biotechnology

14
BIOTECHNOLOGY The wide concept of "biotech" or "biotechnology" encompasses a wide range of procedures for modifying living organisms according to human purposes, going back to domestication of animals, cultivation of plants, and "improvements" to these through breeding programs that employ artificial selection and hybridization. Modern usage also includes genetic engineering as well as cell and tissue culture technologies. The American Chemical Society defines biotechnology as the application of biological organisms, systems, or processes by various industries to learning about the science of life and the improvement of the value of materials and organisms such as pharmaceuticals, crops, and livestock. As per European Federation of Biotechnology, Biotechnology is the integration of natural science and organisms, cells, parts thereof, and molecular analogues for products and services. [4] Biotechnology also writes on the pure biological sciences (animal cell culture, biochemistry, cell biology, embryology, genetics, microbiology, and molecular biology).

Upload: aswathy-vp

Post on 09-Apr-2016

6 views

Category:

Documents


2 download

DESCRIPTION

a word document about biotechnology

TRANSCRIPT

Page 1: biotechnology

BIOTECHNOLOGYThe wide concept of "biotech" or "biotechnology" encompasses a wide range of procedures for modifying living organisms according to human purposes, going back to domestication of animals, cultivation of plants, and "improvements" to these through breeding programs that employ artificial selection and hybridization. Modern usage also includes genetic engineering as well as cell and tissue culture technologies. The American Chemical Society defines biotechnology as the application of biological organisms, systems, or processes by various industries to learning about the science of life and the improvement of the value of materials and organisms such as pharmaceuticals, crops, and livestock. As per European Federation of Biotechnology, Biotechnology is the integration of natural science and organisms, cells, parts thereof, and molecular analogues for products and services.[4] Biotechnology also writes on the pure biological sciences (animal cell culture, biochemistry, cell biology, embryology, genetics, microbiology, and molecular biology).

Biotechnology is the third wave in biological science and represents such an interface of basic and applied sciences, where gradual and subtle transformation of science into technology can be witnessed. Biotechnology is defined as the application of scientific and engineering principals to the processing of material by biological agents to provide goods and services. Biotechnology comprises a number of technologies based upon increasing understanding of biology at the cellular and molecular level.

History

Page 2: biotechnology

The Bible already provides numerous examples of biotechnology. Namely, it deals with the conversion of grapes to wine, of dough to bread and of milk to cheese. The oldest biotechnological processes are found in microbial fermentations, as born out by the Babylonian tablet dated circa 6000 B.C., explaining the preparation of beer. The Sumerians were able to brew as many as twenty types of beer in the third millennium B.C. In about 4000 B.C. leavened bread was produced with the aid of yeast. During Vedic period (5000-7000 B.C.) Aryans had been performing daily Agnihotra or Yajna. In Ayurved, production of ‘Asava’ and ‘Arista’ using different substrates and flowers of mahua (Madhuca indica) or dhataki (Wodfordia fructicosa) has been well characterized till today since Vedic period. One of the materials used in Yajna is animal fat (i.e. ghee) which is fermented product of milk. The term ‘biotechnology’ was described in a Bulletin of the Bureau of Biotechnology published in July, 1920 from the office of the same name in Leeds in Yorkshire. The articles in this bulletin described the varied roles of microbes in centuries humans have used microorganisms to produce foods and drinks without understanding the microbial processes underlying their production. In recent years the understanding of the biosynthetic pathways and regulatory control mechanisms used by microorganisms for production of several metabolites has been increased by developing the knowledge of biochemistry of industrially important organisms. Notable biotechnologies for food processing include fermentation technology, enzyme technology and monoclonal antibody technology. Beneficial microbes participate in fermentation processes, producing many useful metabolites such as enzymes, organic acids, solvents, vitamins, amino acids, antibiotics, growth regulators, flavors and nutritious foods. Some leading food bioprocessing technologies are dairy processing, alcohol and beverage processing. Production of alcoholic beverages include: wine, beer, whiskey, rum, shake, etc. utilizing microorganisms like Clostridium acetobutylicum, Lecuonostoc mesenteroides, Aspergillus oryzae, Saccharomyces cerevisiae, Rizopus sp.,Mucor sp., etc. Biotechnologically produced organic acids like citric acid, acetic acid, gluconic acid, D-Lactic acid, fumaric acid, etc.

