march. 7, 2005 moriond electroweak, 2005, w. de boer, univ. karlsruhe1 wim de boer, christian...

37
March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex Gladyshev Dubna Outline (see astro-ph/0408272) EGRET Data on diffuse Gamma Rays show excess in all sky directions with the SAME energy spectrum from monoenergetic quarks WIMP mass between 50 and 100 GeV from spectrum of EGRET excess Halo distribution from sky map Data consistent with Supersymmetry EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation From CMB + SN1a + structure formation

Post on 15-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 1

Wim de Boer, Christian Sander, Valery ZhukovUniv. Karlsruhe

Dmitri Kazakov, Alex GladyshevDubna

Outline (see astro-ph/0408272)

• EGRET Data on diffuse Gamma Rays show excess in all sky directions with the SAME energy spectrum from monoenergetic quarks

• WIMP mass between 50 and 100 GeV from spectrum of EGRET excess

• Halo distribution from sky map

• Data consistent with Supersymmetry

EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation

From CMB + SN1a + structure formation

Page 2: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 2

DM annihilation in Supersymmetry

Dominant diagram for WMAPcross section in MSSM: + A b bbar quark pair

B-fragmentation well studied at LEP!Yield and spectra of positrons,gammas and antiprotons well known!

f

f

f

f

f

f

Z

Z

W

W 0

f~

A Z

Galaxy = SUPER-B-factory with luminosity some 40 orders of magnitude above man-made B-factories

≈ 37 gammas

Page 3: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 3

Basics from cosmology:Hubble const. determines WIMP annihilation x-section

Thermal equilibrium abundance

Actual abundance

T=M/22Co

mo

vin

g n

um

ber

d

ensi

ty

x=m/T

T>>M: f+f->M+M; M+M->f+fT<M: M+M->f+fT=M/22: M decoupled, stable density(wenn annihilation rate expansion rate, i.e. =<v>n(xfr) H(xfr) !)

Jung

man

n,K

amio

nko

wsk

i, G

riest

, P

R 1

995

Present WMAP h2=0.1130.009requires <v> 2.10-26 cm3/s

H-Term takes care of decrease in density by expansion. Right-hand side:annihilation and production.

More precisely by solving Boltzmann eq.

h2 = mn/c 2.10-27 [cm3/s]/<v>

(<v> independ. of m!)

DM density increases locally after galaxy formation. In this room: 1 WIMP/coffee cup 105 averaged density.

Page 4: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 4

RED=flux fromDM AnnihilationYellow = backgr.Blue = BG uncert.

Bremsstr.

Extragal.

ICWIM

PS 0

Blue: uncertainty from background shape

Blue: uncertainty from WIMP mass

Basics of background and signal shapes

WIMP MASS50 - 100 GeV

65100

Bremsstr.

Extragal.

ICWIM

PS

0

Page 5: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 5

No SM

Electrons

No SM

Protons

Quarks fromWIMPS

Quarks in protons

Basics of background and signal shapes

Page 6: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 6

Energy loss times of electrons and nuclei

Protons diffuse for long times without loosing energy!

-1 = 1/E dE/dt

univ

If centre would have harder spectrum, then hard to explain why excessin outer galaxy has SAME shape (can be fitted with same WIMP mass!)

Page 7: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 7

EGRET on CGRO (Compton Gamma Ray Observ.)

9 yrs of data taken (1991-2000)

Main purpose: sky map of pointsources above diffuse BG.

Page 8: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 8

Gamma Ray Flux from WIMP annihilation in given direction ψ:

Similar expressions for:

pp->0+x->+x, ( given by gas density, highest in disc) e->e, eN->eN, ( given by electron/gamma density, highest in disc)Extragalactic Background (isotropic)DM annihilation ( 1/r2 for flat rotation curve)All have very different, but known energy spectra.Cross sections known. Densities not well known, so keep absolutenormalization free for each process.

Basics of astro-particle physics

Fit shape of various contributions with free normalization, but normalizationlimited by experimental overall normalization error, which is 15% for EGRET data. Point-to-point errors 7% (yields good 2).

Page 9: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 9

x y

z

2003, Ibata et al, Yanny et al.

v2M/r=cons.and

M/r3

1/r2

for const.rotation

curveDivergent for

r=0?NFW1/r

Isotherm const.

