bulletin - uk - idf · 2 bulletin of the international dairy federation 445/2010 a common carbon...

46
A common carbon footprint approach for dairy The IDF guide to standard lifecycle assessment methodology for the dairy sector Bulletin of the International Dairy Federation 003 2005 445/ 2010

Upload: others

Post on 14-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

A common carbon footprint approach for dairy

The IDF guide to standard lifecycle assessment

methodology for the dairy sector

Bulletinof the International Dairy Federation

0032005445/2010

Bulletin of the International Dairy Federation 445/2010© 2010, International Dairy Federation

GENERAL TERMS AND CONDITIONS FOR USING THIS ELECTRONIC PUBLICATION

IntroductionUse of the material provided in this publication is subject to the Terms and Conditions in this document. These Terms and Condi-tions are designed to make it clear to users of this material what they may and may not do with the content provided to them. Our aim has been to make the Terms and Conditions unambiguous and fair to all parties, but if further explanation is required, please send an e-mail to [email protected] with your question.

Permitted UseThe User may make unlimited use of the Content, including searching, displaying, viewing on-screen and printing for the purpo-ses of research, teaching or private study but not for commercial use.

CopyrightSite layout, design, images, programs, text and other information (collectively, the “Content”) is the property of the International Dairy Federation and is protected by copyright and other intellectual property laws. Users may not copy, display, distribute, modify, publish, reproduce, store, transmit, create derivative works from, or sell or license all or any part of the content obtai-ned from this publication. Copyright notices must not be modified or removed from any Content obtained under the terms of this licence.

Any questions about whether a particular use is authorized and any requests for permission to publish, reproduce, distribute, display or make derivative works from any Content should be directed to [email protected]

AvailabilityAlthough the International Dairy Federation publications are developed in view of maximum user-friendliness, the International Dairy Federation cannot guarantee any of these products to work on or with any particular computer system.

LiabilityAlthough the International Dairy Federation has taken reasonable care to ensure that the information, data and other material made available in its publication is error-free and up-to-date, it accepts no responsibility for corruption to the information, data and other material thereafter, including but not limited to any defects caused by the transmission or processing of the infor-mation, data and other material. The information made available in this publication, has been obtained from or is based upon sources believed by the International Dairy Federation to be reliable but is not guaranteed as to accuracy or completeness. The information is supplied without obligation and on the understanding that any person who acts upon it or otherwise changes his/her position in reliance thereon does so entirely at his/her own risk.

Send any comments or inquiries to:International Dairy Federation (I.N.P.A.)Diamant BuildingBoulevard Auguste Reyers 80 1030 BrusselsBelgiumPhone: + 32 2 733 98 88Fax: + 32 2 733 04 13E-mail: [email protected]: www.fil-idf.org

VIEW THE UPCOMING IDF EVENTS AT:http://www.fil-idf.org/EventsCalendar.htm

Bulletin of the International Dairy Federation©FIL/IDF ISSN 0250-5118

CONTENTS445/2010

Subscription Price for the electronic version of the 2010 Bulletin : 335 Euro for all issues.Adress orders to :INTERNATIONAL DAIRY FEDERATION / FEDERATION INTERNATIONALE DE LAITERIEDiamant Building, Boulevard Auguste Reyers, 80 - 1030 Brussels (Belgium)Telephone : +32 2 733 98 88 - Telefax : +32 2 733 04 13 - E-mail : [email protected] - http://www.fil-idf.org

A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment methodology for the dairy sector

PRICE: Free of charge

Foreword 1

1. Introduction 21.1 Background 21.2 About this guide 21.3 Who should use this guide? 41.4 Attributional and consequential methods 41.5 What you need before starting 41.6Futurereviewsandenhancements 41.7 Summary 5

2. LCAs and carbon footprints: the basics 62.1Definitionofaproductcarbonfootprint 62.2 The challenges of carbon footprinting 62.3Existinginternationalstandardization

processes 72.3.1 ISO 14000 series, encompassing

ISO 14040, 14044 and future 14067 7

2.3.2 PAS 2050 (2008) 7

2.3.3 Greenhouse Gas protocol Product/Supply ChaininitiativeoftheWBCSD 7

2.3.4 Summary 7

3. The steps in an LCA 93.1 A summary of the steps 93.2 Mapping the process 93.3 Setting the scope and boundaries 103.4Collectingthedata 103.5Calculatingthecarbonfootprint 103.6Evaluatingandreporting 10

4. Mapping the process 114.1Creatingaprocess 114.2Definingtheprocess 114.3 The Functional Unit 13

4.3.1 Farming 13

4.3.2 Processing 13

5. Setting the Scope and Boundaries 145.1 Farming 145.2 Processing 145.3Emissionstobeincluded 15

6. Collecting data 176.1 Data quality 176.2EmissionFactors 17

6.3 Allocation 186.3.1 Co-products 18

6.3.2 Production of feed 18

6.3.3 Production of milk and meat 19

6.3.4 Manufacture of dairy products 21

6.3.5 On-siteenergygeneration 23

6.3.6 Summaryforhandlingco-products 24

6.4 Land use change and sequestration 246.4.1 Land use change 24

6.4.2 Carbonsequestration 24

7. Calculating the footprint 26

8. Evaluating and Reporting 278.1Reportevaluation 278.2 Reporting 278.3 Key parameters in the report 27

9. Glossary of terms 28

10. Acknowledgements 31

11. References 32

12. Appendices 34A. Functional Unit for Farming 34B. AllocationMilk:Meat–thescientific

basis for the approach 35C. TechnicalData 38

1

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

A common carbon footprint approach for dairy The IDF guide to standard lifecycle assessment methodology for the dairy sector

Foreword‘Gogreen’developmentsaroundtheworldinrecentyearshaveresultedinincreasinginterestfromcivilsociety,respectivegovernmentsandindividualconsumersinhowfoodisproducedandtheenvironmentalimpactofitsproduction.

Inresponsetothis,thedairyvaluechainhasbeenactivelyworkingtowardsreducinggreen-house gas emissions associated with the production, collection and processing of milk and de-liveryofdairyproducts,whilesatisfyingtheneedsofthemarketplaceinthemostsustainablemanner.

Inrecentyears,IDFhasbeenparticularlyactiveinputtingenvironmentalconcernsatthetopofitspriorities,throughscientificresearchandaclosedialoguewithvariouskeystakeholdersworldwide.

ThisIDFGuidewillplayamajorcontributioninsupportingtheevolutionofefficientandsustain-ablebusinessesthatstrivetocontinuallyreducetheirGHGemissions,andinhelpingthedairyindustrytodemonstrateaconscientiousandaccountablefocusonenvironmentalissuestoallstakeholders.

TheIDFexpressesitsgratitudetotheexpertsfromtheActionTeamonLifeCycleAnalysis/LifeCycleManagementandCarbonFootprintingintheDairySectorfortheiroutstandingcom-mitmentandhardwork indevelopingandpublishingthiscrucialdocument.MembersoftheAction Team include: Jim Barnett , Sophie Bertrand , Peter Roger Darlington , Robin Dickinson ,Jean-BaptisteDolle,OnurDurmus,AnnaFlysjö,ThaisHPassosFonseca,ChrisFoster,PierreGerber,JanDalsgaardJohannesen,ParkKyuhyun,BrianLindsay,SvenLundie,DanielMassé,Anna-KarinModinEdman,RickNaczi,TimNicolaï,SarahPaterson,NicoPeiren,CyrusPoupoulis,MarcinPreidl,Jean-PierreRennaud,MaartjeSevenster,OlafThieme,GregThoma,JanuszTurowski,NeilVanBuuren,TheunVellinga,HaraldVolden,ErikaWallén,YingWangandMr.PeterErikYwema.

TheIDFalsowishestoparticularlythankitstwopartnerorganizationstheFoodandAgricultureOrganizationoftheUnitedNations(FAO)andtheSustainableAgriculturalInitiative(SAI)Plat-formfortheirvaluablecontribution.

A special word of thanks is due to Sophie Bertrand for her outstanding leadership in producing this essential Guide to help the global dairy sector to calculate and subsequently estimate the reduction of its carbon foot print.

ChristianRobertDirector General

November2010

2

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

1. Introduction

1.1 Background

Most industries are now being challenged to quantify and reduce their carbon footprints, or emissionsofgreenhousegases(GHGs)totheatmosphere;businessesinagricultureandfoodproductionarenoexception.Bothfoodprocessorsandfarmingorganizationswithintheinter-nationaldairyindustryhaverecognisedtheneedtocalculatetheirimpactontheenvironmentintermsofGHGs,andthishasledmanytoproactivelyengageprofessionalbodiesorspecialistorganizationstoreviewandcalculatethecarbonfootprintsoftheirproducts.Othershavedevelopedtheirownsystemsandsomegovernmentshaveevendevisedhigh

levelevaluationtoolstosupportpolicydevelopment.Thisguidehasbeendevelopedattherequestofthe56IDFmembercountriesrepresent-

ing86percentoftheworld’smilk,sinceithasbecomeevidentthatthewiderangeoffiguresresulting from the differing methodologies and data is leading to inconsistencies. This poses a veryrealdangerofconfusionandcontradiction,whichinturncouldcreateafalseimpressionthattheindustryisfailingtoactivelyengagewiththeissueofclimatechange.ThisguidewasdevelopedbytheIDFStandingCommitteeonEnvironment(SCENV)with

activeparticipationoftheFoodandAgricultureOrganizationoftheUnitedNations(FAO)andthe Sustainable Agriculture Initiative Platform (SAI Platform). Creating consistency and aclear message is important for the reputation of the industry as a global whole, to highlight the highlevelofengagementthatisalreadytakingplaceinrelationtothisissue,andtoidentifypractices that will further reduce greenhouse gas emissions.

1.2 About this guide

Thisguidewasdevelopedthroughaconsultationandreviewprocesstoaddresstheissuesofcredibility and consistency in how the carbon footprint of milk production or a dairy product is developed.Thesolutionwastodevelopclearguidanceonfunctionalunit,boundaries,changeoflanduse,co-productsandotherwell-debatedaspectswithinthemethodology.An IDFworkshop involving leading expertswas initially held in Brussels in June 2009 to

capturethelatestknowledgeaboutLifeCycleAssessments(LCAs)ingeneralandcarbonfoot-printinginparticularinthedairysector.Followingthis,andtoresolvetheissuesthatemerged,small working groups were formed to debate the most robust and appropriate route forward in eachcasebasedoncurrentscientificknowledgeandreportbacktothewidergroup.

This resulting guide:

• Identifiesanapproach,basedoncurrentbestknowledge,toaddressthecommonLCAchallengesofco-productsandlandusechange

• Identifiesthekeyareasinwhichthereiscurrentlyambiguityordifferingviewsonapproach

• Recommendsapracticalyetscientificapproachthatcanalsobeinsertedintoexistingordevelopingmethodologies

• Adoptsanapproachthatcanbeappliedequallyindevelopinganddevelopeddairyindustriesacross the world.

It does not:

• Re-createknowledge:where the science is available, referenceshavebeenprovided tosupporttheapproach;whereasuitablemodelisalreadyinexistence,thishasbeenused.

Theimportanceofincorporatingexistingknowledgeandcollaboratingwithorganizationsthatwerealready involved in improving thestandardizationofLCAmethodologywas recognisedfromthestart.Theorganizationsinclude:

• International Organization for Standardization (ISO), responsible for ISO 14040,

3

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

14044 and 14067, which were the original standards for producing carbon footprints for products;almostallexistingmethodologyisinlinewiththeseprotocols.

