higher symmetries of the conformal laplacian · higher symmetries of the conformal laplacian j.-p....

73
Δ

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Higher symmetries of the conformal Laplacian

    J.-P. Michel, J. Silhan, R.

    Corfu, May 2013

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Introduction

    On (R2, g0), we consider the Helmholtz equation

    ∆φ = Eφ,

    where

    ∆ = ∂2x + ∂2

    y , E ∈ R.

    Coordinates (u, v) separate this equation⇐⇒ ∃ solutionof the form f (u)g(v)

    Coordinates (u, v) orthogonal⇐⇒ g0(∂u, ∂v ) = 0

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Introduction

    On (R2, g0), we consider the Helmholtz equation

    ∆φ = Eφ,

    where

    ∆ = ∂2x + ∂2

    y , E ∈ R.

    Coordinates (u, v) separate this equation⇐⇒ ∃ solutionof the form f (u)g(v)

    Coordinates (u, v) orthogonal⇐⇒ g0(∂u, ∂v ) = 0

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Introduction

    On (R2, g0), we consider the Helmholtz equation

    ∆φ = Eφ,

    where

    ∆ = ∂2x + ∂2

    y , E ∈ R.

    Coordinates (u, v) separate this equation⇐⇒ ∃ solutionof the form f (u)g(v)

    Coordinates (u, v) orthogonal⇐⇒ g0(∂u, ∂v ) = 0

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    There exist 4 families of orthogonal separating

    coordinates systems :

    1 Cartesian coordinates2 Polar coordinates (r , θ) :{

    x = r cos(θ)y = r sin(θ)

    3 Parabolic coordinates (ξ, η) :{x = ξηy = 1

    2(ξ2 − η2)

    4 Elliptic coordinates (α, β) :{x =

    √d cos(α) cosh(β)

    y =√d sin(α) sinh(β)

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    There exist 4 families of orthogonal separating

    coordinates systems :

    1 Cartesian coordinates

    2 Polar coordinates (r , θ) :{x = r cos(θ)y = r sin(θ)

    3 Parabolic coordinates (ξ, η) :{x = ξηy = 1

    2(ξ2 − η2)

    4 Elliptic coordinates (α, β) :{x =

    √d cos(α) cosh(β)

    y =√d sin(α) sinh(β)

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    There exist 4 families of orthogonal separating

    coordinates systems :

    1 Cartesian coordinates2 Polar coordinates (r , θ) :{

    x = r cos(θ)y = r sin(θ)

    3 Parabolic coordinates (ξ, η) :{x = ξηy = 1

    2(ξ2 − η2)

    4 Elliptic coordinates (α, β) :{x =

    √d cos(α) cosh(β)

    y =√d sin(α) sinh(β)

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    There exist 4 families of orthogonal separating

    coordinates systems :

    1 Cartesian coordinates2 Polar coordinates (r , θ) :{

    x = r cos(θ)y = r sin(θ)

    3 Parabolic coordinates (ξ, η) :{x = ξηy = 1

    2(ξ2 − η2)

    4 Elliptic coordinates (α, β) :{x =

    √d cos(α) cosh(β)

    y =√d sin(α) sinh(β)

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    There exist 4 families of orthogonal separating

    coordinates systems :

    1 Cartesian coordinates2 Polar coordinates (r , θ) :{

    x = r cos(θ)y = r sin(θ)

    3 Parabolic coordinates (ξ, η) :{x = ξηy = 1

    2(ξ2 − η2)

    4 Elliptic coordinates (α, β) :{x =

    √d cos(α) cosh(β)

    y =√d sin(α) sinh(β)

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Figure: Coordinates lines corresponding to the paraboliccoordinates system

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Figure: Coordinates lines corresponding to the elliptic coordinatessystem

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Bijective correspondence

    {Separating coordinates systems}

    ←→

    {Second order symmetries of ∆ : second orderdi�erential operators D such that [∆,D] = 0}

    Coordinates system Symmetry

    (x , y) ∂2x(r , θ) L2θ(ξ, η) 1

    2(∂xLθ + Lθ∂x)

    (α, β) L2θ + d∂2x

    with Lθ = x∂y − y∂x

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Bijective correspondence

    {Separating coordinates systems}

    ←→

    {Second order symmetries of ∆ : second orderdi�erential operators D such that [∆,D] = 0}

    Coordinates system Symmetry

    (x , y) ∂2x(r , θ) L2θ(ξ, η) 1

    2(∂xLθ + Lθ∂x)

    (α, β) L2θ + d∂2x

    with Lθ = x∂y − y∂x

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Link between the symmetry and the coordinates

    system : if the second-order part of D reads as

    (∂x ∂y

    )A

    (∂x∂y

    ),

    the eigenvectors of A are tangent to the coordinates

    lines.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    On a n-dimensional pseudo-Riemannian manifold (M, g),

    ∆Y := ∇igij∇j −n − 2

    4(n − 1)R,

    where R is the scalar curvature of g.