Executive Summary for fits in 360 sky directions

xy

xz

Expected Profile

Halo profile

Outer Ring

Inner Ring

bulge

tota

lDM

1/r2 halodisk

Rotation Curve

Observed Profile

Page 10: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 10

Excess of Diffuse Gamma Rays above 1 GeV(first publications by Hunter et al, Sreekumar et al. (1997)

Str

on

g,

Moskale

nko,

Reim

er,

AP

J.613,

astr

o-p

h/0

406254

2004

A: inner Galaxy (l=±300, |b|<50)B: Galactic plane avoiding AC: Outer Galaxy

D: low latitude (10-200)

E: intermediate lat. (20-600)F: Galactic poles (60-900)

A B C

D E F

0

Bre

msstra

hlu

ng

Inv. Compton

Page 11: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 11

Excess of Diffuse Gamma Rays has same spectrum in all directions compatible with WIMP mass of 50-100 GeV

Important: if experiment measures gamma rays down to 0.1 GeV, then normalizations of DM annihilation and background can both be left free, so one is not sensitive to abso- lute background estimates, BUT ONLY TO THE SHAPE, which is much better known.

Egret Excess aboveextrapolated backgroundfrom data below 0.5 GeV

Excess same shape in all regions implying same source everywhere

Statistical errors only

Page 12: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 12

Diffuse Gamma Rays for different sky regions Good Fits for WIMP masses between 50 and 100 GeV

3 components: galactic background + extragalactic bg + DM annihilation fittedsimultaneously with same WIMP mass and DM normalization in all directions.Boost factor around 70 in all directions and statistical significance > 10 !

A: inner Galaxy B: outer disc C: outer Galaxy

D: low latitude E: intermediate lat. F: galactic poles

Page 13: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 13

Optimized Model from Strong et al. astro-ph/0406254 Change spectral shape of electrons AND protons

Page 14: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 14

Optimized Model from Strong et al. astro-ph/0406254 Change spectral shape of electrons AND protons

Nucleon and electron spectratuned to fit gamma ray data.

Apart from the difficulty tohave inhomogeneous nuclei spectra(SMALL energy losses!) the modeldoes NOT describe the spectrumIN ALL DIRECTIONS!

Electrons Protons

B/C

Page 15: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 15

Optimized Model from Strong et al. astro-ph/0406254 Change spectral shape of electrons AND protons

100 MeV 150 MeV 300 MeV

500 MeV 1000 MeV

2000 MeV

Page 16: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 16

Optimized Model from Strong et al. astro-ph/0406254 Change spectral shape of electrons AND protons

Probability of optimized modelif 2 measuredin 360 sky directionsand integrate data with E>0.5 GeV:

2= 962.3/324 for Optimized Model without DM +correl. errors: Prob = < 10-10

2= 306.5/323 for Optimized Model +DM +correl. errors: Prob = 0.736Boostfactor=25 for OM vs 70 for CM

Page 17: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 17

Determining halo profile

DM Gamma Ray Flux:

1/r2

=2

2 Gaussian ovals

Page 18: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 18

Enhancement of rings over 1/r2

profile 2 and 7, respectively.Mass in rings1.6 and 0.3%of total DM

14 kpc coincides with ringof stars at 14-18 kpc due to infall of dwarf galaxy(Yanny, Ibata, …..)

4 kpc coincides with ring ofneutral hydrogen molecules!

Fit results of halo parameters

(<v> from WMAP)Parameter values:

H2

H

R [kpc]4

Boostfactor 20-200 Dokuchaev et al: 10<B<200, IDM2004

Page 19: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 19

Halo density on scale of 300 kpc

Sideview Topview

Cored isothermal profile with scale 4 kpc Total mass: 3.1012 solar masses

Page 20: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 20

Halo density on scale of 30 kpc

Sideview Topview

Page 21: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 21

Longitude fits for 1/r2 profile with/w.o. rings

Halo parameters from fit to 180 sky directions: 4 long. profiles forlatitudes <50, 50<b<100, 100<b<200, 200<b<900 (=4x45=180 directions)

WITHOUT rings

DISC

50<b<100

100<b<200

200<b<900

WITH 2 rings

DISC

50<b<100 200<b<900

100<b<200

E > 0.5 GeV

Page 22: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 22

Longitude on linear scale

ABOVE 0.5 GeVBELOW 0.5 GeV

Page 23: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 23

Do other galaxies have bumps in rotation curves?

