bla conformal standard model - osaka universityseminar/pdf_2018... · conformal standard model...

34
bla Conformal Standard Model Hermann Nicolai MPI f¨ ur Gravitationsphysik, Potsdam (Albert Einstein Institut) Based on: K. Meissner and HN, PLB648(2007)090001 and further joint work (in various combinations) with A. Latosinski, A. Lewandowski, K. Meissner and P. Chankowski: Mod.Phys.Lett.A30(2015)1550006; JHEP1510(2015)170; Phys.Rev. D79(2018)035024

Upload: others

Post on 21-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

bla

Conformal Standard Model

Hermann Nicolai

MPI fur Gravitationsphysik, Potsdam

(Albert Einstein Institut)

Based on: K. Meissner and HN, PLB648(2007)090001

and further joint work (in various combinations) with

A. Latosinski, A. Lewandowski, K. Meissner and P. Chankowski:

Mod.Phys.Lett.A30(2015)1550006;

JHEP1510(2015)170; Phys.Rev. D79(2018)035024

Page 2: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Basic issues and philosophy

No signs of ‘new physics’ at LHC: which is the correct

road to take SM consistently up to Planck scale?

SM already fairly complete except for:

• Hierarchy problem?

• Instability/metastability of electroweak vacuum?

• Matter/antimatter asymmetry (leptogenesis)?

• Dark Matter?

‘Grand problems’ left for Quantum Gravity to solve:

• UV completion of SM physics?

• Cosmological Constant and Dark Energy?

• Origin of Inflation?

Page 3: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

A basic question (Ockham’s razor)

What is the minimal extension required tokeep the SM viable up to MPL?

Page 4: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Related/previous work (not complete...)

• Survival of SM up to MPL [Froggat,Nielsen(1996),Jegerlehner,...]

• νMSM model [Shaposhnikov;Asaka,Bezrukov,Blanchet,Gorbunov,Shaposhnikov;...]

• Coleman-Weinberg symmetry breaking[Elias et al.(2003); Hempfling(1996);Foot et al.(2010);...]

• Conformal symmetry and electroweak hierarchy[Bardeen (1995);Meissner,HN(2007);Holthausen, Kubo, Lindner, Smirnov;...]

• Conformal models with (B − L) gauging[Iso,Okada,Orikasa(2009); + Takahashi(2015)]

• Asymptotic safety and conformal fixed point at MPL

[Wetterich,Shaposhnikov(2010);....]

• ......

Page 5: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

The electroweak hierarchy problem

A main focus of BSM model building over many years:

m2R = m2

B + δm2B , δm2

B ∝ Λ2 and m2R ≪ Λ2

But is this really a problem?

• Not in renormalized perturbation theory becauseΛ → ∞ and because renormalisation “does not care”whether an infinity is quadratic or logarithmic!(as exemplified by dimensional regularisation which doesnot even “see” quadratic divergences for d = 4 + ε).

• Yes, if SM is embedded into Planck scale theoryand Λ is a physical scale (cutoff) ⇒ quadratic de-pendencies on cutoff imply extreme sensitivity oflow energy physics to Planck scale physics.

Page 6: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Possible solutions?

• Low energy supersymmetry: exact cancellation ofquadratic divergences ensured by (softly broken)supersymmetry ⇒ choice of cutoff Λ does not mat-ter, can formally send Λ → ∞ and adopt any conve-nient renormalisation scheme.

• Technicolor (motivated by QCD): no fundamentalscalars ⇒ no quadratic divergences ⇒ Higgs bosonwould have to be composite (could still be true...)

• Asymptotic Safety: UV problems are cured by non-trivial (non-Gaussian) fixed point of RG equations.

NB: if true, QFT remains valid at all scales, no fancy schemes

(like string theory) required for UV completion of SM physics!

• Some variant of Conformal Symmetry → This Talk!

Page 7: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Large scales other than MPL ?

• (SUSY?) Grand Unification:

– Unification of gauge couplings at mX ≥ O(1016GeV)?

– But: proton refuses to decay (so far, at least!)