Page 3: biotechnology

Modern biotechnology provides breakthrough products and technologies to combat debilitating and rare diseases, reduce our environmental footprint, feed the hungry, use less and cleaner energy, and have safer, cleaner and more efficient industrial manufacturing processes.

Currently, there are more than 250 biotechnology health care products and vaccines available to patients, many for previously untreatable diseases. More than 18 million farmers around the world use agricultural biotechnology to increase yields, prevent damage from insects and pests and reduce farming's impact on the environment. And more than 50 bio-refineries are being built across North America to test and refine technologies to produce bio-fuels and chemicals from renewable biomass, which can help reduce greenhouse gas emissions.

Recent Advances In Biotechnology Are Helping Us Prepare For And Meet Society’s Most Pressing Challenges.

Heal the World

Biotech is helping to heal the world by harnessing nature's own toolbox and using our own genetic makeup to heal and guide lines of research by:

Reducing rates of infectious disease;

Saving millions of children's lives;

Changing the odds of serious, life-threatening conditions affecting millions around the world;

Tailoring treatments to individuals to minimize health risks and side effects;

Creating more precise tools for disease detection; and

Combating serious illnesses and everyday threats confronting the developing world.

Page 4: biotechnology

Fuel the World

Biotech uses biological processes such as fermentation and harnesses biocatalysts such as enzymes, yeast, and other microbes to become microscopic manufacturing plants. Biotech is helping to fuel the world by:

Streamlining the steps in chemical manufacturing processes by 80% or more;

Lowering the temperature for cleaning clothes and potentially saving $4.1 billion annually;

Improving manufacturing process efficiency to save 50% or more on operating costs;

Reducing use of and reliance on petrochemicals;

Using biofuels to cut greenhouse gas emissions by 52% or more;

Decreasing water usage and waste generation; and

Tapping into the full potential of traditional biomass waste products.

Feed the World

Biotech improves crop insect resistance, enhances crop herbicide tolerance and facilitates the use of more environmentally sustainable farming practices. Biotech is helping to feed the world by:

Generating higher crop yields with fewer inputs;

Lowering volumes of agricultural chemicals required by crops-limiting the run-off of these products into the environment;

Using biotech crops that need fewer applications of pesticides and that allow farmers to reduce tilling farmland;

Developing crops with enhanced nutrition profiles that solve vitamin and nutrient deficiencies;

Page 5: biotechnology

Producing foods free of allergens and toxins such as mycotoxin; and

Improving food and crop oil content to help improve cardiovascular health.

Source: Healing, Fueling, Feeding: How Biotechnology is Enriching Your Life

Broadly biotechnology can be divided into two major branches :

1. Non-gene biotechnology– deals with whole cell, tissues or even individual organisms

2. Gene biotechnology– involves gene manipulation, cloning, etc.

There are numerous sub-fields of biotechnology. They are:

1. Red biotechnology is biotechnology applied to medical processes. Some examples are the designing of organisms to produce antibiotics, and the engineering of genetic cures to cure diseases through genomic manipulation.

2. White biotechnology, also known as grey biotechnology, is biotechnology applied to industrial processes. An example is the designing of an organism to produce a useful chemical. White biotechnology tends to consume less in resources than traditional processes when used to produce industrial goods.

3. Green biotechnology is biotechnology applied to agricultural processes. An example is the designing of an organism to grow under specific environmental conditions or in the presence (or absence) of certain agricultural chemicals. One hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. An example of this is the engineering of a plant to express a pesticide, thereby eliminating the need for external application of pesticides. Whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate.

4. The term blue biotechnology has also been used to describe the marine and aquatic applications of biotechnology, but its use is relatively rare.

Page 6: biotechnology

Biotechnology has applications in four major industrial areas, including health care (medical), crop production and agriculture, non food (industrial) uses of crops and other products (e.g.   biodegradable plastics ,   vegetable oil ,   bio-fuels ), and environmental uses

.

1. Medicine

In medicine, modern biotechnology finds applications in areas such as pharmaceutical drug discovery and production, pharmacogenomics, and genetic testing (or genetic screening).

DNA microarray chip – some can do as many as a million blood tests at once

Pharmacogenomics (a combination of pharmacology and genomics) is the technology that analyses how genetic makeup affects an individual's response to drugs. It deals with the influence of genetic variation on drug response in patients by correlating gene expression or single-nucleotide polymorphisms with a drug's efficacy or toxicity. By doing so, pharmacogenomics aims to develop rational means to optimize drug therapy, with respect to the patients' genotype, to ensure maximum efficacy with minimal adverse effects. Such approaches promise the advent of "personalized medicine"; in which drugs and drug combinations are optimized for each individual's unique genetic makeup.

