can yeu hang

3
1. Let a, b, c be nonnegative real numbers, now two of which are zero. Prove that a 3 a 2 + b 2 + b 3 b 2 + c 2 + c 3 c 2 + a 2 p 3(a 2 + b 2 + c 2 ) 2 . Solution. Rewrite the inequality as X cyc a 3 + b 3 a 2 + b 2 - a + b 2 s 3 X cyc a 2 - X cyc a + X cyc b 3 - a 3 a 2 + b 2 X cyc (a - b) 2 (a + b) 2(a 2 + b 2 ) X cyc (a - b) 2 r 3 cyc a 2 + cyc a + (a - b)(b - c)(c - a) cyc a 2 b 2 + abc cyc a ! (a 2 + b 2 )(b 2 + c 2 )(c 2 + a 2 ) Since r 3 cyc a 2 cyc a, it suffices to prove X cyc (a - b) 2 (a + b) 2(a 2 + b 2 ) X cyc (a - b) 2 2 cyc a + (a - b)(b - c)(c - a) cyc a 2 b 2 + abc cyc a ! (a 2 + b 2 )(b 2 + c 2 )(c 2 + a 2 ) X cyc (a-b) 2 a + b a 2 + b 2 - 1 a + b + c 2(a - b)(b - c)(c - a) cyc a 2 b 2 + abc cyc a ! (a 2 + b 2 )(b 2 + c 2 )(c 2 + a 2 ) X cyc (a-b) 2 · 2ab + ac + bc a 2 + b 2 2(a - b)(b - c)(c - a) cyc a ! cyc a 2 b 2 + abc cyc a ! (a 2 + b 2 )(b 2 + c 2 )(c 2 + a 2 ) By the AM-GM Inequality, we have X cyc (a - b) 2 · 2ab + ac + bc a 2 + b 2 3 3 s (a - b) 2 (b - c) 2 (c - a) 2 (2ab + ac + bc)(2bc + ab + ac)(2ac + bc + ba) (a 2 + b 2 )(b 2 + c 2 )(c 2 + a 2 ) 1

Upload: utsab-sarkar

Post on 19-Jul-2016

2 views

Category:

Documents


1 download

DESCRIPTION

Inequality

TRANSCRIPT

Page 1: Can Yeu Hang

1. Let a, b, c be nonnegative real numbers, now two of which are zero. Provethat

a3

a2 + b2+

b3

b2 + c2+

c3

c2 + a2≥√

3(a2 + b2 + c2)2

.

Solution. Rewrite the inequality as∑cyc

(a3 + b3

a2 + b2− a + b

2

)≥√

3∑cyc

a2 −∑cyc

a +∑cyc

b3 − a3

a2 + b2

⇔∑cyc

(a− b)2(a + b)2(a2 + b2)

≥∑cyc

(a− b)2√3∑cyc

a2 +∑cyc

a

+

(a− b)(b− c)(c− a)

(∑cyc

a2b2 + abc∑cyc

a

)(a2 + b2)(b2 + c2)(c2 + a2)

Since√

3∑cyc

a2 ≥∑cyc

a, it suffices to prove

∑cyc

(a− b)2(a + b)2(a2 + b2)

≥∑cyc

(a− b)2

2∑cyc

a+

(a− b)(b− c)(c− a)

(∑cyc

a2b2 + abc∑cyc

a

)(a2 + b2)(b2 + c2)(c2 + a2)

⇔∑cyc

(a−b)2(

a + b

a2 + b2− 1

a + b + c

)≥

2(a− b)(b− c)(c− a)

(∑cyc

a2b2 + abc∑cyc

a

)(a2 + b2)(b2 + c2)(c2 + a2)

⇔∑cyc

(a−b)2·2ab + ac + bc

a2 + b2≥

2(a− b)(b− c)(c− a)

(∑cyc

a

)(∑cyc

a2b2 + abc∑cyc

a

)(a2 + b2)(b2 + c2)(c2 + a2)

