ch.12 reactions involving pure condensed phase and a

28
Ch.12 Reactions Involving Pure Condensed Phase and a Gaseous Phase §12-1. Introduction §12-2. Reaction Equilibrium in a system containing pure condensed phases and a gas phase §12-3. Variation of “Standard Gibbs Free Energy Change” with T §12-4. Ellingham Diagrams (Stability of Metals and Metal-Oxides.) §12-5. Effect of Phase Transition §12-6. Stability of Oxides in CO/ 2 CO and 2 H / O H 2 Gas Mixtures §12-7. Upper limit of ( 2 CO CO p p ) at a fixed T

Upload: others

Post on 22-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Ch.12 Reactions Involving Pure Condensed

Phase and a Gaseous Phase

§12-1. Introduction

§12-2. Reaction Equilibrium in a system containing pure

condensed phases and a gas phase

§12-3. Variation of “Standard Gibbs Free Energy Change”

with T

§12-4. Ellingham Diagrams (Stability of Metals and Metal-Oxides.)

§12-5. Effect of Phase Transition

§12-6. Stability of Oxides in CO/ 2CO and 2H / OH2 Gas

Mixtures

§12-7. Upper limit of (2CO

CO

pp ) at a fixed T

§12-1. Introduction

.etc,H,OH,Cl,S,O:GasMetalPure:PhaseCondensed

22222

e.g. 1. Oxidation of metals.

2. At a given T, what is the maximum 2Op , which can be tolerated in a gas

atmosphere without oxidation of a metal. “Bright” annealing of copper.

§12-2. Reaction Equilibrium in a system containing pure

condensed phases and a gas phase

Oxidation of a pure metal M at T, P=1atm

)s()g(2)s( MOO21

M =+

assumptions:

.tricstoichiomeisMO.Minlelubinsoisoxygen

Three Equil.

)g()g(2)g(

)g()s(

)g()s(

MOO21

M)3(

MOMO)2(MM)1(

=+

==

2/1OM

MO)g(O)g(M)g(MO

MOMO

MM

2

2 ppp

lnRTG21

GGG)3(

)solid(G)gas(G)2()solid(G)gas(G)1(

⋅−=−−=∆

==

οοοο

+=

+=

∫=

=

)g(MpP

1P )S(M)S(MM

)g(M)g(MM

dPVG)solid(G

plnRTG)gas(Gο

ο

∵ )s(MV = molar volume of solid M, it is insensitive to pressure change.

i.e. )g(MpP

1P )s(M plnRTdPV)g(M <<∫=

=

e.g. T=1000 Cο , Fe

≅×≅ −

3)s(Fe

10)g(Fe

cm34.7Vatm106p

−=⋅−=

−=

∫ =J74.0cmatm34.7V

J224750plnRT3p

1P )s(Fe

)g(Fe

∴ οο)s(M)g(M)g(M GplnRTG ≅+

or )g(M)s(M)g(M plnRTGG −= οο

Similarly, )g(MO)s(MO)g(MO plnRTGG −= οο

Substitute into(3),

−=−−=∆

21

O

)g(O)s(M)s(MO

2

2 P

1lnRTG

21

GGG οοοο

∵ οG∆ ≡-RT lnK

∴K=2

1

O 2p

1

and οG∆ =[ οοο)g(O)s(M)s(MO 2

G21

GG −− ] is Standard Gibbs Free Energy Change for

reaction : )s()g(2(s) MOO21

M =+

Note: 1. Equilibrium constant K can be expressed only with species in gas phase.

2. οG∆ is f (T), and K=K(T) only.

3.∴At fixed T, ( ).eqO2

p = )T,eq(O2p

∴when 2Op > .)eq(O 2

p ⇒ Spontaneous oxidation of metal will occur.

⇒ consuming )g(2O , 2Op ↓

⇒ finally, 2Op = .)eq(O2

p , oxidation ceases.

e.g. Extraction metallurgy process: Reduction of oxide ores by 2Op .)eq(O 2

p<

4C )s(u + )g(2O =2C )s(2Ou

οG∆ =-333000+141.3T (J)

∴ οG∆ =-RT lnK=-RT ln(2Op

1)=RT ln

2Op

∴ln2Op =

RTGο∆

=- 38.7T

17390+

Figure 12.1

§12-3. Variation of “Standard Gibbs Free Energy Change”

with T

)s(2)g(2)s( MOOM =+ , οG∆ (T)=?

