brown presentation

23
Topology of Graphic Hyperplane Arrangements Kenneth Ascher & Donald Mathers Introduction Definitions Example More Definitions Graphs Algebra O.S. Algebra Resonance Varieties Results Resonance Varieties Polymatroid Example Future Future End Topology of Graphic Hyperplane Arrangements Kenneth Ascher & Donald Mathers Brown SUMS 2012

Upload: donald-mathers

Post on 24-Jan-2018

199 views

Category:

Education


0 download

TRANSCRIPT

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Topology of Graphic Hyperplane Arrangements

Kenneth Ascher & Donald Mathers

Brown SUMS 2012

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Definitions

Setup: i = 1, · · · ,nαi : C`→ C is a non-zero linear transformationai = [ai1 · · ·ai` ]

Definition

Ker(αi ) = {x ∈ C` | αi (x) = 0} := Hiis called a linear hyperplane.

Definition

We call A = {H1, · · · ,Hn}, a finite set of hyperplanes, ahyperplane arrangement.

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Example

Example

A =

1 0 00 1 00 0 1−1 1 0−1 0 10 −1 1

H1 : x = 0H2 : y = 0H3 : z = 0H4 :−x + y = 0H5 :−x + z = 0H6 :−y + z = 0

Example

6

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Combinatorial Definitions

Definition

A subset S ⊆A is called dependent iff the set {αi | Hi ∈ S} isa linear dependent set.

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Graphic Arrangements

We will deal with graphic arrangements – arrangementsassociated with a simple graph, ΓGiven a graph, Γ with edge set E , the arrangement isformed by the following hyperplanes (in C`):

AΓ = {zi − zj = 0 | (i , j) ∈ E }

Example

Edges – HyperplanesRank of graph – Space we are in

We are interested in the complement of A ,

M = C`−n⋃

i=1

Hi (or in complex projective space. . . )

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Orlik-Solomon Algebra

We are interested in the complement of A ,

M = C`−n⋃

i=1

Hi (or in complex projective space)

For each Hi ∈A we have a corresponding basis vector, ei .Let E = ∧(e1, · · · ,e`) be the exterior algebraDefine ∂ : E p→ E p−1 by:

∂ (ei1 ∧·· ·∧ eip ) =p

∑k=1

(−1)k−1ei1 ∧·· ·∧ eik ∧·· ·∧ eip

Notation: S = (i1, · · · , ip), denote ei1 ∧·· ·∧ eip as eS

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

O.S. Algebra Cont.

Let I be the ideal generated by: (∂eS | S is dependent)

Definition

The Orlik-Solomon Algebra is A(A ) = E /I

A is a homogeneous, graded algebra

Theorem

Let M be the complement as before. ThenA(A ) = E /I ∼= H∗(M)

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Resonance Varieties

Fix a ∈ A1 so that a =n

∑i=1

λiei , δa(x) = a∧ x

A(A ) is graded so we have:

0→ A0 δ0a−→ A1 δ1

a−→ A2 δ2a−→ ·· · δ `−1

a−−→ A` δ `a−→ 0

We have a co-chain complex ⇒ Hk(a,δa) = Ker(δ ka )/Im(δ k−1

a )

Definition

The dth resonance variety isRd (A ) = {a ∈ Ad | Hd (Ad ,δ d

a ) 6= 0}

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Resonance Varieties, Cont.

Important properties:

It is an algebraic variety, specifically, a union of linearsubspaces

For graphic arrangements we have the following theorem:

Theorem

For a graphic arrangement, AΓ, R1(AΓ) has a component foreach K3 and K4 in the graph.

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Graph Operations

ExampleExample

Parallel-connection vs. Parallel-indecomposable

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Resonance Varieties

We are interested in the dimension of the (first) resonancevariety and have the following theorem:

Theorem

Given a graphic arrangement, AΓ, let B be the arrangementformed by removing all hyperplanes in A which are notcontained in a K3. Call this resulting graph associated to B, H.Then, dim(R1(A )) = e(H)− c(H), where e(H) denotes thenumber of edges in H, and c(H) denotes the number ofmaximal edge-joint components.

Corollary

Given a 2-connected, parallel-indecomposable graph Γ, suchthat each edge is contained in a K3, dim(R1(A )) = e(Γ)−1.

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Resonance Varieties

Example

This is what we call aparallel connection. Inthis case, we parallelconnected two K3s.The dimension of thespan of R1(A ) is 4 .

Example

This is a W5, a wheelgraph with 5 vertices.The dimension of thespan of R1(A ) is 7 .

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Polymatroids

We’ve already established that the resonance variety is a unionof linear subspaces.

Let’s assume R1(A ) = L1∪L2 · · ·∪Lk⋃

M1∪·· ·∪Mn

Li ↔ K3Mi ↔ K4

The polymatroid is a function that assigns to eachsubspace of R1, the dimension of its span

Using our theorem on dimension of the span of the resonancevariety, we can calculate the polymatroid of a graph containingno 4-cliques.

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Polymatroid

Let Γ be a K4-free graph (a decomposable arrangement)

Each K3 contributes a local component, a linear space ofdimension 2, so we are interested in the dimension of thespan of the union of any componentsWe call the dimension of the span degenerate if it is “lessthan expected“Wheel graphs represent “minimal degenerate sets“

We can determine the polymatroid of these arrangements bylooking at subgraphs which are wheel graphs.

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Examples

Example

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Examples

Example

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Examples

Example

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Examples

Example

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Example

Example

Example

Parallel-indecomposable, irreducible, inerectibleSame chromatic polynomial and same polymatroidSame quadratic O.S. algebras

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Future

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Future

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Acknowledgements

Professor Michael FalkCaleb Holtzinger

YMCNSF

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Thanks!

Questions?