bus-diff

25
1 Bus Differential Protection and Simulation EE 4223/5223 April 6, 2007 Andrew Kunze Based on Team ITC 2005/2006 Senior Design Project Contents Pr oj ect De scri pt ion  Diff erential Protection  Relays  Cur rent Transf ormers • Settings Calculations  SEL-551C  SEL-587Z AT P Simula ti on

Upload: yugoplod

Post on 09-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 1/25

1

Bus Differential Protectionand Simulation

EE 4223/5223

April 6, 2007

Andrew Kunze

Based on Team ITC 2005/2006 Senior Design Project

Contents

• Project Description

 – Differential Protection

 – Relays

 – Current Transformers

• Settings Calculations

 – SEL-551C

 – SEL-587Z

• ATP Simulation

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 2/25

2

Sponsor

• International TransmissionCompany

 – Novi, MI

 – 2700 miles of transmission lines in 13counties in southeasternMI

 – www.itctransco.com

Dependability and Security • Reliability – tripping breakers to protect

from a fault

• Security – tripping only the necessary

breakers

• Relay protection is finding a balance

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 3/25

3

Differential Relay Protection

• Relay trips by the difference between the

current (measured by CTs) going into and

out of the zone of protection

Differential Relay Protection

One-line Current Path under Normal Operation (I1=I2)

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 4/25

4

Differential Relay Protection

One-line Current Path under Fault Conditions (I1≠I2)

Existing Protection Scheme

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 5/25

5

IAC 55B

• General Electric

electromechanical relay

 – Instantaneous time-

overcurrent relay

 – Used by ITC to trip

relay when

differential current

exceeds maximumvalue

SEL Relays

SELSEL--587Z High Impedance587Z High Impedance

Differential RelayDifferential Relay

SELSEL--551C Overcurrent Relay551C Overcurrent Relay

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 6/25

6

Relay Characteristics• SEL-551C

 – Near direct replacement for existing IAC55B relays

 – Less expensive than the SEL-587Z

 – Can be used with auxiliary CTs

 – Significantly slower trip time under some circumstances

• SEL-587Z – Faster fault detection & trip time

 – Provides greater degree of protection than overcurrent relays

 – High Impedance generates voltages up to 2kV (MOV)

 – Requires lock out relay protection – Requires dedicated main CTs

•Recommends lockout relay contacts inparallel with the587Z CT inputs

•Allows the relayto be shorted outon the circuitafter fault isdetected

•No more then 4cycles (67ms) of 

fault current throughthe 587Z

•Breakers not reliedon to interrupt thefault current cominginto the relay

Relay Specifications

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 7/25

7

Settings Calculations

• Information provided by ITC for Bus 102

of the Milan substation

• SEL-551C

 – Instantaneous Current Setting

 – Time-Overcurrent Pickup and Time Dial

• SEL-587Z

 – Voltage setting

Settings Considerations• Minimum Internal Fault

 – Single-line to ground

 – Relay must trip for internal faults

• Maximum External Fault – Fault outside zone of protection causes CT

saturation – Differential current on secondary

 – Relay should not trip for external faults

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 8/25

8

CTs

• Mistubishi Electric

• Mulit-ratio 3000:5

• C800 Accuracy

CT Saturation• Causes of CT saturation

 – Primary winding of CT has a DC component

 – Primary winding’s current is too high and core

flux saturates

• Primary and secondary windings lose their 

linearity causing an error current

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 9/25

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 10/25

10

SEL-551C Saturated Circuit 

Calculate Instantaneous Setting 

• The current through the relay is:

= 6.27A

= 10 A

= 6000 A

 N 

 I 

 R R

 R I  F 

CT 

CT  E  ⋅

+= )(

5.7

600

17877)

5.70.2

0.2(

A I  E  ⋅

Ω+Ω

Ω=

 E s I K  I  ⋅=

10600min ⋅=⋅= S I  N  I 

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 11/25

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 12/25

12

TOC Curve

Time-Overcurrent Pickup• Using ITC’s standards, time-overcurrent pickup is set at