*∵ οG∆ =-RT lnK=RT ln2Op

∴ .)eq(O2p (T) is determined by οG∆ (T)

Exact calculation of οG∆ (T) can be done with )T(CP

* οTG∆ = ο

TH∆ -T οTS∆ at P=1atm

= [ ο298H∆ + ∫ ∆

T

298 PdTC ]-T[ ο298S∆ + ∫

∆T

298

P dTTC

]

For M(s)+ )g(O2 =M 2O (s)

Given

++=++=++=

∆∆

2333)s(MO,P

2222)g(O,P

2111)s(M,P

298298

TcbaCTcbaCTcTbaC

S,H

2

2

οο

∴ )aaa(C 123P −−=∆ + T)bbb( 123 −− + 2123 T)ccc( −−−

= 2cTbTa −∆+∆+∆

∴ οTH∆ = ο

298H∆ + ∫ ⋅∆T

298 P dTC = οH∆ + aT∆ +Tc

T2b 2 ∆

−∆

οH∆ =

−∆

+∆+∆298

2298 T

CT

2b

aT)egrationintofitlimLower(Hο

Similarly, calculation of οοTT GS ∆⇒∆ can be obtained.

Or, ( )

P

T

TT/G

∂∆∂ ο

=- 2T

THο∆

∴ ∫∆T

298T )

TG

(dο

= ∫∆

−T

298 2 dT)TH

(ο

= ∫∆

+∆

−∆

−∆

−T

298 32dT)

Tc

2b

Ta

TH

( ο

∴ =∆

TGT

ο

I+TH0∆- Tlna∆ - 2T2

cT

2b ∆

−∆

I =integration constant=

×∆

+×∆

+∆+∆

−∆

2298

2982c

2982b

298lna298H

298G ο

ο

∴ οTG∆ = I T+ οH∆

T2c

T2b

TlnaT 2 ∆−

∆−∆−

* e.g. for 4C )s(u + )g(2O =2C )s(2Ou

(1) calculate from : ο298H∆ , ο

298S∆ , ]OCu,O,Cu[C )s(2)g(2)s(P

T4.174T1085.0T103.9TlnT28.4333200G 1523T +×−×−−−=∆ −−ο

(2) ∵ οG∆ =-RT lnK=RT ln .)eq(O2p

Measure .)eq(O 2p (T) ⇒ )T(Gο∆ TCTlnTBA ′+′+′≅

οTG∆ = T247TlnT2.14338900 +−−

(3) Approximate (2) to a linear form οTG∆ =A+BT

οTG∆ =-333000+141.3T

Compare (3) with (1), error is small !!

∴Usually, it is convenient to use approximation, “ for oxidation of pure metals.”

BTAGT +=∆ ο

§12-4. Ellingham Diagrams (Stability of Metals and Metal-Oxides.)

1. Ellingham: Plot οG∆ vs. T for oxidation of many metals.

οG∆ BTA +≅ , for oxidation of pure metals.

c.p. οG∆ = οH∆ -T οS∆ , at constant P

∆−=∆=

o

o

SBHA

, but oo S,H ∆∆ is almost independent of T.

)s(2)g(2)s( MOOM =+

Figure 12.2 T=0 Ko , οG∆ = οH∆ (Heat formation of oxide at 0 Ko )

οS∆ = ο)s(MO2

S ο)s(MS− o

O2S− o

O 2S−≅

>>

≅οοο

οο

)s(M)s(MOO

)s(M)s(MO

SorSS

SS

22

2

∴( >∆− )Sο 0

(1) T= οT , 0G =∆ ο , ∴ )s(M and )s(2MO are in equilibrium under =2Op 1atm

∵ 0plnRTKlnRTG2O ==−=∆ ο , ∴ ( ) atm1p

.eqO2≡

(2) T= 01 TT < , ∵ οG∆ < 0 (oxidation reaction occurs under =2Op 1atm.)

∴ ο)s(MO2

G is smaller than ο)s(MG

)s(M is spontaneous ly oxidized.