• British Standards Institution (BSI) in collaboration with Britain’s Department for Environment, Food and Rural Affairs (Defra) and the Carbon Trust,whichdevelopedPubliclyAvailableSpecification2050(PAS2050),thespecificationfortheassessmentofthelifecyclegreenhousegasemissionsofgoodsandservices.

• The World Business Council for Sustainable Development (WBCSD) and the World Resources Institute (WRI),whicharedevelopingtheGreenhouseGasProtocolProductLifeCycleStandardandtheScope3(SupplyChain)Standard.

• Intergovernmental Panel on Climate Change (IPCC) is the leading body for the assessmentofclimatechange,establishedbytheUnitedNationsEnvironmentProgramme(UNEP)andtheWorldMeteorologicalOrganization(WMO)

• Food and Agriculture Organization of the United Nations (FAO), whose methodology for calculating the greenhouse gas emissions from the dairy sector (FAO, 2009) was developedatthesametimeasthisguide.

Whilethedairy-specificapproachadoptedbytheIDFmeansitsviewsdifferfromtheseorganiza-tionsinsomeareas,ithasworkedcollaborativelywithallofthemindevelopingthemethodologyin this guide.

Figure 1. TheIDFcommonmethodologyembracesacomprehensiverangeofinternationalknowledgeandaspectsofexistingstandards.

4

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

Finally,thisguidefocusesonGHGemissionsbutthereareotherimportantissuessuchaswa-ter and ecosystem quality, that need to be taken into account to the enable assessment of the impactofthedairysectorglobally.Anynewandrelevantoutcomesfromresearchintotheseareascanbeincorporatedintofutureversionsofthisguide.

1.3 Who should use this guide?

ThisguidehasbeendevelopedbytheIDFforusebythedairycattlefarminganddairymanu-facturingsector,forthoseinterestedindefiningacarbonfootprintoftheirproductionsystemsandproductsusinganLCAapproach.Byincorporatingthisapproach,faircomparisoncanthenbe made across different production systems, regions and products as the result of applying a standard approach.Atthemoment,thisguideonlycoversmilkproductionfromcattle,althoughworkintomilk

production from other species is pending.Themethodologydevelopedintheguideaimstoallow:

• comparison of GHG emissions between dairy products, for example ‘cheese’ or ‘liquidmilk’

• identificationofGHGemissionsfromcradletothemanufacturinggateout(notincludingtransport from manufacturing gate and retailer or consumer impacts)

• identificationofparticularareaswherethereispotentialforreducingemissionsiftheyareparticularly large or the reductions are easy to realise

1.4 Attributional and consequential methods

Thepurposeoftheseguidelinesistoprovideanattributional approach to calculating the carbon footprint of both dairy farming and manufacturing.AttributionalLCAsfocusondescribingtheenvironmentallyrelevantphysicalflowstoandfrom

theproductorprocess;thisisincontrasttoconsequential assessments which describe how relevantenvironmentalflowswillchangeinresponseto,forexample,changesindemand.AttributionalLCAsuseaveragedata,forexampleforelectricityorothercommoditiestraded

onmarketswithnospecificlinktothesupplier.Forthepurposesofestablishingthiscommonmethodologyforfootprintingforthedairyindustry,thisiscalculatedtobebothsufficientandpractical.

1.5 What you need before starting• IPCC–Task ForceonNationalGreenhouseGas Inventories, 2006 IPCCGuidelines forNationalGreenhouseGasInventories,Volume4:Agriculture,ForestryandOtherLandUse(availableatwww.ipcc-nggip.iges.or.jp/underNGGIPPublicationonthewebsitemenubar)TWOCHAPTERS10&11

• ISO14040and14044(availablefromsearchinginwww.iso.org)

• PAS2050(availablefromsearchinginwww.bsigroup.com)

• WBCSD(www.ghgprotocol.org/)

1.6Futurereviewsandenhancements

TheIDFiscommittedtocontinuallyreviewingnewscience, incorporatingrelevantoutcomesintoexistingguidelinesandinformingmembersofadvancesinspecifictopics.TheareaofLCAsandtheenvironmentalimpactoffoodproductionsystemsisoneareaofrapidlyevolvingscienceand knowledge.

Therefore, the IDF, conscious that the recommended methodology in this guide focuses purely onGHGemissions,willcontinuetomonitordevelopmentsandwillseekto incorporateanyrelevantoutcomes,forexamplesintheareasofwaterandbiodiversity.Itwillalsocontinue

5

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

toliaisecloselywithotherorganizationsworkinginasimilarfieldwiththeaimofsharinginformation, increasing consistency in approaches and remaining at the cutting edge of developments.

1.7 Summary

Bydeveloping internationally harmonized standards and guidelines for themethodology forcalculating the carbon footprint of milk and dairy products, the IDF is aiming to:

• supporttheproductionofconsistentandcomparablecarbonfootprintfiguresinternationally,and

• enabletheevaluationofdairyproductsonaconsistentbasis.

These in turn will:

• supporttheevolutionofefficientandsustainablebusinessesthatarecontinuallyreducingtheirGHGemissions,and

• allowthedairyindustrytodemonstrateacrediblefocusonenvironmentalissuestoretailers,customers and potential critics.

6

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

2.LCAsandcarbonfootprints:thebasics

2.1Definitionofaproductcarbonfootprint

GreenhousegasesareallgaseoussubstancesforwhichtheIntergovernmentalPanelonClimateChange(IPCC)hasdefinedaglobalwarmingpotentialcoefficient.Theyareexpressedinmass-based CO2 equivalents (CO2e). The main agricultural greenhouse gases are carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4).

The product carbon footprint is the sum of the greenhouse gases emitted throughout the life cycleofaproductwithinasetofsystemboundaries,inaspecificapplicationandinrelationtoadefinedamountofaspecifiedproduct.

A product carbon footprint is usually based on an LCA methodology.LCAswereoriginallyusedtoanalyse industrialprocesschains,buthavebeenadaptedoverthepast15yearstoassesstheenvironmentalimpactsofagriculture,althoughhasmainlybeeninarableandlessinlivestockfarming.TheLCAmethodanalysesproductionsystemssystemicallytoaccountforallinputsandoutputsforaspecificproductandproductionsystemacrossaspecifiedsystem boundary. The system boundary is largely dependent on the goal of the study. The reference unit that denotes the useful output is known as the functional unitandhasadefinedquantityandquality,forexamplealitreofmilkofadefinedfatandproteincontent.TheapplicationofLCAtoagriculturalsystemsisoftencomplexbecause,inadditiontothe

main product, there are usually co-products created, such as meat, energy etc. This requires appropriatepartitioningofenvironmentalimpactstoeachproductfromthesystembasedonan allocationrulewhichcanbebasedondifferentcriteriasuchasvalue,productpropertiesorsystemexpansion.CalculationofthecarbonfootprintofaproductusingLCAmethodologyshouldbebasedon

theISO14000series,specificallyISO14040,ISO14044,andinfutureISO14067;therecom-mendationsofPAS2050shouldalsobetakenintoaccountwhereadvisedinthisdocument.

A decision to calculate a carbon footprint of a product is a conscious decision to focus on one indicatorata time.Otherenvironmental impactssuchaswaterqualityandbiodiversityarelikelytobeincludedinthefutureinordertoaddressenvironmentalimpactsoftheglobaldairyindustry in a holistic manner.

2.2 The challenges of carbon footprinting

There are many challenges in calculating a carbon footprint, and calculating one for milk or a dairyproductisnoexception.Todate,therehavebeenseveralLCAstudiesinvestigatingandevaluatingGHGemissionsfrommilkproduction1.However,comparisonbetweenthesedifferentstudiesisdifficultanditishardtoidentifywheremeaningfulreductionsinGHGemissionscanbemadewhenitisnotclearwhetherabenefitreallyexistsoronlyappearstoexistbecauseofa different method of calculation2.

The carbon footprint for milk and dairy products is dominated by the agricultural stage, where threequartersormoreoftheGHGemissionsoccur3. This is why it is crucial to consider the variablesinprimarymilkproductionthatcanaffectthecarbonfootprintoutcome,andtohaveacommonapproachforallocatingtheenvironmentalburdenfromrawmilkproductionbetweenproductssuchasmilk,cream,cheeseandbutter,irrespectiveofthefarm,system,countryorevenregion.

1 egHaasetal.,2000,Hospido2005,Williamsetal.,2006,Casey&Holden2004,Thomasenetal.,2008,Basset-Mensetal.,2008,Cederberg&Flysjö2004,Cederbergetal.,2007,Cederberg&Mattison2000,Flysjöetal.,2008.

2Basset-Mens2008,Flysjöetal.,2009.3 FAO 2009.

7

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

2.3Existinginternationalstandardizationprocesses

From theoutset, the IDFwas committed to reviewing existing standardizationwork andcollaboratingwithorganizations thatwerealready involved in improvingthestandardizationofLCAmethodology.Asemphasizedintheintroduction,whereasuitablemodelisalreadyinexistence,thishasbeenused.

2.3.1 ISO 14000 series, encompassing ISO 14040, 14044 and future 14067

ISO14040‘Lifecycleassessments’providesanimportantbasisforframeworkandprinciples,andISO14044(2006)‘Environmentalmanagement–lifecycleassessment’providesrequire-ments and guidelines. ISO took up the task of preparing a standard for ‘carbon footprints of products’(ISO/NP14067)in2009.Thestandardwillconsistoftwoparts:oneforassessmentandquantification,andoneforcommunication.TheaimistofinalizeISO14067by2012andthe IDF is engaged with these processes where practicable.

2.3.2 PAS 2050 (2008)

TheBritishStandardsInstitution,incollaborationwiththeUK’sDepartmentforEnvironment,FoodandRuralAffairs(DEFRA)andtheCarbonTrust,hasproducedaPubliclyAvailableSpeci-fication2050‘Specificationfortheassessmentofthelifecyclegreenhousegasemissionsofgoodsandservices’.ThisBritishpre-standardsetsoutaninitialcomprehensiveproposalforthemethodologyof

theproductcarbonfootprint.ThefinalversionofthePAS,publishedinOctober2008,islargelybasedontheLCAstandardISO14040.Itreferstothisstandardonanumberofpointsbutalsodeviatessignificantlyfromitinsomeareas.PASthusrepresentsthefirstattempttocreateastandardizedbasisfortheassessmentofgreenhousegasemissionsarisingthroughouttheproduct carbon footprint.

2.3.3GreenhouseGasprotocolProduct/SupplyChaininitiativeoftheWBCSD

TheGreenhouseGasProtocol(GHGProtocol)isthemostwidelyusedinternationalaccountingtoolthatallowsbusinessestounderstand,quantify,andmanageGHGemissions.Itisadecade-longpartnershipbetweentheWorldResourcesInstitute(WRI)andtheWorldBusinessCouncilfor SustainableDevelopment (WBCSD), and brings together stakeholders frombusiness,government,NGOsandacademicinstitutes,todevelopinternationallyacceptedGHGaccountingand reporting standards. TheGHGProtocolprovidesthemethodologyfornearlyeveryGHGstandardandprogramme

intheworld–fromtheInternationalOrganizationforStandardization,ISO,toTheClimateReg-istry–aswellashundredsofGHGinventoriespreparedbyindividualcompanies.Since2008,theWRIandtheWBCSDhaveconvenedover1,600stakeholdersfromaround

theworldtodevelopnewaccountingandreportingstandards.TheGHGProtocolProductLifeCycleStandardandtheScope3(SupplyChain)Standardareexpectedtobefinalizedinlate2010,afterundergoingroadtestinginover70companiesandthroughaseriesofstakeholderconsultations.

