bose polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · bose polarons theory and...

40
Bose Polarons theory and experiments Luis A. Peña Ardila Barcelona, November 29 2017

Upload: others

Post on 14-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Bose Polarons theory and experiments Luis A. Peña Ardila!

Barcelona,  November  29  2017  

Page 2: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

WHY    THE  POLARON  PROBLEM  IS  IMPORTANT? 1

Charge-­‐Transfer    excitons  in  DNA  

Elementary  par:cles  and  Higgs  bosons  

Electrons  in  solids  

3He  (Impuri:es)–4He  mixtures  (Strongly  correlated  Quantum  liquid)  

Because represents a general scenario in physics: an impurity particle! interacting with a medium.!

 

Page 3: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Solid  State  Physics

The  electron  gets  dressed  by  la1ice  vibrations  (Phonons)    of  the  polar  crystal.

WHAT  IS  A  POLARON  (SOLID  STATE) 2

Impurity!

Medium!

Polaron!

Page 4: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Solid  State  Physics      Fröhlich  solid  state  polaron1

Low-­‐‑energy   description

Electron Bath  of  phonons

Electron  dressed  by    phonon   Fröhlich  polaron

THE  FRÖHLICH  HAMILTONIAN

1.  Fröhlich,  Adv.  Phys.  3,  325  (1954)

Electron Phonons  Electron-­‐‑Phonon  interaction

ω q =ω 0Interac:on  with  LO  phonons  (are  the  important  contribution  in  P)  

Solid-­‐‑state  Fröhlich:  

H = P2

2M+ hω q

q∑ a†qaq + Vq

k,q∑ cp+q

† cp a†q +aq( )aq + a−q

†( )

3

Page 5: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Low-­‐‑energy   description

impurity  dressed  by  phonon  Fröhlich  polaron

M 0 ∝1ε∞

− 1ε0

⎛⎝⎜

⎞⎠⎟

1/2

THE  FRÖHLICH  HAMILTONIAN

1.  R.  Feynman  .Slow  Electrons  in  a  Polar  Crystal.PRL  97    (1955) 2.  R.  Feynman.  Statistical  Mechanics.(1972)  

Fixed  and  depends  of  the                                material

Electron Bath  of  phonons

3

Optical-­‐‑Phonons Electron-­‐‑Phonon  coupling Electron

H = P2

2M+ hω 0

q∑ a†qaq +

M 0

υ1/2k,q∑ exp(iq ⋅r)

qa†q +aq( )aq + a−q

†( )

Page 6: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Solid  State  Physics

The  electron  gets  dressed  by  la1ice  vibrations  (Phonons)    of  the  polar  crystal.

POLARONS  IN  ULTRACOLD  QUANTUM  GASES  (BOSONS) 4

?

Page 7: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Solid  State  Physics

An  impurity  gets  dressed  by  low  energy  excitations  of  the  BEC  and  forms  a    polaron.

The  electron  gets  dressed  by  la1ice  vibrations  (Phonons)    of  the  polar  crystal.

Ultracold  Gases

POLARONS  IN  ULTRACOLD  QUANTUM  GASES  (BOSONS) 4

Page 8: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

ULTRACOLD  QUANTUM  GASES 5

 Interactions  can  be  controlled

Clean  systems

nBa3 ≪1

Diluteness

nBR03 ≪1

Low  temperatures

Λ = h2πmKBT

>> R0

Page 9: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Feshbach  resonances  in  cold  gases1

 1.  C.  Chin  et  all.  Feshbach  resonances  in    ultracold  gases  

a = −∞

HOW  INTERACTIONS  ARE  CONTROLLED?

V (R − R' ) = 4π!2

ma δ (R − R' )

S-­‐wave  Sca7ering  length  

Sca7

ering  length  (1

000  a0)  

6

Short  range interactions

Atoms    interact by  colliding

Low  energy   collisions

S-­‐‑wave  collisions  dominate

Page 10: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

ULTRACOLD  QUANTUM  GASES 7

ATTRACTIVE  POLARONS REPULSIVE  POLARONS

Ultracold  Gases

Page 11: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Solid  State  Physics Ultracold  Gases QUESTION

Interaction  tunable Interaction  Fixed

QUESTION:   can  the  solid  state  system  be  

mapped  onto  an  ultracold  system?

?!

7

Page 12: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

 Bose  Polaron  in  the  Strongly  interacting  limit.  Ming-­‐‑Guang  Hu    et  al  ,  PRL  117,  055301  (2016).        