• Light neutrinos (mν ≤ O(1 eV)) and heavy neutrinos→ most popular (and most plausible) explanationof observed mass patterns via seesaw mechanism:[Minkowski(1977);Gell-Mann,Ramond,Slansky(1979);Yanagida(1980)]

m(1)ν ∼ m2

D/M mD = O(mW ) ⇒ m(2)ν ∼ M ≥ O(1012GeV)?

• Strong CP problem ⇒ need axion a(x)?Limits e.g. from axion cooling in stars ⇒

L =1

4faaF µνFµν with fa ≥ O(1010GeV)

→ axion is (still) an attractive CDM candidate.

Page 8: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Low energy supersymmetry?

Page 9: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Low energy exotics?

Page 10: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Absence of any evidence from LHC for ‘new physics’raises doubts about many suggested BSM scenarios ⇒

Can the SM survive all the way to Planck scale MPL?

In this talk: explore (softly broken) conformal sym-metry for a minimal extension of usual SM as an al-ternative option.

NB: this proposal does without low energy supersym-metry, but supersymmetry may still be essential for afinite and consistent theory of quantum gravity (thusmoving the SUSY scale back up to the Planck scale).

Important: no assumptions about Planck scale theory

(assumed to ‘take over’ from QFT at MPL ∼ 1019GeV)

other than its UV finiteness (≡ UV completeness).

Page 11: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Reminder: the conformal group SO(2, 4)

This is an old subject! [for a review, see H.Kastrup, arXiv:0808.2730]

Conformal group = extension of Poincare group (withgenerators Mµν, Pµ) by five more generators D and Kµ:

• Dilatations (D) : xµ → eωxµ

• Special conformal transformations (Kµ):

x′µ=

xµ − x2 · cµ1− 2c · x + c2x2

eiωDP µPµe−iωD = e2ωP µPµ ⇒ exact conformal invariance

implies that one-particle spectrum is either continuous(= R+) or consists only of the single point {0}.

Consequently, conformal group cannot be realized asan exact symmetry in nature.

Page 12: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Conformal Invariance and the Standard Model

Fact: Standard Model of elementary particle physicsis conformally invariant at tree level except for explicitmass term m2Φ†Φ in potential ⇒Masses for vector bosons, quarks and leptons →Can ‘softly broken conformal symmetry’ (≡ ‘SBCS’)stabilize the electroweak scale w.r.t. the Planck scale?

Concrete implementation of this idea requires

• Absence of any intermediate mass scales betweenMEW and MPL (‘grand desert scenario’).

• Fulfillment of consistency conditions:

– absence of Landau poles up to MP l

– absence of instabilities of effective potential up to MP l

and solution to remaining problems of particle physics,viz. matter/antimatter asymmetry, Dark Matter.

Page 13: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Conformal Invariance and Quantum Theory

Important Fact: classical conformal invariance is gener-ically broken by quantum effects (unlike SUSY!) ⇒• Impose anomalous Ward identity

Θµµ =

n

β(n)(g)O(n)(x)

[W. Bardeen, FERMILAB-CONF-95-391-T, FERMILAB-CONF-95-377-T]

and try radiative symmetry breaking a la Coleman-Weinberg ⇒mass generation via conformal anomaly?

• Or: admit soft breaking (=explicit mass terms) asis commonly done for MSSM like models, but insiston cancellation of quadratic divergenes

It is well known that implementation of radiative sym-metry breaking in SM encounters difficulties (pertur-bative stability, spurious vacua, quadratic divergences).

Page 14: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Coleman-Weinberg Mechanism (1973)

• Idea: spontaneous symmetry breaking by radiativecorrections =⇒ can small mass scales be explainedvia conformal anomaly and effective potential ?

V (ϕ) =λ

4ϕ4 → Veff(ϕ) =

λ

4ϕ4 +

9λ2ϕ4

64π2

[

ln

(

ϕ2

µ2

)

+ C0

]

• But: radiative breaking spurious for pure ϕ4 theory

as is easily seen in terms of RG improved potential

V RGeff =

1

4λ(L)ϕ4 =

λ

4· ϕ4

1− (9λ/16π2)LL ≡ ln

(

ϕ2

µ2

)

• With more scalar fields finding minima and ascer-taining their stability is much more difficult, as thereis no similarly explicit formula for V RG

eff (ϕ1, ϕ2, ...).