2.3.4 Summary

TheIDFguidelinescontained inthisdocumentconsituteasectorspecificguidelineandatamorepreciselevelthanthecurrentGHGProtocoldevelopments.Havingsaidthat,theIDFhasliaisedcloselywiththeWBCSDthroughoutitsrespectiveprogrammesandwillcontinuetodosointhefutureasdevelopmentsinthisfieldunfold.

8

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

Figure 2. ISO,PASandWBCSD/WRIprotocolsfeedintotheIDFmethodology.

9

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

3.ThestepsinanLCA

3.1 A summary of the steps

3.2 Mapping the process

Thisfirststepisaboutidentifyingthegoal of the project, then the functional unit that will bethesubjectoftheanalysis,andallmaterials,activitiesandprocessesthatcontributetothechosen product’s life cycle. It is also important to make a decision about which of two possible approaches will be adopted for modelling: attributional or consequential (as mentioned in introduction,inthisguideitisrecommendedthattheattributionalapproachisused).Establishingall these at the outset is important in ensuring that the aim is clear, that all parts of the process areincluded,butalsothattheprojectdoesnotgetbiggerorstarttoexpandintoareasthatareirrelevant.

Figure 3. ThestepsforconductinganLCAaresimilar,whetherbaseduponISO14000orPAS2050.

10

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

3.3 Setting the scope and boundaries

Inthesecondstep,thescopeoftheanalysisisdefined.Thescopeshouldaddresstheoverallapproach used to establish the system boundary which determines which unit processes are includedintheLCAandmustreflectthegoalofthestudy.

3.4Collectingthedata

Thisphaseinvolvesdata collection and modelling of the product (eg milk, cheese) system, aswellasdescriptionandverificationofdata.Thisencompassesalldatarelatedtoprocesseswithin the study boundaries. The data must be related to the functional unit. The list of the minimumtechnicaldatarequiredtocalculatetotheemissionisproposedinAppendixC.

3.5Calculatingthecarbonfootprint

The fourth step is calculation of the carbon footprint using all the information gathered in the previoussteps.AlltheGHGemissionsareconvertedintoCO2efiguresandaddedtogethertogivethecarbonfootprint,expressedasCO2e.

3.6Evaluatingandreporting

It is important the information is presented correctly and accurately.

11

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

4. Mapping the process

4.1Creatingaprocess

FromtheoutsetofanLCAexercise,itisimportanttobeclearaboutthegoal.Knowingthegoal – as in what is being measured (the functional unit) and why, the intended audience, and whether the results are intended to be used in public comparisons – helps identify what is needed to conduct the analysis.

ThisisatypicalBusiness-to-Businessor‘cradletogate’model,asdescribedinISO140404. Ifjustpartoftheprocessisbeingstudied,forexampleonlymilkproductiontothefarmgate,then this process would be shortened accordingly.

4.2Definingtheprocess

PAS2050explainsthattobuildaprocessmap,thefollowingstagesshouldtakeplace:

• Definewheretheprocessbeingstudiedstartsandfinishes

• Definethefunctionalunit

• Listalltheactivitiesinvolvedintheprocess

• Reflectonwhatmighthavebeenmissed

• Identifyanyco-productsorby-products

• Listallinputsandtheirinputsfromtheirorigins(egfertiliserusedtogrowfeedforcownutrition).

This provides a framework which then feeds the next stage – setting goals, scope andboundaries.

Figure 4. The process for milk production and dairy processing starts at the creation of farm in-puts and stops at the factory gate out.

4 Environmentalmanagement–Lifecycleassessment–Principlesandframework.

12

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

Figure 5. A process map.

13

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

4.3 The Functional Unit

4.3.1 Farming

Ifastudyisconductedon-farm,thefunctionalunitisonekilogramoffat and protein cor-rected milk(FPCM)atthefarmgateinthecountryinwhichtheanalysisistakingplace.UsingFPCMasthebasisforfarmcomparisonsassuresafaircomparisonbetweenfarmswith

differentbreedsorfeedregimes.FPCMiscalculatedbymultiplyingmilkproductionbytheratiooftheenergycontentofaspecificfarm’s(orregion’s)milk,totheenergycontentofstandardmilk with 4 per cent fat and 3.3 per cent true protein content.

Ifadifferentmilkcompositionisneededforthestandardmilk,theenergyequation(AppendixA)can be used to calculate the new standard milk energy and then used to recalculate the coefficientsfortheFPCMequation.

4.3.2 Processing

Attheprocessinggate,therecommendedfunctionalunitisonekilogramofproduct,withxper cent fat and y per cent protein, packaged at dairy factory gate ready to be distributed in the country in which the analysis is taking place.

Figure 6. Formula for calculating the Functional Unit for farming.

FPCM (kg/yr) = Production (kg/yr) × [0.1226 × Fat% +0.0776 × True Protein% + 0.2534]

14

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

5. Setting the Scope and Boundaries

5.1 Farming

Thesystemboundariesarefromfeedproduction(anditsinputs)tofarm-gateandinclude,butare not limited to:

• Production ofmilk on-farm (methane from productive and replacement animals/entericfermentation) including:- on-farm feedproduction (diesel, anddirect and indirect emissions of nitrous oxide

from soil)- farmdairyeffluentmanagement(methaneanddirectandindirectemissionsofnitrousoxide)

- cowmanagement(diesel,petrol)- milkextraction(electricity,refrigerants)- watersupply(electricity)

• Productionandsupplyofsupplementaryfeed

• Productionofsyntheticfertiliseranditsdelivery

• Productionanddeliveryofanyothercropandpastureinputs,egpesticides

• Anyactivitieswhichtakeplaceonotherfarmsegfeedproductionforthedairycowreplace-mentsandanycowsgrazedawayoverthewinter

• Releasesresultingfromprocesses,includingchemicalandingredientsproductiononfarm

• Refrigerantmanufacturingandlossesandotheremissionssourceson-farm

• Usageofenergythathasgreenhousegasemissionsassociatedwithit

• ConsumptionofenergycarriersthatwerethemselvescreatedusingprocessesthathaveGHGemissionsassociatedwiththem(egelectricity)

• Wastesthatproducegreenhousegasemissions.

This accounts for at least 95 per cent of the likely life cycle emissions from feed production to farm-gatetherebymeetingoneofthekeyrequirementsofthePAS2050standard.AthresholdofonepercenthasbeenestablishedtoensurethatveryminorsourcesoflifecycleGHGemissionsdonotrequirethesametreatmentasmoresignificantsources(PAS2050).Soitisacceptedthat,forpracticality,ifanymaterialorenergyflowcontributeslessthanonepercentofthetotalemissions,thenthesecanbeexcluded–providedthethresholdofaccountingfor95percentof emissions is met5.

5.2 Processing

Thesystemboundaryencompassesrelevantprocesseswithinthesystemandincludes,butisnot limited to:

• Thetransportoftherawmilktotheprocessingsitesfromthefarmgateandinter-factoryproduct transport

• Production, delivery and consumption of operatingmaterials, eg chemicals, packagingmaterials and ingredients

• Freshwaterusageon-siteandwastewatertreatment

5 Frischknecht et al., 2007.

15

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

• Releasesresultingfromprocesses,includingchemicalandingredientsproduction,refrigerantmanufacturing and losses and other emissions sources

• Usageofenergythathasgreenhousegasemissionsassociatedwithit

• ConsumptionofenergycarriersthatwerethemselvescreatedusingprocessesthathaveGHGemissionsassociatedwiththem(egelectricity)

• Wastesthatproducegreenhousegasemissions.

It is possible to apply and refer to these guidelines also when calculating the carbon footprint ofdifferentpartswithinthesystemboundariesdefinedabove.Forexample,whenadairyisplannedtobeenlargedorre-built,carbonfootprintcalculationscanbeperformedonpartofthe processing system.BecausetheLCAmaybeundertakeninaseriesofphaseseachpartofthedairymanufacturing

system (farm and processing) is considered separately.Thepost-manufacturing transportationofmilkandmilkproductsalsocontributes toGHG

emissions,butthisguidedoesnotincludethisasitisnotspecifictothemilkproductionandmilk processing.

5.3Emissionstobeincluded

Main sources of emissions that should be included are:

• fossilcarbondioxide(energyuse,egcombustionofdieselandelectricityproduction)

• biogeniccarbondioxidefromdirectlandusechange(carbonreleasedfromdeforestationandconversionofpastureandshrublandstoagriculturalland,emissionsbothfromaboveand below biomass, as well as carbon from soil)

• biogeniccarbonstoredinpackagingmaterial(carbonstoredinbiogenicmaterialshouldbeaccounted for to be able to make a more ‘fair’ comparison to material originated from fossil materials,egplasticproducedfromfossiloil);biogeniccarbonretainedinpackaging(pa-per,cardetc)mayberetainedforawhileifrecycled,orifincineratedwithenergyrecoverythenthefeedstockisessentiallycarbonneutral;carbonfromfossilsourcescanberetained(eg in plastics which breakdown slowly or are recycled), otherwise it is generally a direct emission

Figure 7. Asummaryoftheflowofresourcesandinputindairyfarmingandprocessing.

16

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

• fossilmethaneemissions(leakagefromegnaturalgas)

• biogenicmethaneemissions(entericfermentationandmanuremanagement,storageandspreading/onfield)

• nitrousoxideemissions(N2OemissionsfromproductionofN-fertiliser,directN2O emissions fromfieldandmanuremanagement/storing,indirectN2Oemissionsfromfield(NO3=>N2O andNH3=>N2O)andmanuremanagement/storing(NH3=>N2O))

Emissionsthatshouldnotbeincludedarethosethatareaccountedforintheshort(biogenic)carbon cycle.

Carbonabsorbedbyanimalsandcropsiscarbonneutralasitisre-releasedquickly(unless,forexample,strawisusedtobuildahouse)asitisbreathedout,burnt,excretedordecomposed.

Biogenic carbon retained in packaging (paper, card etc) may be retained for a while if recycled. Ifincineratedwithenergyrecoverythenitisessentiallycarbonneutral.CarbontransformedintomethanebecomesaGHG;carbonfromfossilsourcescanberetained

(eg in plastics which breakdown slowly or are recycled), otherwise it is generally a direct emission.Inthefuture,thereisthepotentialforcreditsonceitbecomespossibletomeasure/verify

carbonabsorbedbyplants/soil;inthemeantime,carbonmayberetained/sequesteredorre-releasedrapidly(egbyburning,ploughingetc),soitremainscarbonneutral.

Figure 8. Carboncycle.

17

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

6.Collectingdata

6.1 Data quality

OneofthecrucialissuesinLCAcalculationsistransparencyandreportingofthedatausedinthe study. Ideally, the study should be reported in such a way that it allows for an independent practitioner to reproduce the results.

It should clearly be stated if primary (collected) data (which are preferred) or secondary (database, article, report) data are used, and from where the data are taken (eg the refer-ence, from which company, the site the data are collected from or from which database, article, reporttheyaretaken).Thetime-related6, geographical7 and technological8coverageshouldbestatedaswellashowrepresentative9 these are for the study. Thecompletenessof thestudyshouldalsobeclearlystated; forexample, if somemajor

items are omitted, such as capital goods, this should be made clear. Additionally, the methodology andlevelofdetailthroughoutthestudyshouldbeconsistent.Finally,thevariation10 and uncertainty11 of data should be estimated, which could be done

quantitativelythroughasensitivityanalysisorqualitativelythroughadiscussion.The IDF recommends that data sourcing and utilisation are aligned with ISO 14044, which

should be referred to for further detail.