    λ0 =n−22n

    , µ0 =n+22n

    If ∆Y acts between λ0- and µ0-densities, ∆Yconformally invariant : ∆Y (g̃) = ∆Y (g) if g̃ = e

    2Υg.

    Symmetry of ∆Y : D ∈ Dλ0,λ0(M) such that[∆Y ,D] = 0

    Conformal symmetry of ∆Y : D1 ∈ Dλ0,λ0(M) such that∃D2 ∈ Dµ0,µ0(M) such that ∆Y ◦ D1 = D2 ◦∆Y

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    On a n-dimensional pseudo-Riemannian manifold (M, g),

    ∆Y := ∇igij∇j −n − 2

    4(n − 1)R,

    where R is the scalar curvature of g.

    λ0 =n−22n

    , µ0 =n+22n

    If ∆Y acts between λ0- and µ0-densities, ∆Yconformally invariant : ∆Y (g̃) = ∆Y (g) if g̃ = e

    2Υg.

    Symmetry of ∆Y : D ∈ Dλ0,λ0(M) such that[∆Y ,D] = 0

    Conformal symmetry of ∆Y : D1 ∈ Dλ0,λ0(M) such that∃D2 ∈ Dµ0,µ0(M) such that ∆Y ◦ D1 = D2 ◦∆Y

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    On a n-dimensional pseudo-Riemannian manifold (M, g),

    ∆Y := ∇igij∇j −n − 2

    4(n − 1)R,

    where R is the scalar curvature of g.

    λ0 =n−22n

    , µ0 =n+22n

    If ∆Y acts between λ0- and µ0-densities, ∆Yconformally invariant : ∆Y (g̃) = ∆Y (g) if g̃ = e

    2Υg.

    Symmetry of ∆Y : D ∈ Dλ0,λ0(M) such that[∆Y ,D] = 0

    Conformal symmetry of ∆Y : D1 ∈ Dλ0,λ0(M) such that∃D2 ∈ Dµ0,µ0(M) such that ∆Y ◦ D1 = D2 ◦∆Y

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    On a n-dimensional pseudo-Riemannian manifold (M, g),

    ∆Y := ∇igij∇j −n − 2

    4(n − 1)R,

    where R is the scalar curvature of g.

    λ0 =n−22n

    , µ0 =n+22n

    If ∆Y acts between λ0- and µ0-densities, ∆Yconformally invariant : ∆Y (g̃) = ∆Y (g) if g̃ = e

    2Υg.

    Symmetry of ∆Y : D ∈ Dλ0,λ0(M) such that[∆Y ,D] = 0

    Conformal symmetry of ∆Y : D1 ∈ Dλ0,λ0(M) such that∃D2 ∈ Dµ0,µ0(M) such that ∆Y ◦ D1 = D2 ◦∆Y

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    (M, g) conformally �at : in a coordinates system, g isconformally equivalent to the canonical metric in Rn

    Conformal symmetries of ∆Y known (M. Eastwood,J.-P. Michel)

    (M, g) Einstein : Ric = f gExistence of a second order symmetry (B. Carter)

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    (M, g) conformally �at : in a coordinates system, g isconformally equivalent to the canonical metric in Rn

    Conformal symmetries of ∆Y known (M. Eastwood,J.-P. Michel)

    (M, g) Einstein : Ric = f gExistence of a second order symmetry (B. Carter)

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    1 Second order conformal symmetries of ∆YConformal Killing tensors

    Natural and conformally invariant quantization

    Structure of the conformal symmetries

    2 Examples

    DiPirro system

    Taub-NUT metric

    3 Application to the R-separation

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If D ∈ Dkλ0,λ0(M) reads∑|α|6k

    Dα∂α1x1 . . . ∂αnxn,

    σ(D) =∑|α|=k

    Dαpα11. . . pαnn ,

    where (x i , pi ) are the canonical coordinates on T∗M

    σ(D) can be viewed as a contravariant symmetric tensorof degree k :

    σ(D) =∑|α|=k

    Dα∂α11∨ . . . ∨ ∂αnn

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If D ∈ Dkλ0,λ0(M) reads∑|α|6k

    Dα∂α1x1 . . . ∂αnxn,

    σ(D) =∑|α|=k

    Dαpα11. . . pαnn ,

    where (x i , pi ) are the canonical coordinates on T∗M

    σ(D) can be viewed as a contravariant symmetric tensorof degree k :