Page 15: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Softly broken conformal symmetry (SBCS)

Assume existence of a UV complete and finite funda-mental theory, such that Λ is a physical cutoff to bekept finite, and impose vanishing of quadratic diver-gences at particular distinguished scale Λ (= MPL?),together with further consistency requirements:

• Bare mass parameters should obey mB(Λ) ≪ MPL .

• There should be neither Landau poles nor instabili-ties for MEW < µ < Λ (manifesting themselves as theunboundedness from below of the effective potentialdepending on the running scalar self-couplings);

• All couplings λR(µ) should remain small (for the per-turbative approach to be applicable and stability ofthe effective potential electroweak minimum).

Page 16: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Bare vs. renormalized couplings

With cutoff Λ and normalization scale µ we have

λB(µ, λR,Λ) = λR +∞∑

L=1

L∑

ℓ=1

aLℓ λL+1R

(

lnΛ2

µ2

)ℓ

,

so that λB = λR for µ = Λ. Thus, keeping the physicalcutoff Λ finite and fixed we can set

fquad(λB) = 0

NB: this condition would not make sense if Λ → ∞where bare couplings are expected to become singular!

In terms of running couplings this condition becomesscale dependent: [cf. Veltman (1982)]

fquad(λR, µ; Λ) ≡ fquad(λB(µ, λR,Λ)) = 0

Page 17: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Quadratic divergences in Standard Model[M. Veltman(1982);Y.Hamada,H.Kawai,K.Oda, PRD87(2013)5; D.R.T.Jones,PRD88(2013)098301]

Only one scalar: fquad(λR(µ)) = 0 for µ ≈ 1024GeV ≫ MPL !

Page 18: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Metastability of electroweak vacuum?[Hamada,Kawai,Oda, PRD87(2013)5; Buttazzo,Degrassi,Giardino,Giudice,Sala,Salvio,Strumia(2013)]

λR(µ) becomes negative for µ > 1010GeV ⇒ instability?

→ might also be relevant to cosmology!

Page 19: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Particle Content: SM vs. CSM

CSM = minimal extension of SM with two new d.o.f.:

• Right-chiral neutrinos νiR → 48 = 3 × 16 fermions

• One extra ‘sterile’ complex scalar φ(x)

Page 20: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

CSM = minimal extension of SM

[K. Meissner,HN, PLB648(2007)312; Eur.Phys.J. C57(2008)493]

• Start from conformally invariant (and therefore renor-malizable) fermionic Lagrangian L = Lkin + L′

L′ :=(

LiΦY Eij E

j + QiǫΦ∗Y Dij D

j + QiǫΦ∗Y Uij U

j +

+LiǫΦ∗Y νijν

jR + φνiTR CY M

ij νjR + h.c.)

− V (Φ, φ)

• Besides usual SU (2) doublet Φ: complex scalar φ(x)

φ(x) = ϕ(x) exp

(

ia(x)√2µ

)

• No fermion mass terms, all couplings dimensionless

• Y Uij , Y

Eij , Y

Mij real and diagonal: Y M

ij = yNiδij

Y Dij , Y

νij complex→ parametrize family mixing (CKM)

• Neutrino masses from usual seesaw mechanism:Y ν ∼ 10−6 and yN ∼ O(1) ⇒ (Y ν)2/yN ∼ 10−12

⇒ no new large scales needed for light neutrinos.