6.2EmissionFactors

EmissionfactorsprovideanindicationofamountofGHGsemittedfromaparticularsourceoractivity.Therearevariousmethodsandsourcesfordeterminingemissions,whicharetieredaccording to their accuracy and detail. The simplest approach is described as Tier 1 and more detailedapproacheswherecountryspecificinformationisavailablearedescribedasTier2.In-dividualdataconstituteTier3.Forexample the2006IPCCGuidelines forNationalGreenhouseGasInventorieshavede-

scribed all three tiers to estimate methane emission from enteric fermentation. On a Tier 1 basis, the emissions are calculated using standard emission factors from literature. The Tier 2 levelcalculationrequiresdetailedcountry-specificdataongrossenergy intakeandmethaneconversion factors forspecific livestockcategories. Tier3requiresevenmoreaccurateandscientificallyaccepteddatafromdirectexperimentalmeasurementsconcerning,forexample,dietcomposition in detail, concentration of products arising from ruminant fermentation, seasonal variation inanimalpopulationor feedqualityandavailabilityandpossiblemitigationstrate-gies.ItisagreedforthepurposesofachievingconsistencyindairyLCAs,aTier2minimumap-

proach is necessary.

DetailsoftheTier1,Tier2andTier3methodologiesaregivenin: ‘2006IPCCGuidelines forNationalGreenhouseGasInventories,Volume4,Agriculture,

Forestry and Other Land Use’ http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html

6 Averagedataforalongerperiodordatafromaspecificyear(foragriculturalproductsitisimportanttohaveatleastoneyear’saveragedata,soseasonalvariationsduringtheyearareaccountedfor)andarerepresentativeofthisperiodforthestudy).

7Arethedatarepresentativeonlylocally,foracountryorforegEuropeanconditions?8Eg,aredatausedrepresentativeforamoderndairyorolderdairy,alargescaleorsmallscaledairyetc?9Thedatausedshouldobviouslyberelevantforthestudy,ieCARBONFOOTPRINTdataformilkproducedinUScannotbeseenasrepresentativeforAfricanconditions,sincetheproductionsystemistotallydifferent

10Emissionsof,eg,N2Oareknowntohavelargevariations,bothintimeandspace(betweenplaces),thereforeitisimportanttoconductasensitivityanalysisanalysetheuncertainties(possiblevariations)inthecalculations.

11Theprecisionofdatacanoftenvary,egfeedintakecanbedifficulttoestimate,andthereforethisprecisionisimportantwithsensitivityanalysisofcriticalparameters,especiallythoseforwhichitisdifficulttogetapreciseestimate.

18

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

‘Revised1996IPCCGuidelinesforNationalGreenhouseGasInventories’http://www.ipcc-nggip.iges.or.jp/public/gl/invs6c.html

SoftwareforGreenhouseGasInventoriesisavailableat:http://unfccc.int/resource/cd_roms/na1/ghg_inventories/index.htm

ASearchoftheIPCCDatabaseofemissionfactorsisavailableat:http://www.ipcc-nggip.iges.or.jp/EFDB/find_ef_main.php

ThisguidemakesrecommendationsfortechnicaldatarequirementsinAppendixC.Forelectric-ity,therecommendationistouseaverageelectricity,includinggridlosses,inthecountrywheretheLCAisbeingconducted.

6.3 Allocation

6.3.1Co-products

Handlingof co-products is, inmanycases, critical for theoutcomeof theLCAor carbonfootprintingexercise.Therearevariousways tohandle co-products,with somemethodsmorepragmaticandothersmorescientific,butnosinglecommonorestablishedmethod.The allocation procedure described by ISO 14044 follows.

Step 1:Whereverpossible,allocationshouldbeavoidedbya) dividingtheunitprocesstobeallocatedintotwoormoresub-processesandcollectingthe

inputandoutputdatarelatedtothesesub-processes,orb) expanding the product system (known as system expansion) to include the additional

functionsrelatedtotheco-products.

Step 2:Whereallocationcannotbeavoided,theinputsandoutputsofthesystemshouldbepartitionedbetween itsdifferentproductsor functions inaway that reflects theunderlyingphysicalrelationshipsbetweenthem,ie,theyshouldreflectthewayinwhichtheinputsandoutputsarechangedbyquantitativechanges intheproductsor functionsdeliveredbythesystem.

Step 3: Where physical relationship alone cannot be established or used as the basis for allocation, theinputsshouldbeallocatedbetweentheproductsandfunctionsinawaythatreflectsotherrelationshipsbetweenthem.Forexample,inputandoutputdatamightbeallocatedbetweenco-productsinproportiontotheeconomicvalueoftheproducts.

Looking at the whole life cycle of milk and dairy products from farm to manufacturing gate out, thereareseveralprocessesthatinvolvemultipleco-products:

• Productionoffeed(egsoymealorsoyoil)

• Productionofmilkandmeatonfarm(wheremeatandcalvesareaby-product,andsome-timesalsomanurewhenitisexportedfromthefarm)

• Manufactureofdairyproductsattheprocessingsite

• Energygeneration(forexamplebiogasproductionatthefarmorelectricityproducedatthedairymanufacturingsite,wheresurpluselectricitycanbeexportedtothenationalgrid.

6.3.2 Production of feed

Many feed ingredients are co-products from a production system generatingmore than oneproduct,andthereforetheenvironmentalburdenshouldbedistributedbetweentheco-products.Some of the more commonly used feed ingredients for dairy cows where allocation situations occur are:

• soymeal(co-producttosoyoilandsoyhull,producedfromsoybeans)

19

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

• rape-seedmeal(co-producttorapeseedoil,producedfromrape-seed)

• palmkernelexpels(co-producttopalmkerneloil,producedfrompalmkernels,whichisaco-producttopalmoil,producedfromoilpalm)

• maizeglutenmeal(co-producttomaizeglutenfeed,maizegermmealandmaizestarch,producedfrommaize)

• wheatbran(co-producttowheatflour,producedfromgrain),and

• drydistillersgrainswithsolubles(DDGS),co-producttocornethanol,producedfromcorngrain.

Theguidancehereistouseeconomicallocationforco-productinfeedproduction.Thisisidentifiedas the most feasible allocation method to use at this stage because:

• subdivisionofthesystemisnottypicallypossibleforfeedproducts

• itcanbedifficulttoidentifytheproduct/sthathas/havebeensubstitutedbytheby-productstoapplythesystemexpansionmethod,anditcanbetime-consuming

• it isdifficult tofindaphysical relationship that reflects the relationbetween inputsandoutputs,forexamplesoymealistypicallyusedforitsproteincontent,whilesoyoilisusedfor its energy content, hence applying allocation based on protein content or energy bases isnotaallocationfactorthatisrelevantforbothproducts.

Consequently,economicallocationistherecommendedmethodinthissituation.Asmanyfeedingredientsareproduced regionally or locally, fiveyearaveragesonpricesareadvised tominimizefluctuationsbetweenyears.

Example

Ifmealandoilareco-products,andmealispartusedforfeedaspartoftheLCA,theeconomicallocation factor is calculated using the equation below. The output from the process is X kg meal(withthepriceofAEuroperkgmeal)andYkgoil(withthepriceofBEuroperkgoil).

Therefore:

Allocationfactor(meal):(X×A)/(X×A+Y×B)

Theallocation factor is thenmultipliedwith theenvironmental impact fromtheprocess (egemissions associatedwith cultivation and transportingof the rawmaterial, energyused forprocessing)andthendividedwithXkgmealtogetthecarbonfootprintforonekilogramofmeal.

Figure 9. Exampleofallocationofco-productsforfeed.

20

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

6.3.3 Production of milk and meat

For the dairy farm system where the main focus is on production of milk, the meat generated fromsurpluscalvesandculldairycowsisanimportantco-product.Itisthereforenecessarytodetermine total emissions and to allocate them between milk and meat. In some cases, manure canalsobeexportedoff-farmandin,thesecases,thistoo,shouldbeaccountedfor.

The most appropriate approach here is to use a physical allocation method. This aligns with Step2inISO14044andreflectstheunderlyinguseoffeedenergybythedairyanimalsandthephysiological feed requirements of the animal to produce milk and meat. The feed consump-tionbyanimalsisalsothemaindeterminantofentericmethaneemissionsandofnitrousoxideandmethaneemissionsfromanimalexcretawhichtogethercanmakeupabout80percentoftotalon-farmGHGemissions.

The allocation factor for milk and meat can be calculated using following equation (further explanationofdetailsandbackgroundinAppendixB):

Where AF = allocation factor for milk, R = Mmeat/Mmilk, Mmeat=sumofliveweightofallanimalssoldincludingbullcalvesandculledmatureanimalsandMmilk = sum of milk sold corrected to 4 per cent fat and 3.3 per cent protein using equation in 4.3.1. With this equation the determi-nationofallocationfactorissimpleandinvolvesthefollowingsteps:

• step1a:collect/determinethetotalkganimalmeatsoldperyear[kgmeat]

• step1b:collect/determinethetotalkgmilk4%fat3.3%proteinequivalentproducedperyear

• step1c:calculatetheratioR=kgmeat/kgmilk[-]

• step2:Usethesimplecorrelation:AF(allocationfactor)tomilk:AF=1-5.7717R

• step3:Allocationfactortobeef=1–AF(allocationfactor)tomilk

AsadefaultvalueforR,wecanfixatypicalratioofeg0.025kgmeat/kgmilk, yielding a default al-location of 14.4 per cent to meat and a default allocation of 85.6 per cent to milk.

Example

This demonstrates the calculation, based on a physical method, of the allocation between milk andbeef forahypothetical farmthatproduces1millionkg(1000Mg)FPCMperyearandexports0.024kgbeef/kgFPCM.Forpurposesofthisexample,thebeefexportiscalculatedasthesumofliveweightofallanimalsexported,includingbullcalvesandculledmatureanimals,butexcludinganimalsculledbutnotsenttothebeefmarket.

Figure 10. Formula for the allocation of milk and meat.

AF= 1 - 5.7717 x R

Figure 11. Exampleofallocationofmeatasaco-product.

21

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

ForthisexampletheUSnationalaverageof1.4kgCO2e/kgFPCMunallocatedGHGemissionswillbeassumed–fordifferentregions,thelocalvalueshouldbesubstituted.Basedontheempiricalequationforphysicalallocation(seeAppendixB),theallocationto

milkis:1-5.7714x(0.024)=0.86.Thus0.86x1400=1204MgCO2e is allocated to 1000 Mg milk,yieldingafarm-gatefootprintof1.204kgCO2e/kgFPCMand(1400-1204)MgCO2e / 24 Mg beefor8.17kgCO2e/kgbeef(liveweight).Foradetailedexplanationofthisapproach,refertoAppendixB.Forexportofmanurefromthefarmtherecommendationistoapplysystemexpansion12. This

is in accordance with ISO 14044. When applying manure on farm land, chemical fertiliser requirements are reduced, hence less chemical fertiliser needs to be produced for systems using manure. It is important that data used for these purposes are highly accurate, be they primary or secondary, pertaining to local conditions. Also refer to section 6.1 Data quality.

6.3.4 Manufacture of dairy products

Dairy manufacturing plants usually produce more than one product as the fat content in raw milkalmostalwaysexceedstheproductspecificationformilkpowdersorfreshmilkproducts(egmarketmilk,yoghurtordairydesserts).Theexcessmilkfatisnormallyfurtherprocessedinto butter or anhydrous milk fat (AMF). However,resourceuseoremissionsdataaretypicallyonlyavailableona‘wholeoffactory’

basis.Datacollectionforeachunitprocesswithintheplantisresourceintensiveandthereistypicallyinsufficientmeteringtocollecttherequiredinformation.Inaddition,manyoftheunitprocessesaresharedfordifferentproducts(egpasteurization,separationorspraydrying).SuchaggregationofdataposesproblemswhenundertakinganLCAorcarbonfootprinting

exerciseforaselectedproductwithinamulti-productsetting.Tocomparethelifecycleofonedairyproducttoanotherthereforerequiresidentificationofthematerialconsumptionandprocessenergy (electricity and fuel) demand in addition to emissions from a plant for each product.