BOSE  POLARON  EXPERIMENTS-­‐‑JILA 8

RF  spectroscopy  

nBECa3 ≈ 3×10−5

Bosonic  bath  (Rb)  

Impurity  gas  bath  (K)  

1knb

= a6π 2na3( )1/3b

Page 13: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

 Bose  Polaron  in  the  Strongly  interacting  limit.  Ming-­‐‑Guang  Hu    et  al  ,  PRL  117,  055301  (2016).        

POLARON  ENERGY  BRANCHES   9

Attractive branch!

Repulsive branch!µ/µ

0

1/ knb

µ = E0 ( _____ )− E0 ( ____ )

Page 14: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

BOSE  POLARON  EXPERIMENTS-­‐‑AARHUS 39KRadio Frequency Spectroscopy!

Observation  of  a1ractive  and  repulsive  polarons    in  a  Bose  Einstein  Condensate.  Nils  B.  Jørgensen    et  al  ,PRL  117,  055302  (2016).        

Spectral    Response    

10

2 = F = 1,mF = 0

1 = F = 1,mF = −1

1/ knb1knb

= a6π 2na3( )1/3b

Bosonic  bath  (K)  nBECa

3 = 3×10−8

Impurity  gas  bath  (K)  

AOrac:ve  Branch  

Repulsive    Branch  

µ/µ

0

Page 15: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

RECOVERING  THE  LOW-­‐‑ENERGY  HAMILTONIAN

Hamiltonian  impurity  coupled  to  the  bosonic  bath:

Impurity Bosons Boson-­‐‑  boson  interaction Impurity-­‐‑bosons  interaction

Bosonic  bath

Impurity  

a:  s-­‐‑wave  sca1ering  length  between  bosons

Dilute  bath   bosons

H = P2

2mI

+ εkk∑ a†kak +12

VBB(q)k,k ',q∑ a†k '−qak+qa†kak ' + VIB(q)k,q∑ ρ I (q)a

†k−qak

The  Bogoliubov  approximation                        weakly  interacting  BEC                          quasiparticles  system.

na3 ≪1

H = E0 + Ekk≠0∑ bk

†bk +P2

2mI

+ nBVIB(0)+ε k0nBε kk≠0

∑ VIB(k) bk + b−k†( )

12

..and  now  write  this  Hamiltonian  with  respect  to  the  BEC…

Page 16: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

SINGLE  IMPURITY  PROBLEM

Impurity Bogoliubov excitations

Impurity-­‐‑Bogoliubov  exc. interactions

Ultracold  gases

Solid  state  physics

Phonons Electron-­‐‑phonon  interaction Electron

Fröhlich  Hamiltonian  in

HElectron−phonon =P2

2me

+ !ω qa†q

q∑ aq + Vqc

†p+qc

†p a†q + aq( )

q,p∑

HPolaron =P2

2mI

+ Ekb†k

k≠0∑ bk + Vk exp(ik ⋅rI ) b

†−k + bk( )

k≠0∑

map?  

YES In  the  weak  coupling

 

F R Ö H L I C H ?  

aq + a−q†( )

Impurity-­‐Boson  Sca7ering  length  

13

Page 17: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

PERTURBATION  THEORY-­‐‑WEAK  COUPLING

Total  Energy:

H0 H ' (Perturbation)

                   Effective  mass:

Perturbation  theory  works  for:

nBa3 ba

⎛⎝⎜

⎞⎠⎟2

<<1

m*

m= 1+ 64

45 πnBa

3 ba

⎛⎝⎜

⎞⎠⎟2

E(NB ,1) = E0 (NB )+ 8π nBa3( ) b

a⎛⎝⎜

⎞⎠⎟ +

323 π

nBa3( )1/2 b

a⎛⎝⎜

⎞⎠⎟2⎡

⎣⎢

⎦⎥!2

2ma2

H = E0 + Ekk≠0∑ bk

†bk +P2

2mI

+ nBVIB(0)+ε k0nBε kk≠0

∑ VIB(k) bk + b−k†( )

Involving  up  to  one  Bogoliubov  excitaFon  on  top  of  the  BEC  

COMPLETE  ENERGY  SPECTRUM  NEEDS  TO  INCLUDE  MORE  THAN    one  Bogoliubov    excitaFon  on  top  of  the  BEC    L.  A.  and    S.  Giorgini.  Phys.  Rev.  A  92    033612  (2015)  

14

Page 18: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Is  there  a  method  that  investigate  this  regime?  YES:  Monte-­‐‑Carlo  methods