By the AM-GM Inequality, we have∑cyc

(a− b)2 · 2ab + ac + bc

a2 + b2

≥ 3 3

√(a− b)2(b− c)2(c− a)2(2ab + ac + bc)(2bc + ab + ac)(2ac + bc + ba)

(a2 + b2)(b2 + c2)(c2 + a2)

1

Page 2: Can Yeu Hang

It remains to prove that

3 3

√(a− b)2(b− c)2(c− a)2(2ab + ac + bc)(2bc + ab + ac)(2ac + bc + ba)

(a2 + b2)(b2 + c2)(c2 + a2)

≥2(a− b)(b− c)(c− a)

(∑cyc

a

)(∑cyc

a2b2 + abc∑cyc

a

)(a2 + b2)(b2 + c2)(c2 + a2)

⇔ 27

[∏cyc

(2ab + ac + bc)

][∏cyc

(a2 + b2)2]

≥ 8

[∏cyc

(a− b)

](∑cyc

a

)3(∑cyc

a2b2 + abc∑cyc

a

)3

Since ∏cyc

(2ab + ac + bc) ≥ 2

(∑cyc

ab

)3

and ∏cyc

(a2 + b2)2 ≥ 6481

(∑cyc

a2

)2(∑cyc

a2b2

)2

It suffices to show

163

(∑cyc

ab

)3(∑cyc

a2

)2(∑cyc

a2b2

)2

[∏cyc

(a− b)

](∑cyc

a

)3(∑cyc

a2b2 + abc∑cyc

a

)3

Now, note that

8

(∑cyc

a2b2

)2(∑cyc

ab

)2

− 3

(∑cyc

a2b2 + abc∑cyc

a

)3

= 8

(∑cyc

a2b2

)2(∑cyc

a2b2 + 2abc∑cyc

a

)− 3

(∑cyc

a2b2 + abc∑cyc

a

)3

= A

(∑cyc

a2b2 − abc∑cyc

a

)≥ 0

where

A = 5

(∑cyc

a2b2

)2

+ 12abc

(∑cyc

a2b2

)(∑cyc

a

)+ 3a2b2c2

(∑cyc

a

)2

2

Page 3: Can Yeu Hang

It remains to prove that

2

(∑cyc

ab

)(∑cyc

a2

)2

[∏cyc

(a− b)

](∑cyc

a

)3

Without loss of generality, we may assume a + b + c = 1. Setting q = ab + bc +ca, r = abc, then

(a−b)(b−c)(c−a) ≤√

(a− b)2(b− c)2(c− a)2 =√

q2 − 4q3 + 2(9q − 2)r − 27r2

we have to prove

2q(1− 2q)2 ≥√

q2 − 4q3 + 2(9q − 2)r − 27r2

If 9q ≤ 2, then

2q(1− 2q)2 −√

q2 − 4q3 + 2(9q − 2)r − 27r2 ≥ q[2(1− 2q)2 −

√1− 4q

]≥ 0

Since

2(1− 2q)2 −√

1− 4q =(√

1− 4q − 12

)2

+14

[2(1− 4q)2 + 1] ≥ 0

If 9q ≥ 2, then

√q2 − 4q3 + 2(9q − 2)r − 27r2 =

√427

(1− 3q)3 − 127

(27r − 9q + 2)2

≤√

427

(1− 3q)3

⇒2q(1− 2q)2 −√

q2 − 4q3 + 2(9q − 2)r − 27r2

≥ 2q(1− 2q)2 −√

427

(1− 3q)3 = 2q(1− 2q)2 − 29

(1− 3q)√

3(1− 3q)

≥ 2q(1− 2q)2 − 29

(1− 3q) =8

729(9q − 2)(81q2 − 63q + 13) +

46729

> 0.

The inequality is proved. Equality holds if and only if a = b = c.

♥♥♥

3