The recommendation is to allocate raw milk intake and transportation on the basis of the milk solidsofthefinalproduct.Forallotheroperationalmaterials,energyinputs(electricityandthermal energy) and emissions, more sophisticated allocation factors should be applied. Threepossiblescenarioshavebeenidentified:

a)detailedprocessandco-productdataareavailable:energyandmaterialusageaswellasemissionscanbedirectlyassignedtothespecificproducts

b)amixtureofdetailedprocessandco-productdataaswell aswholeof factorydataareavailable:inthiscaseassigndetailedprocessandco-productdatatospecificproductsfirst,subtractassigneddetailedprocessandco-productdatafromthefactorytotalandthenal-locate the remainder based on milk solids.

c)onlywholeoffactorydataareonhand:applyallocationcoefficientsasdescribedinTable113,whichisanindustry-specificphysico-chemicalallocationmatrixtoenablebetteralloca-tionofresourcestodairyproductsusing‘wholeofplant’information(Feitzetal2007)(seeendofAppendixB.)

12Cederberg&Stadig,2003.

13 Thismatrix(seeTable1)isastartingpointthatwillbefurtherdevelopedinthefuture.

22

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

For allocation inputs and outputs at the manufacturing site (ie when two of more are produced fromrawmilk)physico-chemicalallocationshouldbeused.Ifonlywholeofplantdataareavail-able,thephysico-chemicalallocationmatrixisappliedbyusingtheequationbelow.

with AFi = allocation factor

Theallocationofoneproduct(egwholemilkpowder)isthenmultipliedwithitsspecificresourceuseorenvironmentalimpactallocationfactorandthendividedthesumproductofeachproductquantityandtheirrespectiveallocationfactor.

Raw milk Raw milk trasport

Total water use Electricity

Fuel for termal energy

Alkaline cleaners

Acid cleaners

Total wastewater

Milk powder 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Yoghurt 0.16 0.16 0.28 0.86 0.11 0.08 0.01 0.28

Milk 0.14 0.14 0.15 0.14 0.03 0.08 0.01 0.15

Cream 0.47 0.47 0.15 0.14 0.03 0.08 0.01 0.15

Butter 0.88 0.88 0.40 0.36 0.17 0.10 0.50 0.40

AMF/Ghee 1.05 1.05 0.40 0.36 0.05 0.10 0.50 0.40

Cheese(cheddar) 0.64 0.64 1.40 0.57 0.10 0.70 1.00 1.40

Whey powder 1.01 1.01 1.20 1.50 1.30 0.90 2.00 1.20

UHT 0.14 0.14 0.15 0.29 0.06 0.08 0.01 0.15

Ice cream 0.23 0.23 0.68 1.92 0.004 0.90 0.00 0.68

WPC/lactose** 1.00 1.00 5.82 4.52 2.75 6.26 9.97 5.82

Table 1:Industryspecificphysico-chemicalallocationfactorsrelativetomilkpowder* (Feitzetal2007)

*Coeficientsbasedonfactoryaverageresourceuseandwastewateremissionsfordifferentdairyproductsfrom17multi-productdairymanufacturingsites.

**Therewasinsufficientinformationtoseparateenergyandmassflowsforwheyproteinconcentrate(WPC)and lactose.

Some plantscrystallizeanddrylactosewhereasotherstreatedthelactoseasawasteproduct.

Figure 12. Formulaforallocationofco-productsduringmanufacturing.

23

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

Example

A dairy manufacturing site has an annual raw milk intake of 100,000t. It produces 12,000t of whole milk powder and 1,400t of AMF. For the production of the two products thermal energy (among other inputs) is required, ie 230,000GJ per annum.

The outputs from the manufacturing site are:

• 12,000twholemilkpowder(withanallocationfactor1forrawmilkandthermalenergy14, asgivenintheallocationmatrixinTable1)

• 1,400tAMF(withanallocationfactor1.05forrawmilkand0.05forthermalenergy,asgivenintheallocationmatrixinTable1).

Applying the allocation factors from Table 1 and the equation as mentioned in Figure 12, the allocation factor for raw milk is calculated as:

(12,000x1.00)/(12,000x1.00+1,400x1.05)=0.891

This formula results in 89,100t of raw milk allocated to raw milk, and 10,900t assigned to AMF.

The allocation factor for thermal energy is calculated to be:

(12,000x1.00)/(12,000x1.00+1,400x0.05)=0.994

This results in 228,700GJ energy allocated to whole milk powder and 1,300GJ assigned to AMF.

6.3.5On-siteenergygeneration

Generation of energy can occur at the dairy farm or dairy manufacturing plant. Biogas can be producedfrommanureinanaerobicdigestionondairyfarms,thenexportedforuseinothersystems, eg to replace fossil fuel natural gas in heating systems. Likewise, dairy manufacturing canproduceasurplusofenergy,whetheritbeheatorelectricity,whichcanbeexportedbackto the national grid. Therecommendationistousesystemexpansionforenergygeneratedwithinthesystemand

soldoutsidethesystemunderstudy.ThisisinlinewithISO14044;however,itisimportanttoknowwhichtypeofenergyisbeingexported.

Figure 13. Exampleofallocationduringmanufacturing.

14 Pleasenotethatrawmilkisthereferenceproductfortheallocationmatrix.Henceallallocationfactorsformilkpowderequal1,whileallotherproductsareexpressedrelativetomilkpowder.

24

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

On dairy farms, biogas might be the most common energy source produced. At dairy manu-facturingsites,electricityislikelytobethetypeofenergyexported.Specificguidanceonhowtotreatco-producthandlingofcombinedheatandpower(CHP)plantscanbefoundintheGHGProtocolInitiativecalculationtool15

The amount of energy surplus is assumed to replace the same amount of energy based on its energycontent,sobiogasisassumedtoreplacenaturalgasandelectricityusingtheaveragenationalorregionalgridmix;heatisassumedtoreplacethesameamountofheatoriginatedfrom gas, black or brown coal.

6.3.6Summaryforhandlingco-products

6.4 Land use change and sequestration

6.4.1 Land use change

ThisisanextremelychallengingandcomplexareaoftheLCAprocess.Aftercarefulreview,theIDF,forthepurposesofthisdocument,hasdecidedtoadopttheguidanceprovidedinsection5.5andAnnexEofPAS205016. Insummary,itstatesthatGHGemissionsarisingfromdirectlandusechangeshouldbe

assessedforanyinputtothelifecycleofaproductoriginatingfromagriculturalactivities,andtheGHGemissionsarisingfromthedirectlandusechangeshouldbeincludedintheassessmentofGHGemissionsoftheproduct.

The assessment of the impact of land use change should include all direct land use change occurringonorafter1January1990.One-twentieth(5percent)ofthetotalemissionsarisingfromthelandusechangeshouldbeincludedintheGHGemissionsoftheseproductsineach

yearoverthe20yearsfollowingthechangeinlanduse.Where it can be demonstrated that the land use change occurred more than 20 years before

the assessment being carried out, no emissions from land use change should be included in the assessmentasallemissionsresultingfromthelandusechangewouldbeassumedtohaveoccurred prior to the application of the PAS.Itisworthnotingthatdirectlandusechangereferstotheconversionofnon-agriculturalland

to agricultural land as a consequence of producing an agricultural product or input to a product onthatland.Indirectlandusechangereferstotheconversionofnon-agriculturallandtoagricul-tural land as a consequence of changes in agricultural practice elsewhere.

Preferred approach Allocation situations Choice Result

ISO hierarchy

Feed (pre farm) Economic Depends on kind of feed

Milk/meat&calves(farm) Physical causalityBased on energy feed inputs to the system and associated milk and meat production.

Manureexport(farm) Systemexpansion ReplacesN,P&Kinchemicalfertiliser

Processing (dairy site) MixBased on milk solids for raw milk, specificvaluesforUSEOFenergy, water etc

CHP(farm,dairysite) Systemexpansion Replaces electricity from national grid or heat

Table 2: The chosen allocation approaches

15 ‘AllocationofGHGemissionsfromacombinedheatandpowerplant’fromtheWorldResourceInstitute(WRI)andWorldBusinessCouncilofSustainableDevelopment(WBCSD)(2006)atwww.ghgprotocol.org/.

16PAS2050‘Specificationfortheassessmentofthelifecyclegreenhousegasemissionofgoodsandservices’.

25

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

6.4.2Carbonsequestration

GrasslandsandotheragriculturalvegetationcoverahugeamountofEarth’slandsurfaceandspanarangeofclimateconditions.Agriculturalecosystemsholdlargecarbonreserves17, mostly in soil organic matter. Soil carbon sequestration (enhanced sinks) is the mechanism responsible for most of the mitigation potential in the agriculture sector, with an estimated 89 per cent contribution to the technical potential18.

The greenhouse effect can be limited by increasing soil carbon stocks and by maintaining existingstocks.Carbonstorageisnotalinearprocess;itisrapidforthefirst20yearsandthenslows down. Storage depends on the kinetics of organic matter decomposition by the soil mi-crobialcommunity;ittendstomove,inthelongterm,towardsanequilibriumwhereinputsandoutputscanceleachotherout.However,thereisnotimelimittocarbonstorage;someveryoldrangelands are still adding to their carbon stocks Thecarbonreleasepromptedbyadisadvantageouschangeinlanduse–suchasconverting

grassland to arable – is twice as fast and as great as the soil carbon increase caused by the reversechangefromarablelandtograssland.Maintaining grassland area or converting arable land to grassland thusmakes it possible

tostoremorecarbon inthesoil.However, itmustberememberedthatthisprocess isbothvulnerableandreversible.Soilcarbondynamicsdependongrasslandmanagementpractices,andsomemayaffectthephysical-chemicalconditionsofthesoilenvironmentandthephysicalprotection of organic matter in the soil19.

While it has to be kept in mind that soil carbon storage is the main potential mitigation option for agriculture, the current choice for standard footprinting methodology, and also for this IDF guide, is to not take changes in soil organic matter (carbon) into account because of a lack of scientificdataattheworldlevel.Thisappliestograsslandbutalsotocropcultivationandtobothpositiveandnegativechanges.Howeveritdoesnotpreventanybodytocalculatethecarbonstorage inthecarbonfootprintwhendataexist,as longas it isreportedseparately intheresults.Continualmonitoringofthescientificdevelopmentsinthisareawillcontinueandwhere

appropriatewillbeincludedinfuturerevisions.

17 IPCC(2001)18 IPCC(2007)19 Soussana et al 2009.

26

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

7.CalculatingthefootprintThefollowingmethodisusedtocalculatetheGHGemissionsforafunctionalunit:1. ConvertprimaryandsecondarydatatoGHGemissionsbymultiplyingtheactivitydataby

the emission factor for the activity. This givesGHG emissions per functional unit of product.

2. GHGemissionsdataarethenconvertedintoCO2e emissionsbymultiplyingtheindividualfiguresbytherelevantglobalwarmingpotential(GWP)factor(seebelow).

Thus the equation for product carbon footprinting is the sum of all materials, energy and waste acrossallactivitiesinaproduct’slifecyclemultipliedbytheiremissionfactors.SincetheGWPfactorshavechangedduringtheyears,themostcurrentIPCCGWPfactors

must be applied when undertaking a product carbon foot print calculation using this methodology.CurrentlyusedfactorscanbefoundfromThePhysicalScienceBasissectionoftheIPCC2007

report from ‘Technical summary’ chapter. The most common factors are:

1kg of methane (CH4) = 25kg of CO2e

1 kg of nitrous oxide (N20) = 298kg of CO2e

GWPfactorsfordifferentrefrigerantsareavailablefromthesamereferencedocument.