10% of the maximum external fault

 A APU  180017877%10 ≈⋅=

F  I PU  ⋅= %10

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 13/25

13

Time Dial Calculation

• TD = Time dial setting

• tp = Trip time at multiple of pick-up (12 cycles = 0.2

secs)

• M = Multiple of pick-up (3600/1800 = 2)

TD = 0.8

)1

00342.000262.0(

02.0−

+⋅= M 

TDt  p

)12

00342.000262.0(2.0

02.0−

+⋅= TD

SEL-587Z Saturated Circuit 

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 14/25

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 15/25

15

Excitation Current 

• Using the graph

for the CT the

value of the

excitation current

(Ie) can be found

given Vs = 112 V

 A I e 015.0=

Current Through the SEL-587Z

• The current through the relay (Ir ) can be found by:

 R

V  I  sr  =

Ω=

2000

112V  I r 

=r  I  0.056 A

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 16/25

16

Current Through the MOV 

V V  MOV  1000<

When Vmov < 1000 V

the current through

the MOV (Im) is 0 A

Minimum Current • Using the determined values, the minimum primary

differential current (Imin) is:

• Minimum Internal Fault = 4168 A

 N  I  I nI  I mr e×++= )(min

600)0056.0015.03(min ×++×= I 

=min I  61 A

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 17/25

17

 ATP Simulation

• Use ATP to simulate CTs

• Determine voltage ‘seen’ by the relay for 

internal fault conditions

• Apply simulated waveforms to the relay for 

testing

CT Simulation

• Ideal transformer • Type 93 non-linear inductor 

• Series resistance

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 18/25

18

CT Characteristics

4.502208.3731001.2

3.75154.241201

3.60117.581100.96

2.0260.0690.050.54

0.870.0320.0240.232

0.4350.020.0140.116

0000

λ (Wb-T PK)I (A PK)I (A RMS)E (kV)

Non-linear InductanceCT

 ATP Simulation

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 19/25

19

Minimum Internal Fault (4 kA)

Maximum Internal Fault (20 kA)

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 20/25

20

Thevenin Equivalent 

Fault Contributions

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 21/25

21

Line Impedances

Calculated Line Impedances at 120 kVCalculated Line Impedances at 120 kV

11.430.761 + j8.7028.735 /_ 8513738 /_ -85

3.7313.233 + j49.38751.129 /_ 752347 /_ -75

4.337.102 + j30.76131.571 /_ 773801 /_ -77

X/RR + jX ()Z ()I (A)

DC Offset 

o

90min −=θ α 

o180max −=θ α R

 X 1tan−=θ 

• DC offset determined by initial angle

• Use X/R ratio of line carrying most fault

current

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 22/25

22

Minimum DC Offset 

Minimum DC Offset 

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 23/25

23

Maximum DC Offset 

Maximum DC Offset 

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 24/25

24

Doble Limitation

Relay Voltage

• Doble Simulator maximum output – 300 V

• Resulting wavform sinusoid with decaying DC offset

• Relay trips properly on slightly saturated waveform

Conclusion

• Differential schemes protect bus from internalfaults

• Relay settings must balance reliability withsecurity

• ATP can simulate CT saturation to understandfault conditions

8/8/2019 Bus-Diff

http://slidepdf.com/reader/full/bus-diff 25/25

References• [1] Blackburn, J. Lewis. Protective Relaying: Principles

and Applications. 2nd ed. New York: Marcel Dekker, Inc.,1998.

• [2] Dr. Mork, Bruce. Personal communication onsubstation layouts and relays. Michigan TechnologicalUniversity. Fall 2005.

• [3] General Electric. Short-Time Overcurrent Relays.

• [4] Mitsubishi Electric Power Products, Inc. Factory TestReport 120-SFMT-40J Gas Circuit Breaker. Oct 4, 2004.

• [5] Schweitzer Engineering Laboratories. SEL-587ZInstruction Manual

• [6] Schweitzer Engineering laboratories. SEL-551CInstruction Manual

Questions or Comments?