    σ(D) =∑|α|=k

    Dα∂α11∨ . . . ∨ ∂αnn

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If D ∈ Dkλ0,λ0(M) reads∑|α|6k

    Dα∂α1x1 . . . ∂αnxn,

    σ(D) =∑|α|=k

    Dαpα11. . . pαnn ,

    where (x i , pi ) are the canonical coordinates on T∗M

    σ(D) can be viewed as a contravariant symmetric tensorof degree k :

    σ(D) =∑|α|=k

    Dα∂α11∨ . . . ∨ ∂αnn

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If D is a conformal symmetry of ∆Y , there exists anoperator D ′ such that ∆Y ◦ D = D ′ ◦∆Y

    σ(∆Y ) = H = gijpipj , then {H, σ(D)} ∈ (H), i.e. σ(D)

    is a conformal Killing tensor

    Conformal Killing tensor K : trace-free part of

    ∇(i0Ki1···ik) vanishesIf D is a symmetry of ∆Y , [∆Y ,D] = 0, then{H, σ(D)} = 0, i.e. σ(D) is a Killing tensorKilling tensor K : ∇(i0Ki1···ik) = 0The existence of a (conformal) Killing tensor is necessary

    to have the existence of a (conformal) symmetry of ∆Y

    Is this condition su�cient ?

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If D is a conformal symmetry of ∆Y , there exists anoperator D ′ such that ∆Y ◦ D = D ′ ◦∆Yσ(∆Y ) = H = g

    ijpipj , then {H, σ(D)} ∈ (H), i.e. σ(D)is a conformal Killing tensor

    Conformal Killing tensor K : trace-free part of

    ∇(i0Ki1···ik) vanishesIf D is a symmetry of ∆Y , [∆Y ,D] = 0, then{H, σ(D)} = 0, i.e. σ(D) is a Killing tensorKilling tensor K : ∇(i0Ki1···ik) = 0The existence of a (conformal) Killing tensor is necessary

    to have the existence of a (conformal) symmetry of ∆Y

    Is this condition su�cient ?

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If D is a conformal symmetry of ∆Y , there exists anoperator D ′ such that ∆Y ◦ D = D ′ ◦∆Yσ(∆Y ) = H = g

    ijpipj , then {H, σ(D)} ∈ (H), i.e. σ(D)is a conformal Killing tensor

    Conformal Killing tensor K : trace-free part of

    ∇(i0Ki1···ik) vanishes

    If D is a symmetry of ∆Y , [∆Y ,D] = 0, then{H, σ(D)} = 0, i.e. σ(D) is a Killing tensorKilling tensor K : ∇(i0Ki1···ik) = 0The existence of a (conformal) Killing tensor is necessary

    to have the existence of a (conformal) symmetry of ∆Y

    Is this condition su�cient ?

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If D is a conformal symmetry of ∆Y , there exists anoperator D ′ such that ∆Y ◦ D = D ′ ◦∆Yσ(∆Y ) = H = g

    ijpipj , then {H, σ(D)} ∈ (H), i.e. σ(D)is a conformal Killing tensor

    Conformal Killing tensor K : trace-free part of

    ∇(i0Ki1···ik) vanishesIf D is a symmetry of ∆Y , [∆Y ,D] = 0, then{H, σ(D)} = 0, i.e. σ(D) is a Killing tensor

    Killing tensor K : ∇(i0Ki1···ik) = 0The existence of a (conformal) Killing tensor is necessary

    to have the existence of a (conformal) symmetry of ∆Y

    Is this condition su�cient ?

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If D is a conformal symmetry of ∆Y , there exists anoperator D ′ such that ∆Y ◦ D = D ′ ◦∆Yσ(∆Y ) = H = g

    ijpipj , then {H, σ(D)} ∈ (H), i.e. σ(D)is a conformal Killing tensor

    Conformal Killing tensor K : trace-free part of

    ∇(i0Ki1···ik) vanishesIf D is a symmetry of ∆Y , [∆Y ,D] = 0, then{H, σ(D)} = 0, i.e. σ(D) is a Killing tensorKilling tensor K : ∇(i0Ki1···ik) = 0

    The existence of a (conformal) Killing tensor is necessary

    to have the existence of a (conformal) symmetry of ∆Y

    Is this condition su�cient ?