∵ ο1TG∆ =R 1T ln )T,eq(o 12

p < 0 , ∴ )T,eq(o 12p < 1atm

(3) T= 02 TT > , οG∆ > 0, decompose of )s(2MO occurs under =2Op 1atm.

)T,eq(o 22p > 1atm

2. ∵ οο2OSS −≅∆

∴ οS∆ corresponds with disappearance of 1 mole of )g(2O initially at 1atm.

Therefore, if all oxidation reactions for pure metals are expressed in terms of

1 mole of )g(2O , then lines in Ellingham diagram have similar slopes.

slope= οο2OSS ≅∆−

∴all lines are more or less parallel.

e.g.

+−=∆=++−=∆=+

T6.145769400G,MnO2OMn2T7.143467800G,CoO2OCo2

)s()g(2)s(

)s()g(2)s(ο

ο

∴Relative stability of oxides CoO and MnO are determined by their οH∆ , i.e.

More negative οH∆ ⇔ More negative οG∆ ⇔ More stable the oxide, or metal is more easily oxidized.

3. Consider: Two oxidation reactions with Ellingham lines intersecting one another.

2 )s(A + 2O =2 )s(AO … … (1)

)(B λ + 2O = )s(BO … … (2)

Assume:

∆>∆∆<∆

∆<∆οοοο

οο

)1()2()1()2(

)1()2(

SSorSS

HH

∴(2)-(1) ⇒ 2)s()( BOA2AO2B +=+λ … … (3)

Figure 12.3 , Figure 12.4

∴ ETT < , 0G <∆ ο ,

++

unstableare)AOB(stableare)BOA( 2

ETT > , 0G >∆ ο ,

++

stableare)AOB(ustableare)BOA( 2

∴If pure A were to be used as a reducing agent to reduce 2BO to form B and AO, reduction should be conducted at ETT > .

Note: In order to compare stabilities of oxides, Ellingham diagram must be

drawn for oxidation reactions with consumption of one mole of )g(2O .

4. Richardson nomographic scale of )T,eq(O2p

οTG∆ =-RT lnK=RT ln )T,eq(O2

p : for oxidation

∵For )g(2O , ideal gas model G= PlnRTG +ο

οG : Standard Gibbs Free Energy of )g(2O at P=1atm

∴ οTG∆ is the Gibbs Free Energy change of )g(2O from 1atm to )T,eq(O2

p at T.

∴For a given .)eq(O2p , ο

TG∆ =[R ln .)eq(O2p ] T⋅

a straight line of οTG∆ vs. T can be drawn.

∴For different .)eq(O2p , a series of lines of ο

TG∆ vs. T can be drawn .

These lines radiate from the point οG∆ =0, at T= K0ο .

Figure 12.5

* When .)eq(O2p =1atm ln .)eq(O2

p =0

∴ οTG∆ =R ln .)eq(O2

p T⋅ , slope=0

when .)eq(O2p < 1atm, ln .)eq(O2

p < 0

∴ οG∆ vs. T line, slope < 0

∴ )T,eq(O2p nomographic scale is added to Ellingham diagram along right-hand

edge and bottom edge.

Figure 12.6 e.g. at T= 1T

ab = ο1TG∆ =Gibbs Free Energy change of )g(2O

from 1atm→ 2010− atm

∴if 2Op < )T,eq(O 12

p = 2010− atm

oxidation of )s(M will not occur.

Figure 12.7 If 1T < ET

)T,eq(O 12p (2) < )T,eq(O 12

p (1)

∴B oxidized more easily than A.

* Starting with 2Op =1atm at 1T , (A+B+ 2O )

A and B oxidized simultaneously.

When 2Op ↓ to ≤ )T,eq(O 12

p (1)

Oxidation of A ceases and oxidation of B continues + part of )s(OA

decomposed.

