or 

    more dependent variable with respect to t'o or "ore t&an one inde#endent %ariale.

    )uch that

    1.1., ORDER OF DIFFERENTIAL EQUATIONS

      %rder of &ifferential 'quations is determined by the highest derivative.

    2 | P a g e

    T+#es of differential equations(%rdinary &ifferential 'quations (%&'

    *artial &ifferential 'quations (*&'

    (i2

    2  0

    d x dxa kx

    dt dt  + + =   + )ingle independent variable, t

    (ii   2dy

     x ydx

    = − +   + )ingle independent variable, x 

    (i)   2u u

     x y x y

    ∂ ∂− = −

    ∂ ∂+ $ultiple independent variable,  x 

    and y 

    ii    3V V 

    r ∂ ∂

    + = + $ulti le inde endent variable, r and h

    Order of differential equations(

    irst %rder 

    )econd %rder 

  • 8/20/2019 Chapter 1 - Differential Equations

    3/27

    EXA!LE 0

    Order Ea"#le

    irst   2 0dy

     x ydx − =

      2 0 xy y

    ′ − =

    )econd

    2

    2

    2

     ydx

     yd  x   −  

    0"  2

    =−  y xy

    EXA!LE 2

    -lassify each of the following as an ordinary differential equation (%&' or a partial

    differential equations (*&' and give the order

    (i -ompetition between two species, ecology+(2 3 )

    (1 3 )

    dy y x

    dx x y

    −=

    −.

    (ii aplace/s equation, heat, aerodynamics+

    2 2

    2 2  0

    d u d u

    dx dy+ = .

    )olution

    T+#es of differential equations Order of differential equations

    (i %&' irst order  

    (ii *&' )econd %rder  

    1.1./ LINEARIT3 OF DIFFERENTIAL EQUATIONS

     A linear differential equations  is any differential equation that can be written in the

    following form ( ) ( ) ( ) ( ) ( )1 1

    1 1 01 1...

    n n

    n nn n

    d y d y d ya x a x a x a x y F x

    dx dx dx

    −   −+ + + + = .

    Where ( ) ( ) ( ) ( )1 1 0, ,..., ,n na x a x a x a x− are depending on independent variable, it can be 0ero

    or non10ero functions, constant or non1constant functions, linear or non1linear functions. 

    3 | P a g e

    Order of differential equations(inear 2onlinear 

  • 8/20/2019 Chapter 1 - Differential Equations

    4/27

    • Criteria of linear differential equations(

    i the dependent variable and its derivatives occur to the first #o'er onl+

    '"ample2 3

    2

    d y

    dx

    ii no #rodu$ts in%ol%in- t&e de#endent %ariale with its derivatives (in other word

    each coefficient depends only on the independent variable, "

    '"ampledy

     ydx

    iii no nonlinear fun$tions of t&e de#endent %ariale as trigonometric, quadratic,

    e"ponential, etc

    '"ample sin  y  (trigonometric functions, 2 y (quadratic equations,  ye  (e"ponential

     A nonlinear ordinar+ differential equation  is simply one that is not linear. 2onlinear 

    functions of the dependent variable or its derivatives, such as sin  y  or  ye , cannot appear in

    the linear equation.

    EXA!LE 4&etermine each of the following equation with order and linearity

    (i2

    3

    2  0

    d y y

    dx+ =

    (ii2

    3

    2

    d y y x

    dx+ =

    (iii2

    2  cos

    d y dy y x

    dx dx− =

    (iv   sin  dy

     x y xdx

    + =

    (v  3dx  x t 

    dt + =

    (vi2

    2

    2  0

    d y y

    dx+ =

    (vii   sin 0dy  ydx

    + =

    Solution :

    Order of differential equations Linearit+

    (i)econd order  2onlinear because the dependent

    variable occur to the power of three,3 y

    4 | P a g e

  • 8/20/2019 Chapter 1 - Differential Equations

    5/27

    (ii)econd order  inear because the dependent

    variable,  y occur to the first power

    (iii )econd order 2onlinear because

    dy

     y dx

    (iv

    (v

    (vi

    (vii

    1., T5E SOLUTION OF DIFFERENTIAL EQUATIONS

    • What is t&e solution of differential equations6

    EXA!LE 7

    3erify that x y e=  is a solution of the differential equation

    dy y

    dx= .