Page 21: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Scalar Sector of CSM

Right-chiral neutrinos and one complex scalar ⇒V (Φ, φ) = m2

1Φ†Φ +m2

2|φ|2 + λ1(Φ†Φ)2 + 2λ3(Φ

†Φ)|φ|2 + λ2|φ|4

Thus, two real scalars H ≡ (Φ†Φ)1/2 and ϕ ≡ |φ| and(3 + 1) Goldstone fields: three phases for electroweaksymmetry breaking (BEH effect) and one extra phase(a(x) ≡ Majoron). Two mass eigenstates at minimum

(

hS

)

=

(

cosβ sin β− sin β cos β

)(

H − 〈H〉ϕ− 〈ϕ〉

)

Scalar masses Mh < MS and | tan β| < 0.3 (from existingexperimental bounds if h = SM Higgs-Boson).

NB: Explicit mass terms remain compatible with con-formal symmetry because of SBCS requirement (cf.soft breaking of supersymmetry).

Page 22: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Quadratic divergences in CSM

Two physical scalars ⇒ two conditions (at one loop)

16π2fquad1 (λ, g, y) = 6λ1 + 2λ3 +

9

4g2w +

3

4g2y − 6y2t

!= 0

16π2fquad2 (λ, g, y) = 4λ2 + 4λ3 −

3∑

i=1

y2Ni

!= 0

• Start from known values of electroweak couplings gy, gw, yt at

µ = MEW and evolve them to µ = MPL.

• Choose λ1, yN and determine λ2 and λ3 from fquadk = 0

• Evolve all couplings back to µ = MEW and check whether all

consistency requirements are satisfied.

• In particular: ensure stability of vacuum by following evolu-

tions λ = λ(µ) for MEW < µ < MPL.

This SBCS condition is what mainly distinguishes CSM

from other extensions of SM with extra scalars →above relations can in principle be tested!

Page 23: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

β-functions at one loopExploit partial cancellations to keep all couplings un-der control up to MPL (but not beyond!):

βgs = − 7g3s (asymptotic freedom)

βyt = yt

{

9

2y2t − 8g2s − 9

4g2w − 17

12g2y

}

(1)

βλ1 = 24λ21 + 4λ2

3 − 3λ1

(

3g2w + g2y − 4y2t)

+

+9

8g4w +

3

4g2wg

2y +

3

8g4y − 6y4t (2)

where β ≡ 16π2β. Thus

• From (1) ⇒ gs must be large for µ ∼ MEW !

• From (2) ⇒ yt must be large for µ ∼ MEW !

• Positive contribution +4λ23 from extra scalar keeps

λ1(µ) > 0 for MEW < µ < MPL ⇒ stability of vacuum!

Remarkably, small correction suffices for this purpose!

Page 24: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

What might be observed

• h decay width is decreased: Γh = cos2 β ΓSM < ΓSM

• S decay width: ΓS = sin2 β ΓSM + · · ·– Main term: narrow resonance (‘shadow Higgs boson’)

– Other terms: decay of heavy scalar into two or three h’s,

and two heavy neutrinos (if kinematically allowed).

• → new scalar boson is main prediction! But maynot be easy to find... e.g. if β is small.

• Decay via two h bosons might produce spectacularsignatures with 5,...,8 leptons coming out of a singlevertex. But: rates vs. background?

• Proposal can be discriminated against other exten-sions of SM that produce similar signatures, butwould come with extra baggage (e.g. charged scalarsas in SUSY or two doublet models).

Page 25: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

CP Violation and Leptogenesis

In usual SM, CKM matrix only source of CP violationvia electroweak interactions → known to be too smallto explain observed matter/antimatter asymmetry:

YB ≡(

nB

)

obs

= 10−10 vs.

(

nB

)

SM

= 10−14

In CSM the Yukawa coupling matrix Y νij provides extra

source of CP breaking. Assume Y Mij = yMδij with M ≡

yM〈ϕ〉 and parametrize [Casas-Ibarra(2001)]

m ≡ 〈H〉Y ν = M 1/2U [diag(m1/21 , m

1/22 , m

1/23 )] RT

with R ∈ SO(3,C) and U ∈ U (3) (9 + 3 + 6 = 18 param-eters) ⇒ seesaw-type mass matrix for light neutrinos

mM−1mT = U∗ [diag(m1, m2,m3)] U

Thus U = neutrino analog of CKM matrix (“PMNSmatrix”), but with three phases. [Pontecorvo;Maki,Nakagawa,Sakata]

Page 26: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Thus R plays no role for measurable low energy pa-rameters (neutrino oscillations,...) but does enter Y ν

ij

which is also responsible for CP violating decays ofheavy neutrinos, and thus for leptogenesis.

