cern slides

24
[email protected] Atlas Inner B-Layer CO 2 cooling system CMS Tracker Week, 17 July 2012 Bart Verlaat Jan Godlewski 1

Upload: mine-rh

Post on 30-Dec-2015

28 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cern Slides

[email protected]

Atlas Inner B-Layer

CO2 cooling system

CMS Tracker Week, 17 July 2012

Bart Verlaat

Jan Godlewski

1

Page 2: Cern Slides

[email protected]

Atlas Inner B-Layer (IBL)

2 New detector with smaller beam

pipe in space of current beam pipe

IBL detector:

• Ø80mm x 800mm

• 1.5 kW @ -40°C

• 14 staves with 1 cooling pipe

Carbon foam structure

1.5mm ID titanium cooling pipe

Pixel detector chips

(71 watt/stave)

Page 3: Cern Slides

[email protected] IBL cooling

requirements

3

• Conclusion: – A CO2 system with an

evaporator capacity of 1.5kW, operational from +20°C to -40°C

– Accessible manifolds

– Redundant cooling plant

– Fail safe operational during back-out (blow system)

https://edms.cern.ch/document/1204776/1

Page 4: Cern Slides

[email protected] Atlas IBL Thermal

runnaway

4

-40 -30 -20 -10 0 10 20 30-40

-30

-20

-10

0

10

20

30

TCO2

(ºC)

Sensor

Tem

pera

ture

(ºC

)

Atlas IBL

TFoM

=5

TFoM

=10

TFoM

=15

TFoM

=20

TFoM

=25

TFoM

=30

TFoM

=35

TFoM

=40

Vbias=1000V & I0=0.675 mA @ T0=-15 ºC

Qsensor=0.19989 W/m2, Qchip=0.38202 W/m2

Asensor=3.3768 cm2, Int.lum=550fb-1

-40 -30 -20 -10 0 10 200

1

2

3

4

5

6

Sensor Temperature (ºC)

Heatf

lux (

W/c

m2)

Atlas IBL

Vbias=1000 V

Int.lum=550 fb-1

Qsensor

(W/cm2)

Qmodule

(W/cm2)

A TFoM of 20°C*cm2/W and a cooling of -35°C gives a silicon temperature

of -25°C. Thermal runaway starts to be visible at a cooling temperature of

-25°C (-10°C sensor temperature)

Significant leakage

current effect on

sensor power

Page 5: Cern Slides

[email protected]

IBL cooling layout in Atlas

5

Tracking

LAR

Tile Calorie

Accessible manifolds

Capillaries

in IDep

Vacuum

insulated

capillaries

14 IBL staves

LA

R

LA

R

Tracking

LAR

Tile Calorie

Vacuum insulated

concentric transfer tube

Page 6: Cern Slides

[email protected]

IBL Cooling pipes layout (C-Side view)

6

Vacuum insulated straight concentric

transfer tube

In- and outlet

Manifolds

Inlet capillaries

and outlet lines

Foam insulated junction piping (With condensation channels)

Vacuum insulated

Concentric tubes LAR station

Foam insulated transfer tubing

(Concentric TBV)

To USA-15 cavern

In- and outlet

Manifolds

Inlet capillaries and

outlet lines

Foam insulated junction piping

(With condensation channels)

Vacuum insulated

Concentric tubes

Page 7: Cern Slides

[email protected] Cooling system P&I

7

FL018

⅜”

AV016

18

20

36 38

FL016

BD016PT116 / PT316TT116 / TT316

26 32

28 30

34

Tracking detectors

Tile calorie meter

LAR calorie meter

MV018

MV036

14 IBL staves (a-g),(7 flow pairs) (7x A-›C flow / 7x C-›A flow)

Vacuum insulated concentric tube (~13 m)

Detector boundary

Junction box @ Muon Sector 5 (Accessible)

Vacuum insulation

Dry volume

Transfer tubes (~72m)

LAR Cryo area

VP591

USA-15

HX014

HX036

½”⅜”

¾”x5/16”

⅜”

Du

mm

y lo

ad

(tes

tin

g o

nly

)

IBL CO2 Cooling layout

½”

¾”x5/16”

VP592

14

16mm vacuum line

16mm vacuum

10

12

16

40

10

Freon chiller A

200

Freon chiller B

400

CO2

plant A 100

CO2

plant B 300

22

HX012

BD018PT118 / PT318TT118 / TT318

BD020PT120 / PT320TT120 / TT320TTz20 (DCS)