    Solution :

    If  x y e= , then  xdy

    edx

    = .

    dy y

    dx= , for all values of  x .

    Therefore, x y e=  is the solution for

    dy y

    dx= .

    5 | P a g e

    The solution of a differential equation is a relationship

    between the deendent   and indeendent variables

    such that the differential equation is satisfied for all

    values of the independent variable over a specified

    domain.

  • 8/20/2019 Chapter 1 - Differential Equations

    6/27

    EXA!LE 8 

    3erify that  x y Ce=  is a solution of dy  ydx =, where C is any constant.

    Solution:

    If x y Ce= , then  x

    dyCe

    dx= .

    dy y

    dx= , for all values of  x  with C  for any constant.

    C is called an arbitrary constant.

    Therefore, x y Ce=  is the -eneral solution of

    dy y

    dx= .

    If 0, 4; x y= =

    04

    4 (1)

    4

     x y Ce

    Ce

    =

    ===

     

    Therefore, 4   x y e= . This is called a #arti$ular solution.

    1.,.1 CONDITION

    1.,.1.1 Initial Condition

    )olution to the differential equation on an interval,  I    that satisfies at 0 x   the n  initial

    condition.

    0( )o y x y=

    1( )ody

     x ydx

    =   or 1'( )o y x y=

    6 | P a g e

    Conditions

    Initial-onditions

    4oundary-onditions

  • 8/20/2019 Chapter 1 - Differential Equations

    7/27

    1

    0 11 ( )

    n

    nn

    d y x y

    dx

    −−   =   Where 0 x I ∈  and 1 2 -1, , , n y y y… are given constant. 

     A differential equation together with an initial condition is called an Initial 9alue !role"

    )I9!* . )uch that  0 0( , ) , ( ) y f x y y x y′ = = ;

    • With  x  as independent variable (instead of t 

    •   0 x  and 0 y  are given values

    • The initial condition ( )0 0  y x y=  is used to determine the value of A and 4 in the

    general solution• 3alues of a function and its derivative at the same point• 2umber of initial conditions for a given differential equation depends upon the order 

    of the differential equation.

    EXA!LE :

    The following e"ample are the Initial 3alue *roblem (I3*

    (i   , (0) 1 y xy y′ = − =

    (ii  2   1 34 12 3 0 , (4) , (4)

    8 64 x y xy y y y′′ ′ ′+ + = = = −

    1.,.1., ;oundar+ Condition

    )olution to the differential equations on an interval,  I   that specified at two distinct points   j x

    and k  x  where   ( ) , ( )  j j k k  y x y y x y= = .

    igure 5

     A differential equation together with a boundary condition is called an ;oundar+ 9alue

    !role" );9!*. )uch that  ( , ) , ( ) , ( )  j j k k  y f x y y x y y x y′ = = = ;

    • 3alues of a function and its derivative not at the same point

    7 | P a g e

  • 8/20/2019 Chapter 1 - Differential Equations

    8/27

    • 2umber of boundary conditions for a given differential equations does not depends

    upon the order of the differential equations

    EXA!LE 1<

    The following e"amples are the 4oundary 3alue *roblem (43*(i   2 2 0 , (0) 1, ( 2) 0 y y y y y   π  ′′ ′+ + = = =

    (ii  23 8 3 0 , ( 3) 1, (3) 1 y y y y y e′′ ′− − = − = =

    1.,., FIRST ORDER DIFFERENTIAL EQUATIONS

    In this section, we will learn how to solve the first order differential equations. 4ut in order to

    do that, we need to understand what type of equations we are dealing with.