Heavy neutrino masses are O(1 TeV) ⇒ must invokeresonant leptogenesis (which requires nearly degener-ate heavy neutrino masses) [Pilaftsis(1997);Pilaftsis,Underwood(2004)]

For heavy neutrino, small mass splittings are inducedby Y ν

ij (breaks SO(3) symmetry of Majorana mass term)

(MN)ij = Mδij +1

2M−1[(m∗mT )ij + c.c.] + · · ·

Thus can play with R ∈ SO(3,C) in order to get YB

of desired order of magnitude without affecting low

energy neutrino physics. [→ A.Lewandowski]

Page 27: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Table 1: Some exemplary values [cf. PRD97(2018)035024]; always Mh = 125.09 GeV

MS[GeV] sin β MN [GeV] 〈ϕ〉[GeV] YB Γh[MeV] ΓS[GeV] Br(S → [SM]) Br(S → hh)

1030 -0.067 1604 17090 7.9 ×10−11 4.19 4.02 0.78 0.2893 -0.076 1238 11331 1.2×10−10 4.186 3.3 0.76 0.2839 -0.082 1181 11056 1.2×10−10 4.182 3.08 0.76 0.2738 -0.093 1052 10082 1.1×10−10 4.174 2.66 0.76 0.22642 -0.11 1303 19467 1.7×10−10 4.16 2.34 0.76 0.22531 -0.13 949 12358 1.5×10−10 4.138 1.92 0.74 0.22393 -0.18 801 12591 1.0×10−10 4.07 1.28 0.72 0.26362 -0.20 815 14534 1.6×10−10 4.04 1.06 0.68 0.3350 -0.21 738 12302 7.4×10−11 4.028 0.96 0.66 0.32320 -0.23 751 14437 1.3×10−10 3.984 0.86 0.66 0.32279 -0.28 683 14334 9.6×10−11 3.896 0.68 0.7 0.28258 -0.31 675 15752 1.3×10−10 3.824 0.54 0.78 0.20

• Measured value Γh = (4.07 ± 0.2)MeV

• MS < MN ⇒ no decay S → Nν possible

• Without suppression factor sin2 β would get ΓS ∼ 1 TeV

• Can arrange for YB ∼ 10−10 → leptogenesis.

→ CSM can be made compatible with current data!

Page 28: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Majoron as DM candidate?

Because φ → e−2iωφ under lepton number symmetry,non-vanishing vev 〈φ〉 6= 0 breaks lepton number sym-metry spontaneously ⇒ Goldstone boson ≡ Majoron.

Because of cancellation of (B−L) anomalies this Gold-stone boson remains massless to all orders in pertur-

bation theory in flat space QFT → two options:

• Gauge U (1)B−L ⇒ new Z ′ vector boson? [cf. Iso,Okada,Orikasa(2009)]

• Don’t gauge → exactly massless scalar particle?

‘Folklore Theorem’: in quantum gravity there cannotexist unbroken continuous global symmetries → Con-jecture: tiny mass generated by quantum gravity

L ∼v4φM 2

PL

φ2 + c.c. ⇒ mGoldstone ∼ 10−3eV

Page 29: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Outlook

• Usual SM probably cannot survive to Planck scale⇒ requires some extension, if only to accommodateright-chiral neutrinos and to recover stability.

• A conformally motivated minimal extension of SMcan in principle satisfy all consistency requirements.

• Proper embedding into a UV complete theory?

• Low energy supersymmetry may after all not berequired for stability of electroweak scale...

• ... but is probably needed for a UV complete theoryof quantum gravity and quantum space-time.

• Nevertheless: because of its minimality CSM maybe difficult to generate from string theory.