27

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

8.EvaluatingandReporting

8.1Reportevaluation

It is important that any carbon footprint report includes a section identifying ways in which emis-sionscouldbereduced;thiswilldemonstratethattheexercisehasapurposeandtheknowledgewillleadtoanimprovement,evenifitisthroughthequickestandeasiestmeansavailable.

8.2 Reporting

GHGaccountingandreportingpracticesarenewtomanybusinesses,andbecauseofthistheyareevolvingatafastrate.However,theprincipleslistedbelowarederivedfromgenerallyacceptedfinancialaccountingandreportingprinciples,whichequallyapplyinthissituation.Theyalsoreflecttheoutcomeofacollaborativeprocessinvolvingstakeholdersfromawide

rangeoftechnical,environmental,andaccountingdisciplines.GHGaccountingandreportingshouldbebasedonthefollowingprinciples,asdescribedinthe

WBCSDandWRI’sGreenhouseGasProtocolProductLifeCycleStandard(see1.2):

• Relevance–EnsuretheGHGinventoryreflectstheGHGemissionsofthecompanyandservesthedecision-makingneedsofusers–bothinternallyandexternally

• Completeness–AccountforandreportonallGHGemissionsourcesandactivitieswithinthechoseninventoryboundary;discloseandjustifyanyspecificexclusions

• Consistency – use consistent methodologies to allow for meaningful comparisons of emissionsovertime;transparentlydocumentanychangestothedata,inventoryboundary,methods,oranyotherrelevantfactorsinthetimeseries

• Transparency–Addressallrelevantissuesinafactualandcoherentmanner,basedonaclearaudittrail;discloseanyrelevantassumptionsandmakeappropriatereferencestotheaccounting and calculation methodologies and data sources used.

• Accuracy–SystematicallycheckthatthequantificationofGHGemissionsisneitherovernor under actual emissions, as far as can be judged, and that uncertainties are reduced asmuchaspossible;achievesufficientaccuracythatuserscanmakedecisionsastotheintegrityofthereportedinformationwithareasonablelevelofconfidence.

8.3 Key parameters in the report

Togetabetterunderstandingof thestudiedsystem it isbeneficial for the following ‘keyparameters’ to be included in the report:• Totalcarbonfootprintdividedinto- fossilandbiogenicmethane- nitrousoxide- fossilcarbondioxide- biogeniccarbondioxide(biogeniccarboninpackagingandcarbonemissionsoflanduse

change should be reported separately)• FunctionalUnitused• Percentageofemissionsattributed tomilk (ieallocation factorbetweenmilkandmeat/calves,andmethodusedtodetermineallocationfactor)

• Milkyieldpercowandmilkcomposition• Drymatterintakepercowandbodyweightperanimalclass• Drymatterintakedividedondifferentfeedtypes(asaminimum,theshareofroughage

feed, concentrate feed (grain/protein))• Manuremanagementsystem• AllemissionandGWPfactorsusedandtheirsources• Allocationfactorappliedinthedairymanufacturingplantforthestudiedproduct.

28

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

9. Glossary of termsPrimary source: PAS 2050

AllocationPartitioningtheinputoroutputflowsofaprocessbetweentheproductsystemunderstudyandone or more other product systems.

Attributional AttributionalLCAsfocusondescribingtheenvironmentallyrelevantphysicalflowstoandfromthe product or process.

BiogenicDerivedfrombiomass,butnotfossilisedorfromfossilsources.

BiomassMaterialofbiologicaloriginexcludingmaterialembeddedingeologicalformationsortransformedto fossil.

BoundarySet of criteria specifying which unit processes are part of a product system (life cycle).

Capital goodsGoods, such as machinery, equipment and buildings, used in the life cycle of products.

Carbon dioxide equivalent (CO2e)Unitforcomparingtheradiativeforcing(globalwarmingimpact)ofagreenhousegasexpressedintermsoftheamountofcarbondioxidethatwouldhaveanequivalentimpact.

Carbon footprintThelevelofgreenhousegasemissionsproducedbyaparticularactivityorentity.

Combined heat and power (CHP)Simultaneous generation in one process of useable thermal energy and electrical and/or mechanical energy.

Carbon storageRetaining carbon of biogenic or atmospheric origin in a form other than as an atmospheric gas.

CHPsee combined heat and power.

Consequential Consequential LCA assessments describe how relevant environmental flowswill change inresponse to different decisions.

CO2eseecarbondioxideequivalent.

Co-productsAnyoftwoormoreproductsfromthesameunitprocessorproductsystem[ISO14044:2006,3.10].

Data qualityCharacteristicsofdatathatrelatetotheirabilitytosatisfystatedrequirements.

29

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

Emission factorAmountofgreenhousegasesemitted,expressedascarbondioxideequivalentandrelativetoaunitofactivity(egkgCO2eperunitinput).NOTEEmissionfactordataareobtainedfromsecondarydata sources.

EmissionsRelease to air and discharges to water and land that result in greenhouse gases entering the atmosphere.ThemainemissionsconcerningGHGsfromagriculturearecarbondioxide(CO2), nitrousoxide(N2O)andmethane(CH4).

Enteric fermentationEntericfermentationisanaturalpartofthedigestiveprocessformanyruminantanimalswhereanaerobicmicrobes,calledmethanogens,decomposeandfermentfoodpresentinthedigestivetract producing compounds that are then absorbed by the host animal

Functional unitQuantifiedperformanceofaproductforuseasareferenceunit.

Global warming potential (GWP)TheintensityofaGHG’swarmingpotential,whichisdifferentforeachgas.ThefactorsusedtoconvertGHGsintoCO2equivalentsaredefinedbyIPCCguidelinesandcanbefoundinsection4.6

Greenhouse gases (GHGs)Gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at specificwavelengthswithin the spectrum of infrared radiation emitted bythe Earth’s surface, the atmosphere, and clouds NOTEGHGs include carbon dioxide (CO2), methane(CH4),nitrousoxide(N2O),hydrofluoro-carbons(HFCs),perfluorocarbons(PFCs)andsulphurhexafluoride(SF6).

GWPsee global warming potential.

InputProduct,materialorenergyflowthatentersaunitprocess.

LCAseeLifeCycleAssessment

Life cycleConsecutiveand interlinkedstagesofaproductsystem, fromrawmaterialacquisitionorgenerationofnaturalresourcestoendoflife,inclusiveofanyrecyclingorrecoveryactivity.

Life cycle assessment (LCA)Compilationandevaluationofinputs,outputsandpotentialenvironmentalimpactsofaproductsystem throughout its life cycle.

Life cycle GHG emissionsSumofGHGemissionsresultingfromallstagesofthelifecycleofaproductandwithinthespecifiedsystemboundariesoftheproduct.

Material contributionContributionofanyonesourceofGHGemissionstoaproductofmorethanonepercentoftheanticipatedlifecycleGHGemissionsassociatedwiththeproduct.NOTEAmaterialitythresholdofonepercenthasbeenestablishedtoensurethatveryminorsourcesoflifecycleGHGemis-sionsdonotrequirethesametreatmentasmoresignificantsources.

30

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

OffsettingMechanism for claiminga reduction inGHGemissionsassociatedwithaprocessorproductthroughtheremovalof,orpreventingthereleaseof,GHGemissionsinaprocessunrelatedtothe life cycle of the product being assessed.

OutputProduct,materialorenergythatleavesaunitprocess.

Primary activity dataQuantitativemeasurementofactivityfromaproduct’s lifecyclethat,whenmultipliedbyanemissionfactor,determinestheGHGemissionsarisingfromaprocess.NOTEExamplesincludetheamountofenergyused,materialproduced,serviceprovidedorareaoflandaffected.

Product(s)Anygood(s)orservice(s).NOTEServiceshavetangibleandintangibleelements.Provisionofaservicecaninvolve,forexample,thefollowing:

• anactivityperformedonaconsumer-supplied tangibleproduct (e.g.automobile toberepaired)

• anactivityperformedonaconsumer-suppliedintangibleproduct(e.g.theincomestatementneededtoprepareataxreturn)

• thedelivery of an intangible product (e.g. thedelivery of information in the context ofknowledge transmission)

• thecreationofambiencefortheconsumer(e.g.inhotelsandrestaurants)

• softwareconsistsof informationandisgenerallyintangibleandcanbeintheformofapproaches, transactions or procedures.

Raw materialPrimary or secondary material used to produce a product.

Secondary dataData obtained from sources other than direct measurement of the processes included in the life cycleoftheproduct.NOTESecondarydataareusedwhenprimaryactivitydataarenotavail-ableoritisimpracticaltoobtainprimaryactivitydata.Insomecase,suchasemissionfactors,secondary data may be preferred.

System boundarySet of criteria specifying which unit processes are part of a product system (life cycle).

System expansionExpandingtheproductsystemtoincludetheadditionalfunctionsrelatedtotheco-products.

WasteMaterials,co-products,productsoremissionswhichtheholderdiscardsorintends,orisrequiredto, discard.

31

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

10. AcknowledgementsJimBarnett,FonterraCooperativeGroup,NewZealandSophieBertrand,FrenchLivestockInstitute/FrenchDairyAssociation,FrancePeterDarlington,CMSUK,UKRobinDickinson,CarbonTrust,UKJean-BaptisteDolle,Institutdel'Elevage,FranceOnur Durmus, Tetra PakAnnaFlysjö,Arlafoodsamba,DenmarkSvenLundie,PEInternational,GermanyAnna-KarinModinEdman,SwedishDairyAssociation,SwedenThaisHPassosFonseca,BiologicalSystemsEngineeringDepartmentUniversityofWisconsin,USA Pierre Gerber, FAO AGALJan. D Johannesen, Arla Foods amba, DenmarkJohnKazer,CarbonTrust,UKParkKyuhyun,NationalInstituteofAnimalScience,RepublicofKoreaBrian Lindsay, SAI Platform, Great BritainDanielMassé,AgricultureandAgri-FoodCanada,CanadaRichardCNaczi,DairyManagementInc.,USATimNicolai,DelavalNicoPeiren,ILVOAnimalSciences,BelgiumCyrusPoupoulis,Alexander'sTechnologicalEducationalInstitutionofThessalonikiTEI,GreeceMarcinPreidl,GermanDairyAssociation(VDM),GermanyMaartjeSevenster,CEDelftGreg Thoma, Institute for sustainable engineering analysis, USAOlaf Thieme, FAO AGAPJanuszTurowski,UniversityofWarmiaandMazury,PolandNeilVanBuuren,DairyAustralia,AustraliaTheunVellinga,FAOAGALandWageningenUniversityHaraldVolden,TINERådgivning/TINEAdvisoryService,NorwayErikaWallén,TetraPakInternational,SwedenWangYing,DairyManagementinc.,USA

32

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

11. References

1. Basset-MensC.2008.Estimating the carbon footprintof rawmilkat the farmgate:methodological review and recommendations. Proceedings of the 6th InternationalConferenceonLCAintheAgri-FoodSector,12-14November2008,Zürich,Switzerland,ISBN978-3-905733-10-5

2. Basset-Mens,C.,Ledgard,S.,Boyes,M.,2009.Eco-efficiencyofintensificationscenariosformilkproductioninNewZealand.JEcologicalEconomics68:1615-1625.

3. CaseyJW&HoldenNM.2004.AnalysisofgreenhousegasemissionsfromtheaverageIrishmilkproductionsystem.AgriculturalSystems86.97-114

4. Cederberg,C.,Mattsson,B.,2000.Lifecycleassessmentofmilkproduction–acomparisonofconventionalandorganicfarming.JournalofCleanerProduction8:49-60.