    T&e t+#es of "et&od that we are going to discuss are

    1* Se#arale equation

    ,* Inte-ral Fa$tor 

    1.,.,.1 Se#arale Equation

     A first order differential equations of the form, ( ) ( )dy

     g x h ydx =  is said to be seara!le or have

    to searate t"e #aria!les.

    EXA!LE 11

    6ow to separate the variables of2 3 4 x ydy  y xe

    dx

    += ?

    Solution:

    irstly, we #now that ( , )dy  f x ydx = .

    Then, factori0e2 3 4 x ydy  y xe

    dx

    +=  to be 3 2 4( , ) ( )( ) x y f x y xe y e=

    8 | P a g e

    ( )h y( ) g x

    6ow to solve the differential equations by using

    se#arale equation "et&od? '"plain generally.

  • 8/20/2019 Chapter 1 - Differential Equations

    9/27

    7iven that ( ) ( )dy

     g x h ydx

    =  can be rewritten to isolate the variables  x  and  y  on the opposite

    side of the equation. It is such as,

    1( )

    ( )dy g x dx

    h y=

    Then we integrate both sides from the above equation+

    1( )

    ( )dy g x dx

    h y=∫ ∫ 

     And we obtain+

    1 2( ) ( )

    ( ) ( )

     H y C G x C 

     H y G x C 

    + = +

    = +  Where 1 2 C C C = + .

    Therefore, ( ) ( ) H y G x C = +  is the -eneral solution for ( ) ( )dy

     g x h ydx

    = .

    EXA!LE 1,

    )olve the nonlinear equation 25dy x

    dx y

    −= .

    Solution:• Step 1  )eparate the variables of equation

    2 ( 5) y dy x dx= −

    • Step 2   Integrate both sides of the equation2 ( 5) y dy x dx= −∫ ∫ 

    • Step 3 The general solution is3 2

    53 2

     y x x c= − + .

    EXA!LE 1/

    )olve the equation (1 ) 0 x dy ydx+ − = .

    Solution:• Step 1  )eparate the variables of equation

    9 | P a g e

  • 8/20/2019 Chapter 1 - Differential Equations

    10/27

    (1 )

    1 1

    1

     x dy ydx

    dy dx y x

    + =

    =+

    • Step 2   Integrate both sides of the equation

    1 1

    1

    ln ln(1 )

    dy dx y x

     y x c

    =+

    = + +

    ∫ ∫ 

    • Step 3  The general solution is

    1

    (1 )

    c

    c

     ye

     x

     y x e

    =+= +

    1.,.,., Inte-ral fa$tor 

    The linear first order differential equations can be e"pressed in the form of 

    1 0( ) ( ) ( )dy

    a x a x y b xdx

    + = , Where ( )1a x ,   ( )0a x and ( )b x  depends only on the independent

    variable  x .

    or e"ample, the equation2(sin ) (cos ) sin

    dy x x y x x

    dx+ =

    irst, we have to divide all terms in equation 1 0( ) ( ) ( )dy

    a x a x y b xdx

    + =  with ( )1a x ;

    01

    1 1 1

    ( )( ) ( )( ) ( ) ( )

    a xa x dy b x ya x dx a x a x

    + =

    )econd, from the above, it can be rewritten as+

    ( ) ( )dy

     P x y Q xdx

    + =

    Where0

    1

    ( )( )

    ( )

    a x P x

    a x=  and

    1

    ( )( )

    ( )

    b xQ x

    a x= .

    Third, we need to determine the integrating factor, ( )v x ;  ( )( )  P x dx

    v x e∫ = .

    10 | P a g e

    ( )1a x

    6ow to solve the differential equations by using inte-ral

    fa$tor "et&od? '"plain generally.