Final equilibrium: ++ )s(2)s( BOA )T,eq(O 12p (2)

§12-5. Effect of Phase Transition

)s()g(2)s( AOOA =+ … … (1)

)(A λ = )s(A … … (2) at T= (A)m,T

(3)=(1)+(2) ∴ )s(2)g(2)( AOOA =+λ … … (3)

∴ ο)3(H∆ = ο

)s(AO2H - ο

λ)(AH - ο)g(O2

H

= ο)s(AO2

H - ο)s(AH - ο

)g(O2H -[ ο

λ)(AH - ο)s(AH ]

∴ ο)3(H∆ = ο

)1(H∆ - οA,mH∆

Similarly, ο)3(S∆ = ο

)1(S∆ - οA,mS∆ = ο

A,mO SS2

∆−− = )SS( A,mO2

ο∆+−

∵ οA,mH∆ > 0 and ο

A,mS∆ > 0

∆<∆

∆<∆οο

οο

)1()3(

)1()3(

SS

HH ⇒* slope of Ellingham line=( οS∆− ) > 0

∴(slope) ↑ slope= οA,mO SS

2∆+

Figure 12.8 * intercept at T= K0ο is lower.

)s(2)g(2)s( AOOA =+ … … (1)

=)s(2AO )2(AO λ … … (4) at T=2AOm,T

(5)=(1)+(4): )(2)g(2)s( AOOA λ=+ … … (5)

ο)5(H∆ = ο

λ)(AO2H - ο

)s(AH - ο)g(O2

H

= ο)s(AO2

H - ο)s(AH - ο

)g(O2H +[ ο

λ)(AO2H - ο

)s(AO2H ]

ο)5(H∆ = ο

)1(H∆ + ο2AO,mH∆

Similarly, ο)5(S∆ = ο

)1(S∆ + ο2AO,mS∆ = ο

22 AO,mO SS ∆+−

∵ ο2AO,mH∆ > 0, ο

2AO,mS∆ > 0

∆<∆

∆<∆οο

οο

)1()5(

)1()5(

SS

HH

∆−<∆−==

.decreases)slope(),S()S(slope*.higherisK0Taterceptint*

)1()5()5(οο

ο

Figure 12.8 , Figure 12.9

e.g. 2Fecl,mT =969K,

2Fecl,bT =1298K, Fe,mT =1809K

Given

−+−=∆+−=∆

+−−=∆=+=+=+

)J(T1.375TlnT8.41105600G)J(T68.63286400G

)J(T9.212TlnT68.12346300G)3......(FeClClFe)2......(FeClClFe)1......(FeClClFe

)3(

)2(

)1(

)g(2)g(2)s(

)(2)g(2)s(

)s(2)g(2)s(

ο

ο

ο

λ

∴(2)-(1), FeC )s(2l = FeC )(2l λ … … (4)

ο)4(G∆ = ο

2FeCl,mG∆ = ο)2(G∆ ο

)1(G∆− =59900+12.68T lnT-149T

+−−=∂

∆∂−=∆

−=∂

∆∂−=∆

14968.12Tln68.12]T

G[S

T68.1259900]T

)T/G([TH

2

2

2

2

FeCl,mFeCl,m

FeCl,m2FeCl,m

οο

οο

∴T=2Fecl,mT =969K,

=∆

=∆

K/J13.49S

J47610H

2

2

FeCl,m

FeCl,mο

ο

(3)-(2), FeC )(2l λ = FeC )g(2l … ...(5)

ο)5(G∆ = ο

2FeCl,bG∆ = ο)3(G∆ ο

)2(G∆− =180800+41.8T lnT-438.8T

+−−=∂

∆∂−=∆

−=∂

∆∂−=∆

8.4388.41Tln8.41]T

G[S

T8.41180800]T

)T/G([TH

2

2

2

2

FeCl,bFeCl,b

FeCl,b2FeCl,b

οο

οο

∴T=2Fecl,bT =1298K,

=∆

=∆

K/J46.97S

J126500H

2

2

FeCl,b

FeCl,bο

ο

Figure 12.10

§12-6. Stability of Oxides in CO/ 2CO and 2H / OH2 Gas

Mixtures

* In order to avoid oxidation of a metal, or reducing a metal oxide, a low 2Op is

usually needed.

* A vaccum system, p 1010−≅ atm ( Torr10 7− ), is not enough to get a low 2Op .

* Low 2Op can be obtained by CO/ 2CO or 2H / OH2 mixture with high

( COp /2COp ) or (

2Hp / OH2p ) ratio. Nomographic scales of ( COp /

2COp ) and

(2Hp / OH2

p ) are added to Ellingham diagram.