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If D is a conformal symmetry of ∆Y , there exists anoperator D ′ such that ∆Y ◦ D = D ′ ◦∆Yσ(∆Y ) = H = g

    ijpipj , then {H, σ(D)} ∈ (H), i.e. σ(D)is a conformal Killing tensor

    Conformal Killing tensor K : trace-free part of

    ∇(i0Ki1···ik) vanishesIf D is a symmetry of ∆Y , [∆Y ,D] = 0, then{H, σ(D)} = 0, i.e. σ(D) is a Killing tensorKilling tensor K : ∇(i0Ki1···ik) = 0The existence of a (conformal) Killing tensor is necessary

    to have the existence of a (conformal) symmetry of ∆Y

    Is this condition su�cient ?

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If D is a conformal symmetry of ∆Y , there exists anoperator D ′ such that ∆Y ◦ D = D ′ ◦∆Yσ(∆Y ) = H = g

    ijpipj , then {H, σ(D)} ∈ (H), i.e. σ(D)is a conformal Killing tensor

    Conformal Killing tensor K : trace-free part of

    ∇(i0Ki1···ik) vanishesIf D is a symmetry of ∆Y , [∆Y ,D] = 0, then{H, σ(D)} = 0, i.e. σ(D) is a Killing tensorKilling tensor K : ∇(i0Ki1···ik) = 0The existence of a (conformal) Killing tensor is necessary

    to have the existence of a (conformal) symmetry of ∆Y

    Is this condition su�cient ?

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    De�nition

    A quantization on M is a linear bijection QMλ,λ from the spaceof symbols Pol(T ∗M) to the space of di�erential operatorsDλ,λ(M) such that

    σ(QMλ,λ(S)) = S , ∀S ∈ Pol(T ∗M)

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    De�nition

    A natural and conformally invariant quantization is the data

    for every manifold M of a quantization QMλ,λ depending on apseudo-Riemannian metric de�ned on M such that

    If Φ is a local di�eomorphism from M to a manifold N,then one has

    QMλ,λ(Φ∗g)(Φ∗S) = Φ∗(QNλ,λ(g)(S)),

    for all pseudo-Riemannian metric g on N and all

    S ∈ Pol(T ∗N)QMλ,λ(g) = QMλ,λ(g̃) whenever g and g̃ are conformallyequivalent, i.e. whenever there exists a function Υ suchthat g̃ = e2Υg.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Proof of the existence of QMλ,λ :1 Work by A. Cap, J. Silhan2 Work by P. Mathonet, R.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If K is a conformal Killing tensor of degree 2, there

    exists a conformal symmetry of ∆Y with K as principalsymbol i� Obs(K )[ is an exact one-form, where

    Obs =2(n − 2)3(n + 1)

    pi∂pj∂pl

    (C k jl

    i∇k − 3Ajl i)

    C : Weyl tensor :

    Cabcd = Rabcd −2

    n − 2(ga[cRicd ]b − gb[cRicd ]a)

    +2

    (n − 1)(n − 2)Rga[cgd ]b

    A : Cotton-York tensor :

    Aijk = ∇kRicij−∇jRicik +1

    2(n − 1)(∇jRgik −∇kRgij)

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If K is a conformal Killing tensor of degree 2, there

    exists a conformal symmetry of ∆Y with K as principalsymbol i� Obs(K )[ is an exact one-form, where

    Obs =2(n − 2)3(n + 1)

    pi∂pj∂pl

    (C k jl

    i∇k − 3Ajl i)

    C : Weyl tensor :

    Cabcd = Rabcd −2

    n − 2(ga[cRicd ]b − gb[cRicd ]a)

    +2

    (n − 1)(n − 2)Rga[cgd ]b

    A : Cotton-York tensor :

    Aijk = ∇kRicij−∇jRicik +1

    2(n − 1)(∇jRgik −∇kRgij)

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If K is a conformal Killing tensor of degree 2, there

    exists a conformal symmetry of ∆Y with K as principalsymbol i� Obs(K )[ is an exact one-form, where

    Obs =2(n − 2)3(n + 1)

    pi∂pj∂pl

    (C k jl

    i∇k − 3Ajl i)

    C : Weyl tensor :

    Cabcd = Rabcd −2

    n − 2(ga[cRicd ]b − gb[cRicd ]a)

    +2

    (n − 1)(n − 2)Rga[cgd ]b

    A : Cotton-York tensor :

    Aijk = ∇kRicij−∇jRicik +1

    2(n − 1)(∇jRgik −∇kRgij)

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If Obs(K )[ = 2df , the conformal symmetries of ∆Ywhose the principal symbol is given by K are of the form

    Qλ0,λ0(K )− f + Lλ0X + c,

    where X is a conformal Killing vector �eld and where

    c ∈ R

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If K is a Killing tensor of degree 2, there exists a

    symmetry of ∆Y with K as principal symbol i� Obs(K )[

    is an exact one-form

    If Obs(K )[ = 2df , the symmetries of ∆Y whose theprincipal symbol is given by K are of the form