24DCS: TTa24 – TTn24

DCS: TTa28 – TTn28

EH122TS122

DCS: TTa30 – TTn30

BD036PT136 / PT336TT136 / TT336TTz36 (DCS)

MV034

MV017MV035

EH117TT117TS117

MV016

PT138 / PT338TT138 / TT338

PT114/ PT314TT114 / TT314

HX

03

8

PR591PT191 / PT391

91

PT193 / PT393

93

PT192/ PT392 92

MV593

MV592

MV591

26

2830

32

Page 8: Cern Slides

[email protected] Cooling system

redundancy approach • Two cooling plants (A&B) sharing a common transfer piping and

accumulator

• Dedicated chiller (A2A & B2B) with air and water cooled condenser

• Controls and sensors are completely redundant. – Control items on common hardware like accumulator or transfer line are

doubled.

• Able to run 2nd CO2 system in stand-by using the running chiller – CO2 system A to chiller B and visa versa.

– Local circulation in 2nd plant; cooling power limited for internal circulation only

– Stand by mode gives the possibility for a quick switchover

• Able to shut-off and empty 2nd system to do maintenance

8

Page 9: Cern Slides

[email protected]

Cooling Plant P&I

9

AC042

LP101

vent evacuate

6

8

FT106

FL104

NV104

⅜”

FL106

EH106TT106TS106

Fill port

EH101 / EH102 / EH103TT101 / TT102 / TT103TS101 / TS102 / TS103PT101 / PT102 / PT103

HX150

CO2 system A100 labels

PT142LT142

FT306

FL304

NV304

⅜”

FL306

VP

05

6

50

4

40

12

4444

46

48

PV110

BD150/ PT150/ TT150

¼”

BD104PT104TT104

BD108PT108TT108

CO2 from experiment

CO2 to experiment

42

PT342LT342

EH142TT142TS142

EH342TT342TS342

PV108

PV144

MV106

HX148

TT148

SV042 SV043

MV042

FL144

MV041

TT146

AV108

Freon chiller A

200

Freon chiller B

400

CO2 system B300 labels

10

LP101EH301 / EH302 / EH303TT301 / TT302 / TT303TS301 / TS302 / TS303PT301 / PT302 / PT303

4

FL344

BD304PT304TT304

MV3066

8

EH306TT306TS306

BD308PT308TT308

AV308

PV308

PV310

PV344

46 TT346

48 TT348

HX350

HX348

LP301

Fill portnc

nc

nc

nc

nc

nc

MV050

MV054MV052MV056

BD050

EV148 EV348

nc nc

50

BD350/ PT350/ TT350

SV040

MV040

SV041 BD108 10

MV058

NV110

MV110

NV310

MV310

nc

CV142

nc

CV342

Page 10: Cern Slides

[email protected] Documents in

preparation:

10

1. P&I document

2. Functional analyses

3. DCS interface

Page 11: Cern Slides

[email protected] CoBra Model (CO2 BRAnch Model)

11

R1x

R2x

R3x

R5x R2y+1

R3y+1

R4x R4y+1

R1y+1

R1 X+1 R2 X+1

R3 X+!

R5 X+1 R2 y

R3 y

R4 X+1 R4 y

R1 y

Px+1,Hx+1,Tx+1

Px,HxTx

Py+1,Hy+1,Ty+1

Py,Hy,,Ty

T 2

3

4

1

Px+1=dPx+1+Px

Hx+1=dHx+1+Hx

dH=Q1/MF

Q1 is calculated in the

thermal network

2

3

4

The thermal node network calculates the heat influx in the cooling pipe based on: •Applied power Q3 on node 3

•Environmental heating from fixed temperature T4 on node 4

•Heat exchange with another pipe section via R5 between nodes 2 and 2 of the connected

sections

Page 12: Cern Slides

[email protected]