1. Consider reducing of 2MO with (CO/ 2CO ) gas mixture.

∵2 )g(2)g2)g( CO2OCO =+ … … (*1)

∴ οG∆ =-564800+173.62T (J)

οG∆ =-RT ln PK =-RT ln(2

2

O2CO

2CO

pp

p

⋅)

οG∆ =2RT ln(2CO

CO

pp

)+RT ln2Op

at T= οT

∴ln )1(*.)eq(O2

p =ο

οο

RT

G )T(∆-2 ln(

2CO

CO

pp

)

For oxidation of some metal: at T= οT

)s(2)g(2)s( MOOM =+ … … (*2)

οG∆ =-R 0T lnK=R 0T ln )2(*.)eq(O2

p

∴If )1(*.)eq(O2

p < )2(*.)eq(O2

p , metal will not be oxidized (or oxide will be reduced)

2. Nomographic scale for ( COp /2COp )

2 )g(2)g2)g( CO2OCO =+ … … (*1)

[1atm] [1atm] [1atm]

ο1G∆ =-564800+173.62T

or ο1G∆ = ο

]CO[ 2H∆ -T ο

]CO[ 2S∆

2C )g(2O [1atm]= 2 )g(2CO [P atm]… … (*3)

∴ ο3G∆ =2RT lnP

∴(*1) + (*3)=(*4) 2 )g(2)g2)g( CO2OCO =+

[1atm] [1atm] [P atm]

∴ ο4G∆ = ο

1G∆ + ο3G∆

∴ ο4G∆ = ο

]CO[ 2H∆ -T ο

]CO[ 2S∆ +2RT lnP

ο4G∆ = ο

]CO[ 2H∆ +T[2R lnP+( ο

]CO[ 2S∆− )]

∴For any other pressure of )g(2CO : P atm, or (2CO

CO

pp

)=(P1

) ≠ 1

ο4G∆ vs. T is linear, originating from ο

]CO[ 2H∆ “C” point,

with a slope ≅ ( ο]CO[ 2

S∆− )+2R lnP

∆−<><

∆−><>=

)S(slope,1)p

p(,1P

)S(slope,1)p

p(,1pP

]CO[CO

]CO[CO

COCO

2

2

CO

2

2

2

ο

ο

Figure 12.11

3. Using CO/ 2CO gas mixture to reduce )s(2MO

)s(M + )atm1(O2 = )s(2MO … … (*5)

(*1)-(*5)=(ix) )s(2MO +2CO(1atm)= )s(M +2 2CO (1atm)… … (ix)

∴ ο)ix(G∆ =( −∆ ο

(1)G ο(5)G∆ )=-RT ln

2

CO

CO

p

p2

ο)ix(G∆ =2RT ln(

2CO

CO

pp

)

∴at T= sT , (2CO

CO

pp

)=1, ο)ix(G∆ =0, (equil.)

(a) Fix (2CO

CO

pp

)=1, >rT sT , (r)point lies below Ellingham line(*5)

.reducedisMO.oxidizedbenotwillM

2

(b) AT <uT sT

If (2CO

CO

pp

)=1, point(u) lies above line(*5) M will be oxidized.

Only when (2CO

CO

pp

)≥ 10, M will not be oxidized. (or 2MO can be reduced)

e.g. 2 2CO (1atm)= 2 2CO (0.1atm)… … (6)

ο6G∆ =2RT ln(0.1)

∴(ix)+(6)=(x) 2MO +2CO(1atm)= M +2 2CO (0.1atm)… … (x)

∴ ο)x(G∆ = ο

)ix(G∆ +2RT ln(0.1)=2RT ln(2CO

CO

pp

)+2RT ln(0.1)

at T= uT , (2CO

CO

pp

)=10 ο)x(G∆ =0, (equil.)

Ex.: For a given (2CO

CO

pp

) point A= 610 , and T=1000 Cο , then a point P in diagram

can be specified.

