case study: lunar roving vehicle€¦ · case study – lunar roving vehicle enae 788x - planetary...

51
Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics U N I V E R S I T Y O F MARYLAND Case Study: Lunar Roving Vehicle 1 © 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: others

Post on 19-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Case Study: Lunar Roving Vehicle

    1

    © 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

    http://spacecraft.ssl.umd.edu

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Concepts for Lunar Equipment Carriers

    2

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Concepts for Lunar Equipment Carriers

    3

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Concepts for Lunar Equipment Carriers

    4

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Modular Equipment Transporter

    5

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    MET Structure

    6

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    MET Equipment Load (Apollo 14)

    7

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Pneumatic Tire Specifications

    8

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Thermal Vacuum Testing of Wheels

    9

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Towing Force vs. Vehicle Weight (Moon)

    10

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Lunokhod Cone Penetrometer Data

    11

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    NASA Standard Lunar Soil Parameters

    12

    kc = 0.14 N/cm2

    k� = 0.82 N/cm2

    n = 1

    cb = 0.017 N/cm2

    �b

    = 35o

    K = 1.8 cm

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Three-View and Dimensions

    13

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Payload Components

    14

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV in Stowed Configuration

    15

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Deployment (1-6)

    16

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Deployment Sequence (7-12)

    17

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Deployment Sequence (13-15)

    18

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Static Stability

    19

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Speed Capabilities

    20

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Chassis Structure

    21

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Wheel Suspension

    22

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Wheel Steering Connections

    23

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Wheel Motor and Gearing

    24

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Apollo 17 LRV Wheel and Fender

    25

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Wheel Design Details

    26

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Wheel Deflection

    27

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Location of LRV Center of Gravity

    28

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Static Stability

    29

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Limiting Velocity for Obstacle Impact

    30

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Sliding Limit in Turn (µ=0.8)

    31

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Overturn Limits in Turning

    32

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Turning Radius with CG Shift - 0° Slope

    33

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Turning Radius with CG Shift - 20° Slope

    34

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Turning Radius Limit for Higher CG

    35

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Top Speed Limits (Struct. Fatigue)

    36

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Power Requirements - 0° Slope

    37

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Power Requirements - 5° Slope

    38

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Power Requirements - 10° Slope

    39

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Traction Drive Performance

    40

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Battery Current vs. Speed

    41

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Wheel Motor Temperature vs. Slope

    42

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Power Usage by System

    43

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Wheel Loading

    44

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Drive Motor Characteristics

    45

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Stopping Distance vs. Speed/Slope

    46

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Terrain Design Cases

    • Crevasse crossing capability 70 cm • Step Obstacle Climbing Capability 35 cm • Clearance under chassis 35 cm

    47

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    LRV Mobility Parameters

    48

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Apollo 15 Terrain (“Lurain”)

    49

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    Apollo 15 LRV

    50

  • Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics

    U N I V E R S I T Y O FMARYLAND

    References

    • Glenn C. Miller, “The Lunar Cart” 7th Aerospace Mechanisms Symposium, Houston, Texas, Sept. 2-3, 1972

    • Alex B. Hunter and Bryan W. Spacey, “Lunar Roving Vehicle Deployment Mechanism” 7th Aerospace Mechanisms Symposium, Houston, Texas, Sept. 2-3, 1972

    • Boeing Company, “LRV Operations Handbook Appendix A (Performance Data” NASA TM-X-66816, April 19, 1971

    51