celestial and spaceflight mechanics laboratory highfidelity

17
HighFidelity SmallBody Lander Simulations Stefaan Van wal Simon Tardivel Daniel Scheeres 6 th International Conference on Astrodynamics Tools and Techniques Darmstadt, 16 March 2016 University of Colorado Boulder Celestial and Spaceflight Mechanics Laboratory

Upload: others

Post on 16-Oct-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Celestial and Spaceflight Mechanics Laboratory HighFidelity

High-­‐Fidelity  Small-­‐Body  Lander  Simulations  

Stefaan  Van  wal  Simon  Tardivel  Daniel  Scheeres  

 

6th  International  Conference  on  Astrodynamics  Tools  and  Techniques  Darmstadt,  16  March  2016  

University of Colorado Boulder

Celestial and Spaceflight Mechanics Laboratory

Page 2: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Introduction  

16  March  2016   High-­‐Eidelity  small-­‐body  lander  simulations   2  

à  Increase  mission  return  with  lander  and  surface  mobility  operations  

Small  body  exploration  

Science   Resources  Planetary  defense  

à  Design  requires  high-­‐5idelity  modeling  

Page 3: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Contents  1.  Framework  

2.  Gravity  

3.  Surface  

4.  Collisions  

5.  Results  and  conclusions  

16  March  2016   High-­‐Eidelity  small-­‐body  lander  simulations   3  

Page 4: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Framework  •  SAL  software  package  •  Previously:  spherical  landers    

•  Currently:  extension  to  arbitrary  shapes  

 •  Integration  with  RK5(4)  in  C++,  event  capability  

•  Propagation  relative  to  rotating  target  frame  

16  March  2016   High-­‐Eidelity  small-­‐body  lander  simulations   4  

Page 5: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Gravity  •  Constant-­‐density  polyhedron  model,  expensive  •  Method  1:  Linearization  

§  Acceleration:  §  Error  control  with  Δrmax  

•  Method  2:  Reduced-­‐resolution  gravity  model  §  Error  control  with  resolution  

16  March  2016   High-­‐Eidelity  small-­‐body  lander  simulations   5  

1,280  facets  200,000  facets  

Page 6: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Surface  •  Surface  interactions  govern  dissipation,  high-­‐resolution  model  necessary  

•  Challenge:  collision  detection  with  global  surface  and  rocks  

•  Method  1:  Atlas  §  Latitude/longitude  grid  of  small  local  worlds  

§  Fast  collision  detection  with  single  active  local  world  

16  March  2016   High-­‐Eidelity  small-­‐body  lander  simulations   6  

Z-­‐atlas  

X-­‐atlas  

Page 7: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Surface  •  Method  2:  Surface  rock  distribution  

§  Affects  energy  and  topographic  dissipation  §  Previously:  stochastic  model,  limitations  §  Full  model  is  necessary,  large  #  of  rocks  §  Procedural  generation  on  active  local  world  

§  ModiEied  icosahedron  

16  March  2016   High-­‐Eidelity  small-­‐body  lander  simulations   7  

Page 8: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Surface  •  Method  3:  Bounding  spheres  

§  DeEined  for  local  worlds,  rocks,  and  lander  §  Fully  encompass  target  §  Trigger  Einer  collision  detection  §  Fast  detection  for  large  #  of  features  

16  March  2016   High-­‐Eidelity  small-­‐body  lander  simulations   8  

dmin%

dmin%

dmin%

Page 9: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Collisions  

v   nf  v  s  

ω0  

v0  

ω1  

v1  

Velocities   Impulses  

•  Impact  of  arbitrary  shapes:  §  Non-­‐eccentric,  coupling  of  normal  force  and  friction  

§  Integrated  using  time-­‐like  normal  impulse  p  

§  Governed  by  e  and  μ  §  Sliding  velocity  s,  slip  vs.  stick  

§  Contact  when  vN  ~  0  

compression  restitution  

16  March  2016   High-­‐Eidelity  small-­‐body  lander  simulations   9  

Page 10: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Sample  deployment  to  Itokawa  

video  placeholder  

Page 11: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Results  •  VeriEication  of  deployment  strategy  •  Effect  of  uncertainty  in:  

§  Release  conditions,  e.g.  altitude  §  Surface  interaction  properties,  e.g.  e  and  μ  §  Rock  distribution  

•  Surface  mobility  operations  §  Control  strategy  

•  Lander/rover  shape  optimization  •  Visualization  in  OpenGL  

16  March  2016   High-­‐Eidelity  small-­‐body  lander  simulations   11  

Page 12: Celestial and Spaceflight Mechanics Laboratory HighFidelity

video  placeholder  

Lander  shape  comparison  

Page 13: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Impact  locations  

First  impact  

Second  impact  

Release  

Page 14: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Conclusions  •  Elements  required  for  high-­‐Eidelity  simulations  •  Methods  to  reduce  numerical  burden:  

§  Gravity  (linearization/resolution)  §  Surface  (atlas/rocks/spheres)  

•  Collision  handling  of  arbitrary  shapes  •  Enables  design  and  veriEication  of  lander/rover    

•  Future  work:  §  Shape  optimization  §  Contact  motion  §  Mission  scenarios  

16  March  2016   High-­‐Eidelity  small-­‐body  lander  simulations   14  

Page 15: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Sample  Mascot-­‐2  deployment  to  Didymoon  

video  placeholder  

Page 16: Celestial and Spaceflight Mechanics Laboratory HighFidelity

Questions?  

Page 17: Celestial and Spaceflight Mechanics Laboratory HighFidelity

References  •  S.  Tardivel,  D.J.  Scheeres,  P.  Michel,  S.  Van  wal,  and  P.  Sanchez,  “Contact  

motion  on  surface  of  asteroid,”  Journal  of  Spacecraft  and  Rockets  ,  2014.  •  S.  Van  wal,  S.  Tardivel,  and  D.J.  Scheeres,  “Exploring  small  body  surface  

with  landed  pods,”  in  12th  International  Planetary  Probe  Workshop,  Cologne,  2015.  

•  S.  Van  wal,  “The  ballistic  deployment  of  asteroid  landers,”  M.S.  thesis,  Delft  University  of  Technology,  2015.  

•  W.J.  Stronge,  “Impact  mechanics,”  Cambridge  University  Press,  2004.  •  V.  Bhatt  and  J.  Koechling,  “Three-­‐dimensional  frictional  rigid-­‐body  

impact,”  Journal  of  Applied  Mechanics  ,  1995.  •  S.  Tardivel,  C.  Lange,  S.  Ulamec,  and  J.  Biele,  “The  deployment  of  

Mascot-­‐2  to  Didymoon,”  in  26th  AAS/AIAA  Space  Flight  Mechanics  Meeting,  Napa,  CA  ,  2016.  

16  March  2016   High-­‐Eidelity  small-­‐body  lander  simulations   17