    Qλ0,λ0(K )− f + Lλ0X + c,

    where X is a Killing vector �eld and where c ∈ R

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If K is a Killing tensor of degree 2, there exists a

    symmetry of ∆Y with K as principal symbol i� Obs(K )[

    is an exact one-form

    If Obs(K )[ = 2df , the symmetries of ∆Y whose theprincipal symbol is given by K are of the form

    Qλ0,λ0(K )− f + Lλ0X + c,

    where X is a Killing vector �eld and where c ∈ R

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Remarks :

    1 If (M, g) is conformally �at, no condition on the(conformal) Killing tensor K

    2 If Ric = 1nRg and if K is a Killing tensor of degree 2,

    then

    Obs(K )[ = d

    (2− n

    2(n + 1)(∇i∇jK ij) +

    2− n2n(n − 1)

    RgijKij

    )and ∇iK ij∇j is a symmetry of ∆Y

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Remarks :

    1 If (M, g) is conformally �at, no condition on the(conformal) Killing tensor K

    2 If Ric = 1nRg and if K is a Killing tensor of degree 2,

    then

    Obs(K )[ = d

    (2− n

    2(n + 1)(∇i∇jK ij) +

    2− n2n(n − 1)

    RgijKij

    )and ∇iK ij∇j is a symmetry of ∆Y

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    On R3, pairs of (local) diagonal metrics and (local)Killing tensors are classi�ed :

    Hamiltonian H = gijpipj :

    1

    2(γ(x1, x2) + c(x3))

    (a(x1, x2)p

    2

    1 + b(x1, x2)p2

    2 + p2

    3

    ),

    Killing tensor K :

    c(x3)a(x1, x2)p2

    1+ c(x3)b(x1, x2)p

    2

    2− γ(x1, x2)p23

    γ(x1, x2) + c(x3),

    a, b, γ ∈ C∞(R2), c ∈ C∞(R).

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    On R3, pairs of (local) diagonal metrics and (local)Killing tensors are classi�ed :

    Hamiltonian H = gijpipj :

    1

    2(γ(x1, x2) + c(x3))

    (a(x1, x2)p

    2

    1 + b(x1, x2)p2

    2 + p2

    3

    ),

    Killing tensor K :

    c(x3)a(x1, x2)p2

    1+ c(x3)b(x1, x2)p

    2

    2− γ(x1, x2)p23

    γ(x1, x2) + c(x3),

    a, b, γ ∈ C∞(R2), c ∈ C∞(R).

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    On R3, pairs of (local) diagonal metrics and (local)Killing tensors are classi�ed :

    Hamiltonian H = gijpipj :

    1

    2(γ(x1, x2) + c(x3))

    (a(x1, x2)p

    2

    1 + b(x1, x2)p2

    2 + p2

    3

    ),

    Killing tensor K :

    c(x3)a(x1, x2)p2

    1+ c(x3)b(x1, x2)p

    2

    2− γ(x1, x2)p23

    γ(x1, x2) + c(x3),

    a, b, γ ∈ C∞(R2), c ∈ C∞(R).

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If g̃ = 12(γ(x1,x2)+c(x3))

    g, then

    Obs(K )[ = d(−18

    (3Ricij − Rg̃ij)K ij)

    Symmetry of ∆Y :

    ∇iK ij∇j −1

    16(∇i∇jK ij)−

    1

    8RicijK

    ij

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    If g̃ = 12(γ(x1,x2)+c(x3))

    g, then

    Obs(K )[ = d(−18

    (3Ricij − Rg̃ij)K ij)

    Symmetry of ∆Y :

    ∇iK ij∇j −1

    16(∇i∇jK ij)−

    1

    8RicijK

    ij

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Four-dimensional �ber bundle M over S2 with

    coordinates (ψ, r , θ, φ)

    Taub-NUT metric g :(1 +

    2m

    r

    )(dr2 + r2dθ2 + r2 sin2 θdφ2

    )+

    4m2

    1 + 2mr

    (dψ + cos θdφ)2

    g hyperkähler : there exist three complex structures Jiwhich are covariantly constant and which satisfy the

    quaternion relations

    J21 = J2

    2 = J2

    3 = J1J2J3 = −Id.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Four-dimensional �ber bundle M over S2 with

    coordinates (ψ, r , θ, φ)

    Taub-NUT metric g :(1 +

    2m

    r

    )(dr2 + r2dθ2 + r2 sin2 θdφ2

    )+

    4m2

    1 + 2mr

    (dψ + cos θdφ)2

    g hyperkähler : there exist three complex structures Jiwhich are covariantly constant and which satisfy the

    quaternion relations

    J21 = J2

    2 = J2

    3 = J1J2J3 = −Id.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    The skewsymmetric tensor Y of degree 2 is Killing-Yano

    i� ∇(λYµ)ν = 0

    Killing-Yano tensor Y :