(1) ( ).eqO2

p can be obtained by drawing OP and its intercept at 2Op scale

(point B= atm10 26− ) (2) For an Ellingham line of some metal, if point P lies below line, metal will not

be oxidized. Figure 12.12

§12-7. Upper limit of (2CO

CO

pp ) at a fixed T

−−=∆=+

−−=∆=+

T3.175223400G,CO2OC2)2(

T84.0394100G,COOC)1(

)3()g()g(2)s(

)1()g(2)g(2)s(ο

ο

(2)-2 )1(⋅ =(3) 2 )g(CO + )g(2O =2 )g(2CO , ο)3(G∆ =-564800+173.62T

(2)-(1)=(4) )s(C + )g(2CO =2 )g(CO , ο)4(G∆ =170700-174.5T

1. Reaction Equilibrium of (3) (CO- 2CO - 2O )

∴ ο)3(G∆ =-RT ln PK =-RT ln(

2

2

O2CO

2CO

pp

p

⋅)

∴2 ln(CO

CO

p

p2 )= ln

2Op -RT

G )3(ο∆

∴log(CO

CO

p

p2 )=

21

log2Op

RT3.22

G )3(

×

∆−

ο

∴log(CO

CO

p

p2 )=

21

log2Op +

R3.2262.173

RT3.22564800

×−

×

For a fixed 2Op , log(

CO

CO

p

p2 ) vs. (

T1

) is linear with same slope of (RT3.22

564800×

)

Figure 12.13

Fix p2O , as T ↑ , (

T1

) ↓ ⇒

CO

CO

p

p2 ↓ ,

2CO

CO

p

p ↑

i.e. T ↑ ⇒

2CO

CO

p

p ↑, more reducing gas.

See Figure.12.14.

2. At a fixed T, (T1

), there is a lower limit of

CO

CO

p

p2 ,

[ upper limit of

2CO

CO

p

p] , because reaction (4) sets an equilibrium ,

as

2CO

CO

p

p ↑ ⇒ C )(S precipitates

(4) C )(S + CO )(g2 = 2 CO )(g

∆G o4 = -RT ln K = -RT ln

2CO

2CO

pp

At a total pressure : P = 1 atm , p2CO = 1- p CO

K = CO

2CO

p1p

−= exp(-

RTG o

4∆) = (1.3 × 10 9 ) exp(-

T20532

) = x

∴ p 2CO + p CO xx −⋅ = 0

∴ p CO = 2

x4xx 2 ++−

and p2CO = 1- p CO =

2x4xx2 2 +−+

CO

CO

p

p2

itlim =x4xx

x4xx22

2

++−

+−+= f(T)

T ↓, (T1

) ↑ ⇒ x ↓ ⇒

CO

CO

p

p2

itlim ↑, see Figure 12-13.

3. MO )(s reduced in CO/ CO 2 gas mixture

* MO )(s + CO )(g = M )(s + CO )g(2

Equilibrium line can be added into Figure12-13.

e.g. (A) FeO )(s + CO )(g = Fe )(s + CO )(g2

∆G o)A( = -22800 + 24.26T

∴ ∆G o)(A = -RT ln K = -RT ln

CO

CO

p

p2

∴ log

CO

CO

p

p2 = -

RT3.2

Go)A(∆

= T

1192-1.27 ( line AB )

Note : * any gas state , which lies above AB is oxidizing with respect to Fe )(s

* Point A is the lowest temperature T A , at which FeO can be reduced by

C )(s .

Example 1 :

(1) CO )g( + 21

O )g(2 = CO )g(2 ∆G o1 =-282400+86.81T

Given (2) H )g(2 +21

O )g(2 = H 2 O )g( ∆G o2 =-246400+54.8T

(3) Co )s( +21

O )g(2 = CoO )s( ∆G o3 =-282400+71.85T

Ask : 1. Which ( H )(g2 or CO )(g ) is a more efficient reducing gas ?

2. One mole H )(g2 , how many moles of CoO )(s can be reduced at

T = 1673 K and T = 873 K ?

3. One mole CO )(g , how many moles of CoO )(s can be reduced at

T = 1673 K and T = 873 K ? Sol :

1. ∵ ∆G o1 = ∆G o

2 , T o = 1125 K = 852℃

When T>T o , ∆G o1<∆G o

2 , H )(g2 is a more efficient reducing gas.

When T<T o , CO )(g is a more efficient reducing gas.