5. CederbergC&StadigM.2003.SystemExpansionandAllocationinLifeCycleAssessmentofMilkandBeefProduction.IntJLCA8(6)350-356

6. CederbergC&FlysjöA.2004.LifecycleInventoryof23DairyFarmsinSouth-WesternSweden.Rapport728.SIK, theSwedishInstitute forFoodanBiotechnology.Göteborg,Sweden

7. CederbergC,FlysjöA&EricsonL.2007.Livscykelanalys(LCA)avnorrländskmjölkproduk-tion.(LCAofmilkinnorthernSweden)Rapport761.SIK,theSwedishInstituteforFoodanBiotechnology.Göteborg,Sweden

8. Ciroth,A.,Lundie,S.,Huppes,G.(2007)InventorymethodsinLCA:towardsconsistencyand improvement.Final report forUNEP-SETACLIFECYCLE INITIATIVELIFECYCLEINVENTORY(LCI)PROGRAMME-TASKFORCE3:METHODOLOGICALCONSISTENCY

9. FAO 2009, Greenhouse gas emissions from the Dairy sector, a life cycle analysis.10. FeitzAJ,LundieS,DennienG,MorianM&JonesM.2007.GenerationofanIndustry-Specific

Physico-ChemicalAllocationMatrix,ApplicationintheDairyIndustryandImplicationsforSystemAnalysis.IntJLCA12(2)109-117

11. Flysjö A, Cederberg C & Strid I. 2008. LCA-databas för konventionella fodermedel –miljöpåverkanisambandmedproduktion.(LCAdatabaseforconventionalfeedingredients–environmentalimpactatproduction)Version1.1Rapport772.SIK,Institutetförlivsmedelochbioteknik,Göteborg

12. FlysjöA,CederbergCandDalsgaardJohannesenJ.2009.CarbonFootprintandLabellingofDairyProducts–Challengesandopportunities.Proceedingsof theconferenceJointActiononClimateChange,8-10June2009,Aalborg,Denmark.

13. Flysjö A, Cederberg C and Strid I. 2008. (in Swedish) LCA-databas för konventionellafodermedel–miljöpåverkan i sambandmedproduction (LCA-database for conventionalfeedingredients–environmentalimpactatproduction).Version1.1Rapport772.SIK,theSwedish Institute for Food and Biotechnology, Gothenburg, Sweden.

14. Frischknecht R, Althaus H-J, Bauer C, Doka G, Heck T, Jungbluth N, Kellenberger D,NemecekT.2007.TheEnvironmentalRelevanceofCapitalGoodsinLifeCycleAssessmentsofProductsandServices.IntJLCA,DOI:http://dx.doi.org/10.1065/lca2007.02.308

15. Haas G,Wetterich F & Köpke U. 2000. Comparing intensive, extensified and organicgrassland farming in southern Germany by process life cycle assessment. Agriculture, EcosystemsandEnvironment.83.43-53

16. HospidoA.2005.Lifecycleassessmentasatoolforanalysingtheenvironmentalper-formance of key food sectors in Galicia (Spain): milk and canned tuna. Doctoral Thesis. SantiagodeCompostela.Spain.

17. IPCC 2001, Climate Change : the scientific basis. Cambridge University Press, Cam-bridge.

33

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

18. IPCC2006,2006IPCCGuidelinesforNationalGreenhouseGasInventories,PreparedbytheNationalGreenhouseGasInventoriesProgramme,EgglestonH.S.,BuendiaL.,MiwaK.,NgaraT.andTanabeK.(eds).Published:IGES,Japan.

19. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution ofWorkingGroup I to the Fourth Assessment Report of the Intergovernmental Panel on ClimateChange[Solomon,S.,D.Qin,M.Manning,Z.Chen,M.Marquis,K.B.Averyt,M.TignorandH.L.Miller(eds.)].CambridgeUniversityPress,Cambridge,UnitedKingdomandNewYork,NY,USA,996pp.

20. ISO14040:2006Environmentalmanagement--Lifecycleassessment--Principlesandframework.InternationalOrganizationforStandardization,Geneva,Switzerland.

21. ISO14044:2006.Environmentalmanagement–Lifecycleassessment–Requirementsandguidelines.InternationalOrganizationforStandardization.Geneva.Switzerland.

22. ISO14067-1.Carbonfootprintofproducts–Part1:Quantification.InternationalOrganizationforStandardization.Geneva.Switzerland.Underdevelopment.

23. KristensenT2009.FacultyofAgriculturalScience,ÅrhusUniversity.personalcommunication24. PAS2050:2008.PubliclyAvailableSpecification,Specification for theassessmentof life

cyclegreenhousegasemissionsofgoodsandservices,BSI,BritishStandardsInstitution,LondonISBN9780580509780.

25. SoussanaJF,TallecT,BlanfortV.2009,Mitigatingthegreenhousegasbalanceofrumi-nant production system through carbon sequestration in grasslands, page 1 of 17, IOP Conf.Series:EarthandEnvironmentalScience6(2009)242048.

26. ThomassenM,DalgaardR,HeijungsR&deBoerI.2008.AttributionalandConsequentialLCAofmilkproduction.IntJLCA.DOI10.1007/s11367-008-0007-y

27. WilliamsAG,AudsleyE&SandersDL.2006.Determiningtheenvironmentalburdensand resource use in the production of agricultural and horticultural commodities. Main Report.DefraResearchProjectIS0205.Bedford:CranfieldUniversityandDefra.Availableon www.silsoe.cranfield.ac.uk,andwww.defra.gov.uk

28. WRIWBCSDGHGProtocolInitiativecalculationtool-allocationofGHGemissionsfromacombinedheatandpowerplant2006.AWRI/WBCSDGHGProtocolInitiativecalculationtool. http://www.ghgprotocol.org/

34

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

12. Appendices

A. Functional Unit for Farming

The energy content of milk with known fat and protein content is calculated by:

MilkEnergy(Mcal/kg)=0.0929xFat%+0.0588xTrueProtein%+0.192which isequivalentto:

MilkEnergy(Mcal/kg)=0.0929xFat%+0.0547xCrudeProtein%+0.192.

The energy content of standard milk with 4 per cent fat and 3.3 per cent true protein is: 0.7576 Mcal/kg.Bydividingthecoefficientsbythestandardmilkenergycontent,thefinalequationforcalculatingfatandproteincorrectedmilk(FPCM)is:

FPCM (kg/yr) = Production (kg/yr) x[0.1226xFat% +0.0776xTrue Protein% + 0.2534]

Reference:

NutrientRequirementsofDairyCattle:SeventhRevisedEdition,2001. (Eds. J.Clark,D.K.Beede,R.A.Erdman,J.P.Goff,R.R.Grummer,J.G.Linn,etal.)NationalAcademiesPress:Washington,D.C.,p321.

35

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

B.AllocationMilk:Meat–thescientificbasisfortheapproach

Alargestudywhichincludedcollectionofdetailedfarm-leveldatafrom531USfarmsisnearingcompletion. In this study a causal relationship between the energy content in the animal ration andmilkandbeefproductionwasdeveloped.Thebackgroundandbasisofthecalculationsispresented below. Inshort,feedenergyavailableforgrowth,foragivenfeed,islowerthanthatavailablefor

milkproduction.Theconversionof feedtomilk ismoreefficientuseofthefeed.Giventhiscausal connection between feed, the major farm input, and the products, an algorithm to estimatethequantityoffeedrequiredtoproducetheobservedmilkandbeefproductsofafarm can be created.

This algorithm was applied using detailed rations (160 distinct feeds accounted) and the causal allocation factor computed for each farm. To simplify the application of this approach, we createdanempiricalrelationshipfortheallocationfraction,showninthefigurebelow.Thereisawiderangeofrationsrepresentedinthedataset,fromstrictlypasture-basedsmall

operationstolarge(3000milkinghead)confinedanimaloperations.Thereisalsoawiderangeofavailableenergycontentinthefeeds(thatis,arangeofthenetenergyforlactationvaluesofthefeeds)representedinthedataset,indicativeofhighandlowqualityrations.Finally,thereisalsoalargevarietyintheanimalclasssenttobeef,rangingfrombullcalvesthroughmatureanimals. As the underlying dataset is robust, it is not necessary to make detailed calculations for each class of animal sent to beef, nor is it necessary to make detailed calculations based on specificrationseverytimeanallocationprocedureisneeded.Giventhis,wefeelthattheempiricalrelationship:AF=1–5.7717Risrobustenoughtobe

appliedinternationally.HereAFistheallocationfraction,andRistheratioofkgbeef/kgmilk;the milk should be corrected to 4 per cent fat and 3.3 per cent protein. The calculation of kg beefshouldexcludeanimalswhichdieonthefarmandaredisposedbyburial,rendering,etc.Asindicatedinthereportbody,allocationisanimportantandevolvingissue,thusvalidationexercisesarebeinginitiatedusingrationsfromothermilkproductionregions.

Applying the causal allocation for the feed, the fraction of the farm to gate greenhouse gasemissionsthatistobeallocatedtomeat(versusmilk)canbecalculatedasafunctionoftheratiooftheannualquantitiesofmeatdividedbytheannualquantityofmilkproduced(Figure 8).

Thedeterminationissimpleandinvolvesthefollowingsteps:step1a:collect/determinethetotalkganimalmeatsoldperyear[kgmeat]step1b: collect/determinethetotalkgmilk4%fat3.3%proteinequivalentproducedperyearstep 1c: calculate the ratio R=kgmeat/kgmilk[-]step 2: Use the simple correlation: allocation factor to milk: AF = 1 – 5.7717Rstep3: Allocationfactortobeef=1-allocationfactortomilk

Bydefault,wecanfixatypicalratioofeg0.025kgmeat/kgmilk, yielding a default allocation of 14.4 per cent to meat and a default allocation of 85.6 per cent to milk.

36

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

Theapproachoutlinedhereavoidssomeoftheshortcomingsofeconomicorfixedallocationalgorithms.Specifically,itpreventsallocationfractionfromchangingduetovariationintheeconomicsofthemilkandbeefindustries,anditprovidesanaccountingofdifferencesinrelativeproductionbetweenmilkandbeefatscalesfromsinglefarmstoregions.

Figure 8. Fractionofthefarmtogatelifecycleallocatedtomilk(versusmeat).

Figure 9. Growthcurvefordairycattleonhighqualityration.

37

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

NotethatthefeedDMcalculatedisthefeedrequiredstrictlyforgrowth,maintenanceenergyisnotaccountedinthecalculation.Figure9presentsthegrowthcurveforanimalsfedthehighquality ration.

The regression equations can be used to calculate the feed necessary to produce the body massofeachanimalleavingthedairytothebeefindustry(orforlocalconsumption).Thetotalfeed consumed on the farm per year can then be summed from the known number of animals in each weight class and the feed consumed for growth by that weight class.Thequantityof4percentfat,3.3percentproteinmilk(fatandproteincorrectedmilk,FPCM)

produced can be calculated from the following equation:

FPCM={Production(kg)x(0.0929*%F)+(0.0547x%P/0.93)+0.192}/0.7518

The total feed energy required for milk production is calculated as:

(Totalkgproducedxnetenergycontentofmilk)/(feedenergyavailableforlactation).