    ( )0a x   ( )b x

    Standard Form

  • 8/20/2019 Chapter 1 - Differential Equations

    11/27

  • 8/20/2019 Chapter 1 - Differential Equations

    12/27

    1 1

    2 2( )dx x

    v x e e∫ = =

    • Step 3  $ultiply ( )1

    2  x

    v x e=  to both sides of standard form equation+

     

    1 1 1

    2 2 21 32 2

     x x x

    dye e y edx + =

    1 1

    2 23

    ( )2

     x xd e y e

    dx=

    • Step 4  Integrate both sides from equation in Step 31 1

    2 2

    1 1

    2 2

    3( )

    2

      3

     x x

     x x

    d e y dx e dx

    dx

    e y e C  

    =

    = +

    ∫ ∫ 

    • Step 5  The general solution1

    2

    3 x

    C  y

    e

    = +.

    EXA!LE 12

    )olve the linear first %&'3 xdy  y e

    dx+ =

    )olution• Step 1 )ince the above equation is in the standard form then, you don=t &a%e to

    $&an-e an+t&in-.

    • Step 2  To find the integral factor let ( )   1 P x   =  into ( )( )  P x dx

    v x e∫ = . Then,1

    ( )  dx  xv x e e∫ = =

    • Step 3  $ultiply ( )    xv x e=  to both sides of standard form equation+

    3. x x x xdy

    e e y e edx

    + =

    4( ) x xd 

    e y edx

    =

    • Step 4  Integrate both sides of the equation in Step 3

    12 | P a g e

  • 8/20/2019 Chapter 1 - Differential Equations

    13/27

    4

    4

    ( )

    1

    4

     x x

     x x

    d e y dx e dx

    dx

    e y e C  

    =

    = +

    ∫ ∫ 

    Step 5  The general solution is31

    4

     x

     x

    C  y ee

    = + .

    1.,.,./ Con$lusion $athematical modeling is the technique of representing real world problem which is

    comple", involving multiple variables and some interrelated processes. This method can be

    used in the study of growth population, radioactive decay, economics problems, changes in

    temperature, mi"tures, chemical reactions, biological reactions, mechanics, velocity of a

    falling ob!ect, electric circuits etc.

    Referen$es• 8ill, &.7. (9::5.  A Firt !oure in "i##erential $%uation &ith 'odelin Appliation, ;th

    ed. 4roo#s. "i##erential $%uation &ith *oundary+alue -roble,

    4roo#s

  • 8/20/2019 Chapter 1 - Differential Equations

    14/27

  • 8/20/2019 Chapter 1 - Differential Equations

    15/27

    a   0sin2

    2

    =+   ydx

     yd  

    Solution : 

    • 2onlinear • )econd order 

    b  xe y y y   =+−   2')1(

    Solution : 

    c   0'2''   =+−   y y y

     

    Solution : 

    d   04)(   =+−   xdydx x y

     

    Solution : 

    e   y xdx

     yd 4)12(

    2

    2

    =+

     Solution : 

    f  22t  x

    dt 

    dx=+  

    Solution : 

    g  2

    2

    2

     xudx

    ud =+  

    Solution : 

    h  32

    2

    2

    2   x ydx

     yd =+  

    Solution : 

    . ind the solution to given initial>%alue #role"  by using separation of variablesmethod.

    a  24( 1), ( ) 1

    4dx  x xdt 

    π  = + =   b2

    21 ; (1) 21

    dy x  ydx y

    −= =−

     

    15 | P a g e

  • 8/20/2019 Chapter 1 - Differential Equations

    16/27

    Solution :

    Ste# 1  dt dx x

    41

    12

      =+

    Ste# ,

    C t  x

    dt dx x

    +=

    =+

    − ∫ ∫  4)(tan41

    1

    1

    2

    To find t&e %alue of C?