Page 30: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Outlook

Conclusion: Nature is probably still

a bit smarter than we think, and may

have a few more tricks up her sleeve!

THANK YOU

Page 31: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Conformal invariance from gravity?

Here not from scale (Weyl) invariant gravity, but:

N = 4 supergravity 1[2]⊕ 4[32]⊕ 6[1]⊕ 4[1

2]⊕ 2[0]

coupled to n vector multiplets n× {1[1]⊕ 4[12]⊕ 6[0]}Gauged N = 4 SUGRA: [Bergshoeff,Koh,Sezgin; de Roo,Wagemans (1985)]

• Scalars φ(x) = exp(LIAT I

A) ∈ SO(6, n)/SO(6)× SO(n)

• YM gauge group GYM ⊂ SO(6, n) with dim GYM = n + 6

[Example inspired by ‘Groningen derivation’ of conformal M2

brane (‘BGL’, ‘ABJM’) theories from gauged D = 3 SUGRAs]

Although this theory is not conformally invariant, theconformally invariant N = 4 SUSY YM theory nev-ertheless emerges as a κ → 0 limit, which ‘flattens’spacetime (with gµν = ηµν + κhµν) and coset space

SO(6, n)/((SO(6)× SO(n)) −→ R6n ∋ φ[ij] a(x)

Page 32: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

However: conformality of limit requires extra restric-tions, in particular compact gauge group:

GYM ⊂ SO(n) ⊂ SO(6, n)

Exemplify this claim for scalar potential: with

Caij = κ2fabcφ[ik]

bφ[jk] c +O(κ3) , Cij = κ3fabcφ[ik]aφb [kl]φ[lj]

c +O(κ4)

potential of gauged theory is (m,n = 1, . . . , 6; κ|z| < 1)

V (φ) =1

κ4

(1− κz)(1− κz∗)

1− κ2zz∗

(

CaijCai

j −4

9C ijCij

)

= Tr [Xm, Xn]2 +O(κ)

Idem for all other terms in Lagrangian! Unfortunately

• N = 4 SYM is quantum mechanically conformal theory

→ no conformal anomaly → no symmetry breaking!

• Thus need non-supersymmetric vacuum with Λ = 0

⇒ must look for a better theory with above features!

Page 33: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

Metamorphosis of CW mechanism?

But: if we embed SM in a UV finite theory of quantum

gravity what is the origin of (conformal) anomalies?

Conjecture: If this (unknown) theory admits a clas-sically conformal flat space limit, CW-like contribu-tions could arise from finite logarithmic (in κ) quan-

tum gravitational corrections ⇒ identify v ∼ MPl!

• CW-like corrections would not be due to UV diver-gences, but rather to the fact that gravity is not

conformal – this would be the only ‘footprint’ thatquantum gravity leaves in low energy physics.

• Observed mass spectrum and couplings in the SMcould have their origin in quantum gravity.

Page 34: bla Conformal Standard Model - Osaka Universityseminar/pdf_2018... · Conformal Standard Model Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam (Albert Einstein Institut) Based

CSM = minimal extension of SM

[K. Meissner,HN, PLB648(2007)312; Eur.Phys.J. C57(2008)493]

• Start from conformally invariant (and therefore renor-malizable) fermionic Lagrangian L = Lkin + L′

L′ :=(

LiΦY Eij E

j + QiǫΦ∗Y Dij D

j + QiǫΦ∗Y Uij U

j +

+LiǫΦ∗Y νijν

jR + φνiTR CY M

ij νjR + h.c.)

− V (Φ, φ)

Recall that SM contains three electroweak SU(2)w doublet fermions:

Qi ≡(

uiαdiα

)

, Li ≡(

νiαeiα

)

and electroweak singlets U iα , D

iα , E

iα (where i, j, ... = 1, 2, 3 label the

three families). In addition, CSM contains three spinors N iα (→

right chiral neutrinos). Use Weyl spinors such that, for instance,

ΨiE =

(

eiαEiα

α

)

, ΨiU =

(

uiαU iα

)

, Ψiν =

(

νiαN iα

)

≡ νiL + νiR , etc.