2. CoO )s( + H )g(2 = Co )s( + H 2 O )g( … … .(4)

(4) = (2)-(3), ∆G o4 = -12500+17.05 T

CoO )s( + H )g(2 = Co )s( + H 2 O )g(

Initial 1 1 0 0 Final 1-x 1-x x x

∆G o4 = -RT ln K 4 = -RT ln

2

2

H

OH

p

p

∴ K 4 = exp(-RTG o

4∆) =

2

2

H

OH

p

p

T = 1673 K , K 4 = 19.1 = ( )x1

x

∴ x = 1K

K

4

4

+ =

1.201.19

= 0.95 (mole)

T = 873 K , K '4 = 43.5

x ' = 1K

K'4

'4

+ =

5.445.43

= 0.978 (mole )

3. CoO )s( + CO )g( = Co )s( + CO )g(2 .(5)

(5) = (1)-(3), ∆G o5 = -48500+14.96 T

CoO )s( + CO )g( = Co )s( + CO )g(2

Initial 1 1 0 0 Final 1-y 1-y y y

∴ ∆G o5 = -RT ln K 5 = -RT ln

CO

CO

p

p2

∴ K 5 = exp(-RTG o

5∆) =

CO

CO

p

p2 = ( )y1

y

T = 1673 K , K 5 = 0.52 y = 1K

K

5

5

+ =

52.152.0

= 0.34 (mole)

T = 873 K , K '5 = 132 y ' =

133132

= 0.992 (mole)

∴ T = 1673 K , x > y , H )g(2 is more efficient

T = 873 K , x < y , CO )g( is more efficient

Example 2 : NiO )s( + Cl 2 )g( = NiCl2 )s( + 21

O )g(2

At T = 900 K ∆G o = -15490 J

If 90 % Cl2 )g( must be converted into O )g(2 ,

What is the total pressure ? P =?

Sol: NiO )s( + Cl 2 )g( = NiCl2 )s( + 21

O )g(2

Initial 1 1 0 0

Final 1-x 1-x x 21

x

∴ ∆G o = -RT ln K= -RT ln

2

2

Cl

21

O

p

p

2

2

Cl

21

O

p

p = exp(-

RT

Go∆) = 7.925

For gas phase : n T = (1-x) + 21

x = 1-21

x

−−

P)2/x(1

x1

P)2/x(1

2/x 21

= 7.925

But x = 90 % = 0.9 ∴ ( )

P182.0818.0 2

1

= 7.925 ∴ P = 0.393 atm

Example 3 : (1) ZnO )s( + CO )g( = Zn )g( + CO )g(2 , ∆G o1 =-177800-111.2 T

Q –1 : Reaction (1) : T = 1223 K , P = 1atm , final composition of gas phase p i =?

Sol–1: T = 1223 K , ∆G o1 = 41800

∵ ∆G o1 = -RT ln K 1= -RT ln

CO

ZnCO

p

pp2

CO

ZnCO

p

pp2 = exp (-

RTG o

1∆) = 0.0164

P = p Zn + p2CO + p CO but p Zn = p

2CO

∴ p CO = 1-2 p Zn

∴ Zn

2Zn

p21p

−= 0.0164

∴ p Zn = 0.113 atm

p2CO = 0.113 atm

p CO = 0.774 atm

Q-2 : When P ↑ (p Zn ) increases , condensation of Zn )g( occurs .

T = 1223 K , p Zn = ? P C = ?

Given : Zn )l( = Zn )g(

ln p o)l(Zn =

T15250−

-1.255 ln T + 21.58 (atm)

Sol –2 : T=1223 K , p o)l(Zn = 1.49 atm

∵ K 1=

CO

ZnCO

p

pp2 = 0.0164 , p Zn = p

2CO =1.49 atm

∴ 0.0164 = )49.12(P

49.149.1

c ×−×

∴ P C = 138.35 atm , p CO = 135.37 atm

Q-3 : T=1223 K , P = 150 atm equilibrium p i = ?

Sol –3 : ∵ Zn )l( = Zn )g( equilibrium must be maintained .

∴ p Zn =1.49 atm

But p2CO ≠ p Zn ( ∵ P > 138 atm )

∴ K 1=

CO

CO

p

49.1p2 = 0.0164 … … .(I)

P = 150 = 1.49 + p2CO + p CO … … ..(II)

Solve (I) (II)

∴ p2CO = 1.61 atm , p CO = 146.9 atm

Example 4 :

Given , CO )g(2 + H )g(2 = CO )g( + H 2 O )g( … (1) ∆G o1 = 36000-32 T

CO-CO 2-H 2-H 2 O gas mixture produced by mixing with

CO )g(2 + H )g(2 1:1 moles , T = 1000 K, P = 1 atm

Q-1 p )eq(i = ?