    2m2 (dψ + cos θdφ)∧dr + r(r +m)(r +2m) sin θdθ∧dφ

    ∗Y conformal Killing-Yano tensor :

    ∇(λ ∗ Yµ)ν =2

    3(gλµ∇κ(∗Y κν ) +∇κ(∗Y κ(λ)gµ)ν)

    Ji Killing-Yano tensors, hence

    Ki = pµpν(∗Y (µλ J

    ν)λi

    )conformal Killing tensors

    Obs(Ki )[ not exact, then there are no conformal

    symmetries whose principal symbols are the Ki

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    The skewsymmetric tensor Y of degree 2 is Killing-Yano

    i� ∇(λYµ)ν = 0Killing-Yano tensor Y :

    2m2 (dψ + cos θdφ)∧dr + r(r +m)(r +2m) sin θdθ∧dφ

    ∗Y conformal Killing-Yano tensor :

    ∇(λ ∗ Yµ)ν =2

    3(gλµ∇κ(∗Y κν ) +∇κ(∗Y κ(λ)gµ)ν)

    Ji Killing-Yano tensors, hence

    Ki = pµpν(∗Y (µλ J

    ν)λi

    )conformal Killing tensors

    Obs(Ki )[ not exact, then there are no conformal

    symmetries whose principal symbols are the Ki

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    The skewsymmetric tensor Y of degree 2 is Killing-Yano

    i� ∇(λYµ)ν = 0Killing-Yano tensor Y :

    2m2 (dψ + cos θdφ)∧dr + r(r +m)(r +2m) sin θdθ∧dφ

    ∗Y conformal Killing-Yano tensor :

    ∇(λ ∗ Yµ)ν =2

    3(gλµ∇κ(∗Y κν ) +∇κ(∗Y κ(λ)gµ)ν)

    Ji Killing-Yano tensors, hence

    Ki = pµpν(∗Y (µλ J

    ν)λi

    )conformal Killing tensors

    Obs(Ki )[ not exact, then there are no conformal

    symmetries whose principal symbols are the Ki

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    The skewsymmetric tensor Y of degree 2 is Killing-Yano

    i� ∇(λYµ)ν = 0Killing-Yano tensor Y :

    2m2 (dψ + cos θdφ)∧dr + r(r +m)(r +2m) sin θdθ∧dφ

    ∗Y conformal Killing-Yano tensor :

    ∇(λ ∗ Yµ)ν =2

    3(gλµ∇κ(∗Y κν ) +∇κ(∗Y κ(λ)gµ)ν)

    Ji Killing-Yano tensors, hence

    Ki = pµpν(∗Y (µλ J

    ν)λi

    )conformal Killing tensors

    Obs(Ki )[ not exact, then there are no conformal

    symmetries whose principal symbols are the Ki

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    The skewsymmetric tensor Y of degree 2 is Killing-Yano

    i� ∇(λYµ)ν = 0Killing-Yano tensor Y :

    2m2 (dψ + cos θdφ)∧dr + r(r +m)(r +2m) sin θdθ∧dφ

    ∗Y conformal Killing-Yano tensor :

    ∇(λ ∗ Yµ)ν =2

    3(gλµ∇κ(∗Y κν ) +∇κ(∗Y κ(λ)gµ)ν)

    Ji Killing-Yano tensors, hence

    Ki = pµpν(∗Y (µλ J

    ν)λi

    )conformal Killing tensors

    Obs(Ki )[ not exact, then there are no conformal

    symmetries whose principal symbols are the Ki

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Laplace equation : (∆Y + V )ψ = 0, V ∈ C∞(M) is a�xed potential

    Helmholtz equation : (∆Y + V )ψ = Eψ, V ∈ C∞(M)is a �xed potential and E ∈ R a free parameterSolving Helmholtz equation : �nding a solution for all E

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Laplace equation : (∆Y + V )ψ = 0, V ∈ C∞(M) is a�xed potential

    Helmholtz equation : (∆Y + V )ψ = Eψ, V ∈ C∞(M)is a �xed potential and E ∈ R a free parameter

    Solving Helmholtz equation : �nding a solution for all E

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Laplace equation : (∆Y + V )ψ = 0, V ∈ C∞(M) is a�xed potential

    Helmholtz equation : (∆Y + V )ψ = Eψ, V ∈ C∞(M)is a �xed potential and E ∈ R a free parameterSolving Helmholtz equation : �nding a solution for all E

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Laplace equation R-separable in an orthogonal

    coordinates system (x i ) (gij = 0 if i 6= j)

    ⇐⇒

    ∃ n + 1 functions R, hi ∈ C∞(M) and n di�erentialoperators Li := ∂

    2

    i + li (xi )∂i + mi (x

    i ) such that

    R−1(∆Y + V )R =n∑

    i=1

    hiLi .