Thus for a farm with an annual production of 100,000 kg of 4 per cent fat and 3.2 per cent protein milk (0.7518 Mcal per kg) using the high quality ration, the total kg DM of the ration required for this quantity of milk is:

100,000(kgmilk)x0.7518(Mcal/kgmilk)/1.61(Mcal/kgration)=46,696kgration

Allocation of milk processing

Thismatrixistheproductofanextensiveprocessofsubtractionandsubstitutiontodetermineaverage resource use and emissions for individual products from numerousmulti-productmanufacturingplants.Thisprocedureavoidstheneedforeconomic,energyormassallocationand creates a more realistic measure of resource use per product. Insummary,theprocedureinvolves:

• usinginitialliteratureandestimatesfromnumerousproductionsitestoestablishresourceefficiencyperproduct

• normalizingtheresourceefficiencyfigures forallproducts toareferenceproduct,andproducingamatrixofresourceefficiency ‘coefficients’(orphysico-chemicalallocationfactors)

• optimizingthecoefficientsinaniterativemannerforallproductsusingsurveyedprocessdatafromnumerousplantsgiventheconstraintsofthenumberofproducts,massofdif-ferentproductsandtotalresourceuseforeachplant.ThecoefficientscouldbefurtherrefinedbyusinganapproachsimilartotheRASmethod,usedforoptimizinginputcoeffi-cientsininput-outputtables(seealsoCirothetal,2007);ideallyappliedtoalargesampleof manufacturing sites.

38

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

C.TechnicalData

List of technical data required to calculate emissions.

Farm Products

Total quantity of milk supplied Total quantity of milk supplied by this type of farm.

Milk production Averageannualmilkproductionofadairycow (kg/dairy cow/year).

Fat content and protein Averagefatandproteincontentofmilkfromthearea (g/litre).

Meat production

Herd

Reproduction

The numbers of births per annum per animal and the numberofyounganimalsperbirth.(Respectivelyfertilityandprolificacy),anestimateisneededforthemaleanimalsforreproduction(naturalorartificial)bythe bull to cow ratio

Growth

Theadultageisdefinedastheageatwhichgrowthstopsandthefemaleanimalgivesbirthforthefirsttime.Theage when sold for the market is when the animal is supposed to be at the optimal weight for slaughter or when the animal is slaughtered (optimal weight or not).

DeathThe annual percentage of animals dying is split in three groups: young animals at birth, young animals after birth and before adult and adult animals.

Replacement The number of adult animals that is replaced annually by new younger adult animals.

Animalsabovereplacement

Thepreviousratesdefinethenumberofyounganimalsthatarenecessarytomaintainaherdataconstantsize.The other animals can be sold or kept within the same production system

Weights

Largerandheavieranimalsneedmoreenergyformaintenance.Alsothegrowthfromcalvingweighttoadult or slaughter is more, which also demands more energy.

Ranging,grazingorstallfeeding

Whenanimalshavetosearchfortheirfeedandhavetowalk a lot, the energy requirements are higher than when they are inside and no labour is needed for collecting feed.

Manure management

Storage Thetypeofstorageandthetimeofstoragedefinethelevelofemissions

Manure applicationTheapplicationtypedefinestheemissionstothe environment.Alsowhenmanureisusedfornonfeedcropsorforfuel,thisisdefinedinthemanurecompartment.

Feed

Digestibility Netenergycontentofthefeed

Nitrogencontent

39

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

Feed production (land for feed)

Dry matter yield per hectare

percentage of the total crop yield In the case of crop residues or wastes, a percentage of thetotalcropyield(eggrains+straw)mustbedefined.

Use of manure and fertiliser

Energyusebymachinery Forcropmanagement:egtillage,harvestingand conservation

Transport of feed Transport of feed components to the animal production site

Further processing of feedstuffs Further processing of feedstuffs to concentrates in the feed mill

Actual land use

In the case of grassland, grassland management has to bedefinedinordertoestimatewhethertheconditionisimproving,constantordecreasing.Thelatteristhecasewithovergrazingandlanddegradation.Inthecaseofarable land the tillage system can play a role.

Previouslanduse

Large amounts of carbon get lost when forest is convertedtograsslandorarablelandandwhen grasslandisconvertedtoarableland.Inthecaseof land use change a time frame of 20 years will be used, accordingtheguidelinesoftheIPCC(IPCC,2006).

Other external inputs

Energyneededformilking

Energyneededforheating

Energyneededforcooling

Water supply

Processing

Raw milk Total allocated to manufacturing plantTransportation of raw milk to manufacturing plant

IngredientsIngredients other than raw milkCountryoforiginTransportation of ingredients to manufacturing plant

Intermediate ProductsIntersite/company transfers eg cream, butter milk, lactoseTransportation of intermediate products

Energy

ElectricalandthermalenergyuseSource of energy (black coal, natural gas, oil, LPG and biogas)Cogenerationsystems

Chemicals

Mainchemicalsusedincleaning-in-place(CIP)systems(Caustic,nitricacid,triplex,sodium hypochlorite)Transportation of chemicals to manufacturing plant

Packaging

Thequantityofpackagingmaterialsandtheirrespectivematerialcompositions-paper,cardboard,LDPE,LLDPENitrogen,carbondioxideusedduringpackagingoff inished productsCountryofOriginforpackagingmaterial

40

Bulletin of the International Dairy Federation 445/2010 A common carbon footprint approach for dairyThe IDF guide to standard lifecycle assessment

methodology for the dairy sector

Processing (continued)

Refrigerants Quantity and type of refrigerants used in manufacture andstorageoffinishedproduct

Water Quantity of water and water treatment process

Wastewater Quantity of wastewater produced and wastewater treatment process

Solids waste Quantity of solids waste product and amount recycled

Finished product Quantityofproduct-milk,yoghurt,cheese,milkpowderetc produced at the manufacturing plant

ACOMMONCARBONFOOTPRINTAPPROACHFORDAIRYTHEIDFGUIDETOSTANDARDLIFECYCLEASSESSMENTMETHODOLOGYFORTHEDAIRYSECTOR

ABSTRACT

Creatingconsistencyandaclearmessageonthequantificationofcarbonfootprint is important for the reputation of the world dairy sector to high-lightthehighlevelofengagementthatisalreadytakingplaceinrelationto this issue, and to identify practices that will further reduce greenhouse gas emissions.

TheIDFguideisthefirstinternationalconsensusdocumentdescribinga common carbon footprint approach for dairy products including ad-dressing the commonLCAchallengesof allocation to co-productsandlandusechange.Thedocumentidentifiesthekeyareasinwhichthereis currently ambiguity or differing views on approachwhile it recom-mendsascience-basedapproachthatcanalsobeinsertedintoexistingordevelopingmethodologiesforpracticalapplicationindevelopinganddeveloped dairy industries across theworld. The IDF guide has beendevelopedinclosecollaborationandwiththeactiveinvolvementoftheFoodandAgricultureOrganizationoftheUnitedNations(FAO)andtheSustainableAgricultureInitiativePlatform(SAIPlatform).

Keywords: carbon footprint, climate change, emissions, environment, environmental management, environmental policies, greenhouse gas, land use, LCA, milk production, sustainability

40pp-Englishonly

BulletinN°445/2010-Freeofcharge(electronic)-Date:2010

INTERNATIONALDAIRYFEDERATIONINSTRUCTIONS TO AUTHORS

Submission of papers

Submissionofamanuscript(whetherintheframeworkofanIDFsubjectontheprogrammeofworkoranIDFevent)impliesthatitisnotbeingconsideredcontemporaneouslyforpublicationelsewhere.Submissionofamulti-authoredpaperimpliestheconsentofallauthors.

Types of contribution

Monographs;separatechaptersofmonographs;reviewarticles;technicalandorscientificpaperspresentedatIDFevents;communications;reports on subjects on the IDF programme of work.

Language

AllpapersshouldbewritteninEnglish.

Manuscripts

• FilestobesentelectronicallyonCD-ROM,disketteorbye-mail.

• FinaldocumentinWord2000orlater.

• All tables/figures included in final document to be sent also in separate Word, Excel or PowerPoint files, in colour format. Pictures to be sent in tif or eps format (resolution 300 DPI)

• Allfilestobenamedwithauthor’ssurnameplustitleofpaper/tables/figures.

References

• Referencesinthedocumenttobenumberedandplacedbetweensquarebrackets.

• Referencelistsattheendofthedocumenttocontainthefollowing:

*Namesandinitialsofallauthors;

*Titleofpaper(orchapter,ifthepublicationisabook);

*Ifthepublicationisajournal,titleofjournal(abbreviatedaccordingto‘BibliographicGuideforEditorsandAuthors’,publishedby TheAmericanChemicalSociety,Washington,DC),andvolumenumber; *Ifthepublicationisabook,namesofthepublishers,cityortown,andthenamesandinitialsoftheeditors;

*Ifthepublicationisathesis,nameoftheuniversityandcityortown;

*Pagenumberornumberofpages,anddate.

Example: 1Singh,H.&Creamer,L.K.Aggregation&dissociationofmilkproteincomplexesinheatedreconstitutedskimmilks.J.FoodSci. 56:238-246(1991).Example: 2Walstra,P.Theroleofproteinsinthestabilizationofemulsions.In:G.O.Phillips,D.J.Wedlock&P.A.William(Editors),Gums& StabilizersintheFoodIndustry-4.IRLPress,Oxford(1988).

Abstracts

Anabstractnotexceeding150wordsmustbeprovidedforeachpaper/chaptertobepublished..

Address

Authors&co-authorsmustindicatetheirfulladdress(includinge-mailaddress).

Conventions on spelling and editing

IDF’sconventionsonspellingandeditingshouldbeobserved.SeeAnnex1.

ANNEX1IDF CONVENTIONS ON SPELLING AND EDITING

InthecaseofnativeEnglishspeakerstheauthor’snationalconventions(British,Americanetc.)arerespectedforspelling,grammaretc.buterrorswillbecorrectedandexplanationgivenwhereconfusionmightarise,forexample,inthecaseofunitswithdifferingvalues(gallon)orwordswithsignificantlydifferentmeanings(billion).

“ ................................................................Usually double quotes and not single quotes? ! .............................................................Half-spacebeforeandafterquestionmarks,andexclamationmarks± ..............................................................Half-spacebeforeandaftermicroorganisms ...................................Without a hyphenInfra-red ................................................With a hyphenet al. ........................................................Notunderlinednoritalice.g., i.e.,... ............................................SpelledoutinEnglish-forexample,thatislitre ..........................................................NotliterunlesstheauthorisAmericanml, mg,... ..............................................Space between number and ml, mg,...skimmilk ................................................Onewordifadjective,twowordsifsubstantivesulfuric,sulfite,sulfate ..............................Notsulphuric,sulphite,sulphate(asagreedbyIUPAC)AOACInternational ............................NotAOACIprogramme ...........................................Notprogramunlessa)authorisAmericanorb)computerprogrammilk and milk product .......................ratherthan“milkanddairyproduct”-Normallysomelatitudecanbeallowedinnonscientifictexts-ize,-ization .........................................Not-ise,-isationwithafewexceptionsDecimal comma ...................................in Standards (only) in both languages (as agreed by ISO)Nospacebetweenfigureand%-i.e.6%,etc.Milkfat .....................................................One wordUSA, UK, GB .........................................NostopsFigure......................................................To be written out in full1000-9000 ...........................................Nocomma10 000, etc. ..........................................Nocomma,butspacehours .......................................................ø hsecond ....................................................ø slitre ..........................................................ø ltheNetherlandsWheretwoormoreauthorsareinvolvedwithatext,bothnamesaregivenononeline,followedbytheiraffiliations,asfootnotesforexample A.A.Uthar1&B.Prof2

1Universityof....... 2 Danish Dairy Board .....IDFdoesnotspelloutinternationalorganizations

INTERNATIONAL DAIRY FEDERATION / FEDERATION INTERNATIONALE DE LAITERIEDiamant Building, Boulevard Auguste Reyers, 80 - 1030 Brussels (Belgium) - http://www.fil-idf.org