THE  METHODS

Bosonic  bath

Bosonic  bath

16

   Strong  interacting  regime:  

Weak  interacting  regime:  Fröhlich  Hamiltonian                              

Page 19: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

   QUANTUM  MONTE-­‐‑CARLO  METHOD-­‐‑  ALL  COUPLING

Bosonic  bath

Physical  system Diffusion  Monte-­‐‑Carlo

64  bosons* 1  Impurity

Trial  wave  function Local  energy

ψ T (R) = fI (riα )i=1

NB

∏ f (rij )i< j∏

V (R) Hard  Sphere   potential

V (R) = +∞ R ≤ a0 R > a

⎧⎨⎩

R

Impurity

V (R)

R

b = R0 1−tan(k0R0 )k0R0

⎣⎢

⎦⎥

ASW   potential

V (R) =−V0 R ≤ R00 R > R0

⎧⎨⎪

⎩⎪

R0 a

EL (R) = − !2

2m i=1

N

∑ ∇2ψ T (R)ψ T (R)

+V (R)

*SIZE  EFFECTS

Periodic  Boundary  conditions

15

Page 20: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

 Bose  Polaron  in  the  Strongly  interacting  limit.  Ming-­‐‑Guang  Hu    et  al  ,  PRL  117,  055301  (2016).        

BOSE  POLARON  EXPERIMENTS-­‐‑JILA 17

µ = E0 ( _____ )− E0 ( ____ )

 AOrac:ve  Branch  (AOrac:ve  Polaron)  

     Repulsive  Branch  (Repulsive  Polaron)  

Page 21: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

   GROUND  STATE  ENERGY-­‐‑  Aarhus  Experiment 18

Page 22: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

   GROUND  STATE  ENERGY-­‐‑  Aarhus  Experiment 18

Page 23: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

   GROUND  STATE  ENERGY-­‐‑  Aarhus  Experiment 18

Polaron  energy  

Page 24: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

   GROUND  STATE  ENERGY-­‐‑  Aarhus  Experiment 18

Polaron  energy  

Many-­‐Body  conFnuum  

Page 25: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

   GROUND  STATE  ENERGY-­‐‑  Aarhus  Experiment 18

Page 26: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

   GROUND  STATE  ENERGY-­‐‑  Aarhus  Experiment 18

Page 27: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

   GROUND  STATE  ENERGY-­‐‑  Aarhus  Experiment 18

SOMETHING  WRONG!  

Page 28: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

   GROUND  STATE  ENERGY-­‐‑  Aarhus  Experiment 18

Temperature?  

Polaron  interacFon?  

Other?  

Page 29: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

   EFFECTIVE  MASS-­‐‑  Our  Model

DMC  PerturbaFon  theory            Self-­‐localizaFon    

m*

m= 1.63± 0.03

T-­‐Matrix    approach1  

1.  S.  P.  Rath  and  R.  Schmidt.  Field-­‐theoreFcal  study  of    the  Bose  Polaron.  Phys  Rev  A  88  (2013)  

Strongest  interacting   limit  a/b=0

Results  at  the  unitary  limit  for  gas    parameter nBa3 = 10−5

No  measured  in  experiments  yet  

Similar  to  JILA  

Akractive   branch

Repulsive   branch

19

1 impurity!!64 Bosons!

na3 = 10−5

a /b

Page 30: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Boson-­‐‑boson  pair  correlation  function

Impurity-­‐‑boson  pair  correlation  function

n(r) = nB

dr '0

r

∫ 4πr '2 gIB(r ')

4πr3 / 3

   PAIR  CORRELATION  FUNCTIONS-­‐‑  Our  Model

Enhancement  for  the  a1ractive  branch

Depletion  for  the  repulsive  branch z  

log n(r)nB

⎣⎢

⎦⎥

log n(r)nB

⎣⎢

⎦⎥

r /ξ

r /ξ

Very  repulsive   Very  akractive   Impurity  absent

 L.  A.  and    S.  Giorgini.  Phys.  Rev.  A  92    033612  (2015)  

gBB

20

Page 31: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Beyond  the  Fröhlich  regime  

Strongest  interaction   that  two  particles  can  afford  

Bosonic  bath

No  small  parameter  describing  properties

(universal  limit)

   UNITARY  LIMIT

nBa3•  Energy

•  Effective  mass •  Correlation  pair  function

Goal:

V (R)