    π  

    π  π  

    π  

    4

    3

    4

    )4

    (4)1(tan

    4)(tan

    1

    1

    −=

    +=

    +=

    +=

    C t  x

    Ste# / )

    4

    34tan(

    )4tan(

    π  −=

    +=

    t  x

    C t  x

    Solution :

    c   ; (3) 4dy x

     ydx y

    = − =  

    Solution :

    d   1)1(;2 −=−−=   y xy ydx

    dy x  

    Solution :

    e5

    2 1; (0)2

    dy y y

    dt + = =  

    Solution :

    f   ; (0) 2dy

     xy ydx

    = = −  

    Solution :

    16 | P a g e

  • 8/20/2019 Chapter 1 - Differential Equations

    17/27

    B. ind the general solution for the following %&' by searation of #aria!les.

    a  2)1(   +=   x

    dx

    dy 

    Solution :

    Step 1  dx x xdy   )12(1   2 ++=  

    Step 2 ∫ ∫    ++=   dx x xdy   )12(1  2

    Step 3  C  x x x y   +++=   23

    3

    b   0)1(   2 =−−   dx ydy

    Solution :

    c   02   =+   xydx

    dy 

    Solution :

    d      

      

    ++

    =54

    32

     x

     y

    dx

    dy 

    Solution :

    17 | P a g e

  • 8/20/2019 Chapter 1 - Differential Equations

    18/27

    e  y xe

    dx

    dy   23   +=  

    Solution :

    f   ydx

    dy x   4=  

    Solution :

    g   03cos23sin   =+   xdy y xdx

     

    Solution :

    h   )70(   −=   Qk dt 

    dQ 

    Solution :

    >. ind the general solution for the following %&' by using the inte-ral fa$tor "et&od.

    a

      x

    e ydx

    dy   3

    =+  

    Solution :

    Ste# 1( )ince the equation is already inthe standard form then, no need to doanything.

    Ste# , (  xdx ee x

     x P 

    ==

    =

    ∫ 1)(

    1)(

     µ 

    Ste# / ( 

    [ ]  x x

     x x x x

    e yedxd 

    ee yedx

    dye

    4

    3.

    =

    =+

    b

      xe ydx

    dy363

      =+

     Solution : 

    18 | P a g e

  • 8/20/2019 Chapter 1 - Differential Equations

    19/27

    Ste# 0 (

    [ ]

    C e ye

    dxedx yedx

     x x

     x x

    +=

    = ∫ ∫ 

    4

    4

    4

    1

    Ste# 2 (  x x

    eC e y   +=   3

    41

     

    c   xe y y   =+'

      Solution : 

    d   0cos2   3 =−−   x x ydxdy

     x  

    Solution : 

    e   32   =+   ydx

    dy x  

    Solution : 

    f   xy ydx

    dy x   485)2(   2 −−=+  

    Solution : 

    19 | P a g e

  • 8/20/2019 Chapter 1 - Differential Equations

    20/27

    g   4123   =+   ydxdy

     

    Solution : 

    h  x xdx

    dy

    412   =+  

    C. &etermine the general solution of this non linear first %&' using inte(ral fa$tor)

     xe ydx

    dy5

    3

    13   =+

      !"en0

    = x

      an#1−= y

    20 | P a g e

  • 8/20/2019 Chapter 1 - Differential Equations

    21/27

    Solution :

    ;. In a chemical reaction, hydrogen pero"ide is continuously converted into water and

    o"ygen. At time t  minutes after the reaction started, the quantity of hydrogen pero"ide

    that has not been converted is  x   cm and the rate at which 9 cm is decreasing

    proportional to x .

    The problem above can be translated by mathematical word, 2dx

     xdt 

    = − .

    (i )olve the above equation by using separation of variables. 7iven that initial

    amount of  x  is 5 where ( )1 0t    = . (ii &etermine the solution when it too# minutes for the hydrogen pero"ide to be

    reduced to half the original amount where1

    32

    t    = ÷  

    .

    Solution :

    21 | P a g e

  • 8/20/2019 Chapter 1 - Differential Equations

    22/27

      )@ul+ ,

  • 8/20/2019 Chapter 1 - Differential Equations

    23/27

  • 8/20/2019 Chapter 1 - Differential Equations

    24/27

    )@ul+ ,

  • 8/20/2019 Chapter 1 - Differential Equations

    25/27

     

    )Se#te"er ,

  • 8/20/2019 Chapter 1 - Differential Equations

    26/27

    )@anuar+ ,

  • 8/20/2019 Chapter 1 - Differential Equations

    27/27

    )Se#te"er ,