Node network for IBL

12

Tenvironement

R4≈ HTCair

R2 +R3 ≈ TFoM

R1 ≈ HTCCO2

TCO2

Tenvironement

TCO2 TCO2

R4 +R3 ≈ Insulation+HTCair

R5≈ Heat exchange

R1≈ HTCCO2

R2 ≈ Tube wall

Q3 ≈ Applied power

Tenvironement

TCO2

R4 +R3 ≈ HTCair R1≈ HTCCO2

R2 ≈ Tube wall

Tenvironement

TCO2

R1≈ HTCCO2

R2 ≈ Tube wall

TCO2

R1b≈ HTCCO2

R1a≈ HTCCO2

R4 +R3 ≈

Insulation+HTCair

1. Concentric line

3. Bare tube

2. Bundled lines

4. Stave

Page 13: Cern Slides

[email protected]

Model configuration

13

ID (mm) Length

(m)

HX with

node

Power (W) Tambient

(ºC)

Node

network

1-2 1 6.3 7-8 20 1

2-3 1 2.6 6-7 20 2

3-4 1.5 3 -25 3

4-5 1.5 0.7 0,64,108 -25 4

5-6 2 3 -25 3

6-7 2.4 2.6 2-3 20 2

7-8 3 / 1.5 concentric 6.3 1-2 20 1

2

3

1

4

56

8

7For simplicity the model inlet

is cooled with its own outlet

Environment temperature inside

IST is taken to be -25⁰C (~stave

surface temperature)

Page 14: Cern Slides

[email protected]

14

0 5 10 15 20 25-45

-40

-35

-30

-25

-20

IBL temperature and pressure profile. MF=1g/s, Tsp=-40ºC, Q=108W, xend

=0.35

Branch length (m)

Tem

pera

ture

(ºC

)

1 2 3 4 5 6 7 8

10

11

12

13

14

15

Pre

ssure

(Bar)

T Structure (ºC)

T Tube wall (ºC)

T Fluid (ºC)

P Fluid (Bar)

-40 ⁰C cooling +15 ⁰C cooling (Commissioning)

Simulation results:

0 5 10 15 20 2510

15

20

25

IBL temperature and pressure profile. MF=1g/s, Tsp=15ºC, Q=64W, xend

=0.36

Branch length (m)

Tem

pera

ture

(ºC

)

1 2 3 4 5 6 7 8

50

53

56

59

Pre

ssure

(Bar)

T Structure (ºC)

T Tube wall (ºC)

T Fluid (ºC)

P Fluid (Bar)

Page 15: Cern Slides

[email protected] Flow balancing with

inlet capillary

15

0 0.5 1 1.5 2 2.50

2

4

6

8

10

12

14

Massflow (g/s)

Pre

ssure

Dro

p (

Bar)

Liquid

0 Watt

65 Watt

108 Watt

0 0.5 1 1.5 2 2.50

5

10

15

20

25

30

Massflow (g/s)P

ressure

Dro

p (

Bar)

Liquid

0 Watt

65 Watt

108 Watt

1mmID inlet tube. 0.8mmID inlet tube.

1.1 g/s

(15.4 g/s)

4 bar dP

1 g/s

(14 g/s)

6 bar dP

As detector performance does not depends too much on the

mass flow a 1mm inlet seems sufficient with some extra flow.

This flow gives extra margin for environmental heat pick-up.

9 bar dP

2 g/s

(28 g/s)

Design flow regime

Page 16: Cern Slides

[email protected]

Evaporator heat pick-up

• Due to long in and outlet lines a significant amount of parasitic heat is absorbed. The cooling system must be designed accordingly

• Shown absorbed heat is based on the environmental conditions shown in the table of page 18

• About 80 watt of parasitic heat load can be expected (Same order as IBL power)

• Total evaporator design heat load: 180Wx14=2.5 kW

16

0 0.5 1 1.5 2 2.5-50

0

50

100

150

200

Massflow (g/s)

Absorb

ed h

eat

(Watt

)

Liquid

0 Watt

65 Watt

108 Watt

Total absorbed heat including stave power.