R

b = R0 1−tan(k0R0 )k0R0

⎣⎢

⎦⎥

V (R) =−V0 R ≤ R00 R > R0

⎧⎨⎪

⎩⎪R0 a k0R0 = π / 2

b→ ±∞

WEAKLY    INTERACTING  

LIMIT  nBa3 ba

⎛⎝⎜

⎞⎠⎟2

>>1

21

Page 32: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

     Binding  energy-­‐‑  UNITARY  LIMIT

mB = mI

mB = mIAarhus  Experiment  

JILA  predicFon  

mB

mI

= 1

mB

mI

= 0

L.  A    and    S.  Giorgini.  Phys.  Rev.  A  94    063640  (2016)    

 L.  A.  and    S.  Giorgini.  Phys.  Rev.  A  92    033612  (2015)  

22

Weakly   Interacting   Bose  gas   must exist

Page 33: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

   EFFECTIVE  MASS-­‐‑  UNITARY  LIMIT

DMC

Linear  fit

Non  self-­‐‑localization  of the  impurity

Aarhus  Experiment  

23

Page 34: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Boson-­‐boson  pair  correlaFon  funcFon   Density  profile  

n(r) = nB

dr '0

r

∫ 4πr '2 gIB(r ')

4πr3 / 3

C = lim gIB(r)r2

a2nBa

3( )2/3

   PAIR  CORRELATION  FUNCTION-­‐‑  UNITARY  LIMIT

Bosonic  bath  slightly  modified Bosonic  bath  is  significantly  modified  in  the  neighborhood  of  the  impurity  

r→ 0

Narrower  peak  as the  gas  parameter decreases

gBB(r)

24

Page 35: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Efimov  states1:  3-­‐‑Body  bound  states

Lowest  Efimov  state            Polaron  energy                                                                                                                      

   FEW-­‐‑BODY  PHYSICS  –  EFIMOV  STATES?

No  larger  than

10−6 !2

mR2

Efimov’s  scaling   factor    

1.  V.  N.  Efimov.  Phys.  Le1.  B,  33(563),  1970. 2.  D.  S.  Petrov  and  F.  Werner.    arXiv.org.,  (1502.04092v1),  2015.

(R ∼ a)

25

=  

Page 36: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Efimov  states1:  3-­‐‑Body  bound  states

exp π / s0( ) ∼1986with

   FEW-­‐‑BODY  PHYSICS  –  EFIMOV  STATES?

No  larger  than

10−6 !2

mR2

1.  V.  N.  Efimov.  Phys.  Le1.  B,  33(563),  1970. 2.  D.  S.  Petrov  and  F.  Werner.    arXiv.org.,  (1502.04092v1),  2015.

(R ∼ a)

THE  TRIMER  EFIMOV  STATE  IS  PREDICTED  TO  OCCUR,  BUT  WE  DO  NOT  OBSERVE  IT  BECAUSE  THE  ENERGY  SCALE  

NO  SIGNIFICANT  EFFECTS    OF  THREE-­‐BODY  DACAY  

25

Page 37: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Efimov  states1:  N-­‐‑Body  bound  states?

   FEW-­‐‑BODY  PHYSICS  –  EFIMOV  STATES?

1.  V.  N.  Efimov.  Phys.  Le1.  B,  33(563),  1970. 2.  D.  S.  Petrov  and  F.  Werner.    arXiv.org.,  (1502.04092v1),  2015.

Unbounds  states  appear  for  N=6    (Imp+5  bosons)  

26

Page 38: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Efimov  states1:  N-­‐‑Body  bound  states?

   FEW-­‐‑BODY  PHYSICS  –  EFIMOV  STATES?

1.  V.  N.  Efimov.  Phys.  Le1.  B,  33(563),  1970. 2.  D.  S.  Petrov  and  F.  Werner.    arXiv.org.,  (1502.04092v1),  2015.

Unbounds  states  appear  for  N=6    (Imp+5  bosons)  

26

Page 39: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

Efimov  states1:  N-­‐‑Body  bound  states?

   FEW-­‐‑BODY  PHYSICS  –  EFIMOV  STATES?

1.  V.  N.  Efimov.  Phys.  Le1.  B,  33(563),  1970. 2.  D.  S.  Petrov  and  F.  Werner.    arXiv.org.,  (1502.04092v1),  2015.

Unbounds  states  appear  for  N=6    (Imp+5  bosons)  

Efimov states Extremely

shallow

26

Page 40: Bose Polarons theory and experimentsbqmc.upc.edu/pdfs/doc904.pdf · Bose Polarons theory and experiments Luis A. Peña Ardila! Barcelona,*November*29*2017*

     CONCLUSIONS

Very  dilute  gas

1/ n1/3b

AARHUS   JILA