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Helmholtz equation R-separable in an orthogonal

    coordinates system (x i )

    ⇐⇒

    ∀ E ∈ R, ∃ n + 1 functions R, hi ∈ C∞(M) and ndi�erential operators Li := ∂

    2

    i + li (xi )∂i + mi (x

    i ) suchthat

    R−1(∆Y + V )R − E =n∑

    i=1

    hiLi .

    R∏n

    i=1 φi (xi ) solution of the Laplace or Helmholtz

    equation

    ⇐⇒

    Liφi = 0 ∀i

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Helmholtz equation R-separable in an orthogonal

    coordinates system (x i )

    ⇐⇒

    ∀ E ∈ R, ∃ n + 1 functions R, hi ∈ C∞(M) and ndi�erential operators Li := ∂

    2

    i + li (xi )∂i + mi (x

    i ) suchthat

    R−1(∆Y + V )R − E =n∑

    i=1

    hiLi .

    R∏n

    i=1 φi (xi ) solution of the Laplace or Helmholtz

    equation

    ⇐⇒

    Liφi = 0 ∀i

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Laplace equation R-separates in an orthogonalcoordinate system if and only if :

    (a) ∃ a family of n− 1 conformal Killing tensors (Ki ), wherei = 2, . . . , n, such that, together with K1 = g

    ijpipj ,

    they Poisson commute : {Ki ,Kj} = 0 for all i , j ,the set {K1, . . . ,Kn} is linearly independent overC∞(M),as endomorphisms of TM, K1, . . . ,Kn admit a basis ofcommon eigenvectors.

    (b) ∃ second order conformal symmetries Di , i.e.[∆Y + V ,Di ] ∈ (∆Y + V ), with principal symbolsσ2(Di ) = Ki , for all i = 2, . . . , n.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Laplace equation R-separates in an orthogonalcoordinate system if and only if :(a) ∃ a family of n− 1 conformal Killing tensors (Ki ), where

    i = 2, . . . , n, such that, together with K1 = gijpipj ,

    they Poisson commute : {Ki ,Kj} = 0 for all i , j ,

    the set {K1, . . . ,Kn} is linearly independent overC∞(M),as endomorphisms of TM, K1, . . . ,Kn admit a basis ofcommon eigenvectors.

    (b) ∃ second order conformal symmetries Di , i.e.[∆Y + V ,Di ] ∈ (∆Y + V ), with principal symbolsσ2(Di ) = Ki , for all i = 2, . . . , n.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Laplace equation R-separates in an orthogonalcoordinate system if and only if :(a) ∃ a family of n− 1 conformal Killing tensors (Ki ), where

    i = 2, . . . , n, such that, together with K1 = gijpipj ,

    they Poisson commute : {Ki ,Kj} = 0 for all i , j ,the set {K1, . . . ,Kn} is linearly independent overC∞(M),

    as endomorphisms of TM, K1, . . . ,Kn admit a basis ofcommon eigenvectors.

    (b) ∃ second order conformal symmetries Di , i.e.[∆Y + V ,Di ] ∈ (∆Y + V ), with principal symbolsσ2(Di ) = Ki , for all i = 2, . . . , n.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Laplace equation R-separates in an orthogonalcoordinate system if and only if :(a) ∃ a family of n− 1 conformal Killing tensors (Ki ), where

    i = 2, . . . , n, such that, together with K1 = gijpipj ,

    they Poisson commute : {Ki ,Kj} = 0 for all i , j ,the set {K1, . . . ,Kn} is linearly independent overC∞(M),as endomorphisms of TM, K1, . . . ,Kn admit a basis ofcommon eigenvectors.

    (b) ∃ second order conformal symmetries Di , i.e.[∆Y + V ,Di ] ∈ (∆Y + V ), with principal symbolsσ2(Di ) = Ki , for all i = 2, . . . , n.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Laplace equation R-separates in an orthogonalcoordinate system if and only if :(a) ∃ a family of n− 1 conformal Killing tensors (Ki ), where

    i = 2, . . . , n, such that, together with K1 = gijpipj ,

    they Poisson commute : {Ki ,Kj} = 0 for all i , j ,the set {K1, . . . ,Kn} is linearly independent overC∞(M),as endomorphisms of TM, K1, . . . ,Kn admit a basis ofcommon eigenvectors.