Heat absorption calculated with an IST air temperature of -25⁰C (20 ⁰ C outside IST)

Page 17: Cern Slides

[email protected] Stave test results (1)

• Measured TFoM is excluding gradient caused by pressure drop due to absence of the long outlet line

17

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TFo

M (⁰

C*

cm2)/

W

Silicon sensor ID#

TFoM of 1.5mm cooling tube stave (Flow unknown due to absence of flow meter)

187 (Watt), TCO2=-23.7ºC

69 (Watt), TCO2=-21.9ºC

29 (Watt), TCO2=-23.9ºC

87 (Watt), TCO2=-24.6ºC

118 (Watt), TCO2=-24.6ºC

149 (Watt), TCO2=-24.3ºC

68 (Watt), TCO2=-26.15ºC

68 (Watt), TCO2=-29.05ºC, flow reduced close to dry-out

10

11

12

13

14

15

16

17

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TFo

M (⁰

C*

cm2 )

/W

Silicon sensor ID#

TFoM of IBL staves(ca. 90 Watt)

ID=2mm ID=1.5mm

Oct ‘11 Mar ‘12

Page 18: Cern Slides

[email protected]

Stave test results (2)

18

-30

-20

-10

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18

Tem

pe

ratu

re (⁰

C)

Silicon heater ID#

Reversed flow stave temperatures of a 1.5mm cooling tube stave (Flow unknown due to absence of flow meter)

70 (Watt), TCO2=-24.7ºC, Reversed flow

186 (Watt), TCO2=-24.3ºC, Reversed flow

29 (Watt), TCO2=-24.6ºC,Reversed flow

345 (Watt), TCO2=-16.05ºC, Reversed flow flow increase

Inlet CO2 temperatureOutlet CO2 temperature (Reference of TFoM)

0 5 10 15 20 25 30 35 40 45 50-40

-30

-20

-10

0

10

20

TFoM (ºC*cm2/W)

Sensor

Tem

pera

ture

(ºC

)

T CO2=-40ºC

T CO2=-35ºC

T CO2=-30ºC

T CO2=-25ºC

T CO2=-20ºC

T CO2=-15ºCT CO2

=-10ºCT CO2=-5ºCT CO2

=0ºC

Nominal stave power Measurement IBL nominal condition

Thermal runaway

Maximum stave power in test set-up

345 Watt, Tsilicon<30 ⁰ C (-16⁰C CO2)

=> 4.8 kW! No problems during back-out!

Page 19: Cern Slides

[email protected]

MARCO project (The IBL prototype)

19

An IBL plant look-a-like (Similar specs) build together with

MPI Munich (prototype for their Belle-2 development)

A CO2 2PACL build in MPI

Controls build

at CERN-DT

2-stage chiller for IBL

temperatures from

ECR-Nederland

Page 20: Cern Slides

[email protected]

MARCO 2-stage chiller

• Frequency controlled 2-stage chiller concept is new for us and crucial for IBL low temperatures, MARCO commissioning is crucial for IBL.

• Challenge is the narrow temperature band as CO2 freezes at -56⁰C while IBL condenser temperature is -45 ⁰C and pump need some sub cooling (~5 ⁰C SC = -50 ⁰C liquid)

• MARCO 2-stage chiller fulfils IBL requirement of an estimated 3.5kW @ -50 ⁰C 20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-80 -70 -60 -50 -40 -30 -20

Co

oli

ng

Po

we

r (k

W)

R404a evaporation temperature ('C)

Bitzer 2-stage compressor S4T-5.2Y performance

60 Hz

30 Hz

Minimum load

(Hot gas by pass)

Marco max heat loadB

ack-p

ressu

re

reg

ula

tor

Page 21: Cern Slides

[email protected]

Long branch vacuum

shield

21

Super

insulation?

7x 1.5mmOD /

1.0mmID concentric

inlet tube

7x 4mmOD /

3mmID outlet

tube

Or a spacer only?

7x ??mmOD vacuum

tube

Tracking

LAR

Tile Calorie

We have to grasp the bundle from under-

neath the muons and bend it in place

50mm PVC tube mock-up

Page 22: Cern Slides

[email protected] Vacuum shielding

prototyping

22

At SLAC a prototype with a flexible

CO2 bellow is developed:

-> Very flexible but larger diameter

At Cryolab a prototype with a the

4mm tube is developed:

-> Stiff but bendable, has a reduced

diameter

Outcome of the tests will determine which one to use, maybe both are needed

depending on needed flexibility vs space available

Page 23: Cern Slides

[email protected] Conclusions and

outlook

23

• IBL Cooling system development status:

– Conceptual design of piping and control is

finalized.

– Detailed design will start after summer

• Ongoing prototyping of vacuum insulated

transfer lines

• Concept studies using MARCO

– 2-Stage chiller for low temperature

Page 24: Cern Slides

[email protected]

Questions?

24