Sofue & Honma

Page 24: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 24From Eric Hayashi

Page 25: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 25

Normalizationof background:

Compare with GALPROP,which gives absolute

prediction of backgroundfrom gas distributions etc.

Page 26: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 26

Background scaling factors

Background scaling factor = Data between 0.1 and 0.5 GeV/GALPROPGALPROP = computer code simulating our galaxy (Moskalenko, Strong)

Page 27: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 27

Normalizationof DMA ->

“Boost factor”(= enhancement of DMA

by clustering of DM)

Page 28: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 28

Clustering of DM -> boosts annih. rate

Clumps with Mmin give the dominant contribution to DM annihilation ->many in a given direction -> similar boost factor in all directions

Annihilation DM density squared!

Clustersize: 1014 cm =10x solar systemMmin 10-8 -10-6 MּסCluster density 25 pc-3

Halo mass fraction in clumps: 0.002From Berezinsky, Dokuchaev, EroshenkoBoost factor <2>/<>2 20-200

Page 29: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 29

What aboutSupersymmetry?

Assume mSUGRA5 parameters: m0, m1/2, tanb, A, sign μ

Page 30: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 30

Annihilation cross sectionsin m0-m1/2 plane (μ > 0, A0=0)

tan=5 tan=50bb t t

WW

bb t t

WW

For WMAP x-section of <v>2.10-26 cm3/s one needs large tanβ

10-2410-27

EGRETWMAP

Page 31: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 31

Coannihilations vs selfannihilation of DM

If it happens that other SUSY particles are around atthe freeze-out time, they may coannihilate with DM.E.g. Stau + Neutralino -> tau Chargino + Neutralino -> W

However, this requires extreme fine tuning of masses,since number density drops exponentially with mass.

But more serious: coannihilaition will cause excessive boostfactorsSince anni = coanni + selfanni must yield <v>=1026 cm3/s.This means if coannihilation dominates, selfannihilation 0In present universe only selfannihilation can happen, sinceonly lightest neutralino stable, other SUSY particles decayed,so no coannihilation. If selfannihilation x-section 0, no indirectdetection. CONCLUSION: EGRET data excludes largely coannih.

Page 32: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 32

EGRET excess interpreted as DM consistent with WMAP, Supergravity and electroweak constraints

MSUGRA can fulfillall constraints from WMAP,LEP, b->s, g-2 and EGRET simultaneously, if DM is neutralino with massin range 50-100 GeV and squarks and sleptons are O(1 TeV)

WMAP

EGRET

Stau coannihilation

mA resonance

Bulk

Incomp. withEGRET data

StauLSP

No EWSB

Page 33: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 33

SUSY Mass spectra in mSUGRA compatible with WMAP AND EGRET

LSP largely Bino DM is supersymmetric partner of CMB

Charginos, neutralinos and gluinos light

Page 34: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 34

Unification of gauge couplings

With SUSY spectrum from EGRET data and start values of couplings from final LEP data perfect gauge coupling unification possible

Up

date

fro

m A

mald

i,

dB

, F

ürs

ten

au

, P

LB

260

1991

SM SUSY

Page 35: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 35

Predictions from EGRET data assuming Supersymmetry

Comparison with direct DM Searches

DAMA

CDMS

ZEPLIN

Edelweiss

Projections

Spin-independent Spin-dependent

Page 36: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 36

Positron fraction and antiprotons from present balloon exp.

SAME Halo and WIMP parameters as for GAMMA RAYS but fluxes dependent on propagation! DMA can be used to tune models:at present no convection, nor anisotropic diffusion in spiral arms.

Positrons AntiprotonsAntiprotonsPositrons

SignalBackground

SignalBackground

Page 37: March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe1 Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Dmitri Kazakov, Alex

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 37

Summary

EGRET excess shows all key features from DM annihilation:

These combined features provide FIRST (>10) EVIDENCE that DM is not so dark and follow ALL DMA expectations imagined so far.

Excess has same shape in all sky directions: everywhere it is perfectly (only?) explainable with superposition of background AND mono-energetic quarks of 50-100 GeV Results and x-sect. in agreement with SUPERSYMMETRY

Excess connected to MASS, since it can explain peculiar shape of rotation curve

Excess follows expectations from galaxy formation: 1/r2 profile with substructure, visible matter/DM0.02

Conventional models CANNOT explain above points SIMULTANEOUSLY,especially spectrum of gamma rays in all directions, DM density profile,shape of rotation curve, stability of ring of stars at 14 kpc,..