Sol : ∆G o1 = -RT ln K 1P K 1P = exp(-

RTG o

1∆)= 0.618

K 1P =

22

2

HCO

COOH

pp

pp

∵ p CO = p OH2 , p

2CO = p2H

∴ P = 1 = p OH2 + p CO + p

2CO + p2H = 2 (p

2H + p OH2 )

∴ p OH2+ p

2H = 0.5 ∴ p OH2= 0.5-p

2H

∴ p CO = p OH2 = 0.5 - p

2H

p2CO = p

2H

∴ K 1P =

−⋅−

22

22

HH

HH

pp

)p5.0()p5.0(=

−2

H

2H

2

2

p

)p5.0(

∴ p2H = p

2CO = 0.28 atm

p OH2 = 0.5 - p

2H = 0.22 atm = p CO

Q-2 : Equilibrium gas mixture at initial P = 1 atm , T = 1000 K

Contained in a constant volume vessel . What are final p 'i if CaO )s(

is introduced ?

CaO )s( + 5CO )g( = CaC )s(2 + 3 CO )g(2 … ..(2)

CaO )s( + H 2 O )g( = Ca(OH) )s(2 … … … … … … .(3)

CaO )s( + CO )g(2 = CaCO )s(3 … … … … … … … .(4)

∆G o2 = -37480+300.7 T

∆G o3 = -117600+ 145 T

∆G o4 = -168400+ 144 T

Sol : T = 1000 K

If : Equilibrium (I) K 2 = exp(-RTG o

2∆) =

5'CO

3'CO

p

p2 = 1.78 × 10 14−

substitute p 'CO2

= 0.053 atm

p 'CO = 152.9. atm impossible !!

(II) K 3 = 0.037 = '

OH2p

1

p 'OH2

= 27.027 atm

P ≤ 1 atm impossible !!

(III) K 4 = 18.82 = 'CO2

p1

p 'CO2

= 0.053 atm < p2CO = 0.28 atm Yes !!

∴ only reaction (4) is equilibriated .

∴ p 'CO2

= 0.053 atm (< p2CO = 0.28 atm )

∴ CO )g(2 is consumed and (1) P ↓ , (2) reaction (1) ←

at new equilibrium p 'CO = p '

OH2

p 'OH2

+ p 'H2

= 0.5 atm (not changed )

∴ K 1P = 0.618 =

⋅⋅

22

2

H'

CO'

CO'

OH'

pppp

=

⋅− 053.0)p5.0(p

OH'

2OH

'

2

2

∴ p 'OH2

= 0.113 atm = p 'CO

p 'H2

= ( 0.5 - 0.113 ) = 0.387 atm

p 'CO2

= 0.053 atm

P ' = 0.666 atm

Q-3 : If C )s( , graphite is introduced , what is the final p ''i ?

Given , C )s( + CO )g(2 = 2CO )g( … … … … .(5)

∆G o5 = 170700 - 174.5 T

Sol-3 : K 5 = exp(-RTG o

5∆) = 1.579 =

2CO''

2CO

''

pp

In order to maintain equilibrium of (4)

∴ p ''CO2

= p 'CO2

= 0.053 atm

∴ p ''CO = (K 5 p ''

CO2) 2

1

= (1.579 × 0.053 ) 21

= 0.289 atm

However , p ''OH2

+ p ''H2

= 0.5 atm ( not changed !!)

∴ K 1P = 0.618 =

⋅⋅

22

2

H''

CO''

CO''

OH''

pppp

=

⋅−053.0p

289.0)p5.0(

2

2

H''

H''

∴ p ''H2

= 0.449 atm

p ''OH2

= ( 0.5 - 0.449 ) = 0.051 atm

p ''CO2

= 0.053 atm

p ''CO = 0.289 atm

P = 0.842 atm Note : If process 2 , 3 , Q2 , Q3 are reversed , the final equilibrium p ''

i is the same .