    (b) ∃ second order conformal symmetries Di , i.e.[∆Y + V ,Di ] ∈ (∆Y + V ), with principal symbolsσ2(Di ) = Ki , for all i = 2, . . . , n.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Helmholtz equation R-separates in an orthogonalcoordinate system if and only if :

    (a) ∃ a family of n − 1 Killing tensors (Ki ) wherei = 2, . . . , n, such that, together with K1 = g

    ijpipj ,

    they Poisson commute : {Ki ,Kj} = 0 for all i , j ,the set {K1, . . . ,Kn} is linearly independent overC∞(M),as endomorphisms of TM, K1, . . . ,Kn admit a basis ofcommon eigenvectors.

    (b) ∃ second order symmetries Di , i.e. [∆Y + V ,Di ] = 0,with principal symbols σ2(Di ) = Ki , for all i = 2, . . . , n.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Helmholtz equation R-separates in an orthogonalcoordinate system if and only if :(a) ∃ a family of n − 1 Killing tensors (Ki ) where

    i = 2, . . . , n, such that, together with K1 = gijpipj ,

    they Poisson commute : {Ki ,Kj} = 0 for all i , j ,

    the set {K1, . . . ,Kn} is linearly independent overC∞(M),as endomorphisms of TM, K1, . . . ,Kn admit a basis ofcommon eigenvectors.

    (b) ∃ second order symmetries Di , i.e. [∆Y + V ,Di ] = 0,with principal symbols σ2(Di ) = Ki , for all i = 2, . . . , n.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Helmholtz equation R-separates in an orthogonalcoordinate system if and only if :(a) ∃ a family of n − 1 Killing tensors (Ki ) where

    i = 2, . . . , n, such that, together with K1 = gijpipj ,

    they Poisson commute : {Ki ,Kj} = 0 for all i , j ,the set {K1, . . . ,Kn} is linearly independent overC∞(M),

    as endomorphisms of TM, K1, . . . ,Kn admit a basis ofcommon eigenvectors.

    (b) ∃ second order symmetries Di , i.e. [∆Y + V ,Di ] = 0,with principal symbols σ2(Di ) = Ki , for all i = 2, . . . , n.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Helmholtz equation R-separates in an orthogonalcoordinate system if and only if :(a) ∃ a family of n − 1 Killing tensors (Ki ) where

    i = 2, . . . , n, such that, together with K1 = gijpipj ,

    they Poisson commute : {Ki ,Kj} = 0 for all i , j ,the set {K1, . . . ,Kn} is linearly independent overC∞(M),as endomorphisms of TM, K1, . . . ,Kn admit a basis ofcommon eigenvectors.

    (b) ∃ second order symmetries Di , i.e. [∆Y + V ,Di ] = 0,with principal symbols σ2(Di ) = Ki , for all i = 2, . . . , n.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Helmholtz equation R-separates in an orthogonalcoordinate system if and only if :(a) ∃ a family of n − 1 Killing tensors (Ki ) where

    i = 2, . . . , n, such that, together with K1 = gijpipj ,

    they Poisson commute : {Ki ,Kj} = 0 for all i , j ,the set {K1, . . . ,Kn} is linearly independent overC∞(M),as endomorphisms of TM, K1, . . . ,Kn admit a basis ofcommon eigenvectors.

    (b) ∃ second order symmetries Di , i.e. [∆Y + V ,Di ] = 0,with principal symbols σ2(Di ) = Ki , for all i = 2, . . . , n.

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Link between the (conformal) symmetries and the

    R-separating coordinate systems :

    Eigenvectors of the Ki ←→ integrable distributionsLeaves of the corresponding foliations←→Coordinateslines of the R-separating coordinate systems

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Link between the (conformal) symmetries and the

    R-separating coordinate systems :

    Eigenvectors of the Ki ←→ integrable distributions

    Leaves of the corresponding foliations←→Coordinateslines of the R-separating coordinate systems

  • Highersymmetries ofthe conformalLaplacian

    J.-P. Michel, J.Silhan, R.

    Second orderconformalsymmetries of∆YConformal Killingtensors

    Natural andconformallyinvariantquantization

    Structure of theconformalsymmetries

    Examples

    DiPirro system

    Taub-NUT metric

    Application tothe R-separation

    Link between the (conformal) symmetries and the

    R-separating coordinate systems :

    Eigenvectors of the Ki ←→ integrable distributionsLeaves of the corresponding foliations←→Coordinateslines of the R-separating coordinate systems

    Second order conformal symmetries of YConformal Killing tensorsNatural and conformally invariant quantizationStructure of the conformal symmetries

    ExamplesDiPirro systemTaub-NUT metric

    Application to the R-separation