Page 7: biotechnology

Computer-generated image of insulin hexamers highlighting the threefold symmetry, the zinc ions holding it together, and the histidineresidues involved in zinc binding.

Biotechnology has contributed to the discovery and manufacturing of traditional small molecule pharmaceutical drugs as well as drugs that are the product of biotechnology - biopharmaceutics. Modern biotechnology can be used to manufacture existing medicines relatively easily and cheaply. The first genetically engineered products were medicines designed to treat human diseases. To cite one example, in 1978 Genentech developed synthetic humanized insulin by joining its gene with a plasmid vector inserted into the bacterium Escherichia coli. Insulin, widely used for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals (cattle and/or pigs). The resulting genetically engineered bacterium enabled the production of vast quantities of synthetic human insulin at relatively low cost. Biotechnology has also enabled emerging therapeutics like gene therapy. The application of biotechnology to basic science (for example through the Human Genome Project) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well. Genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child's parentage (genetic mother and father) or in general a person's ancestry. In addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. Genetic testing identifies changes in chromosomes, genes, or proteins. Most of the time, testing is used to find changes that are associated with inherited disorders. The results of a genetic test

Page 8: biotechnology

can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. As of 2011 several hundred genetic tests were in use.[25][26] Since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling.

2. Agriculture

Genetically modified crops ("GM crops", or "biotech crops") are plants used in agriculture, the DNA of which has been modified with genetic engineering techniques. In most cases the aim is to introduce a new trait to the plant which does not occur naturally in the species.Examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments (e.g. resistance to aherbicide), reduction of spoilage, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation. Farmers have widely adopted GM technology. Between 1996 and 2011, the total surface area of land cultivated with GM crops had increased by a factor of 94, from 17,000 square kilometers (4,200,000 acres) to 1,600,000 km2 (395 million acres). 10% of the world's crop lands were planted with GM crops in 2010. As of 2011, 11 different transgenic crops were grown commercially on 395 million acres (160 million hectares) in 29 countries such as the USA, Brazil, Argentina, India, Canada, China, Paraguay, Pakistan, South Africa, Uruguay, Bolivia, Australia, Philippines, Myanmar, Burkina Faso, Mexico and Spain. Genetically modified foods are foods produced from organisms that have had specific changes introduced into their DNA with the methods of genetic engineering. These techniques have allowed for the introduction of new crop traits as well as a far greater control over a food's genetic structure than previously afforded by methods such asselective breeding and mutation breeding. Commercial sale of genetically modified foods began in 1994, when Calgene first marketed its Flavr Savr delayed ripening tomato. To date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. These have been engineered for resistance to pathogens and herbicides and better nutrient profiles. GM livestock have also been experimentally developed, although as of November 2013 none are currently on the market. There is broad scientific consensus that food on the market derived from GM crops poses no greater risk to human health than conventional food. GM crops also

Page 9: biotechnology

provide a number of ecological benefits, if not used in excess. However, opponents have objected to GM crops per se on several grounds, including environmental concerns, whether food produced from GM crops is safe, whether GM crops are needed to address the world's food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law

3. Industrial biotechnology

Industrial biotechnology (known mainly in Europe as white biotechnology) is the application of biotechnology for industrial purposes, including industrial fermentation. It includes the practice of using cells such as micro-organisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and bio-fuels. In doing so, biotechnology uses renewable raw materials and may contribute to lowering greenhouse gas emissions and moving away from a petrochemical-based economy.

4. Regulation

The regulation of genetic engineering concerns approaches taken by governments to assess and manage the risks associated with the use of genetic engineering technology, and the development and release of genetically modified organisms (GMO), including genetically modified crops and genetically modified fish. There are differences in the regulation of GMOs between countries, with some of the most marked differences occurring between the USA and Europe. Regulation varies in a given country depending on the intended use of the products of the genetic engineering. For example, a crop not intended for food use is generally not reviewed by authorities responsible for food safety. The European Union differentiates between approval for cultivation within the EU and approval for import and processing. While only a few GMOs have been approved for cultivation in the EU a number of GMOs have been approved for import and processing. The cultivation of GMOs has triggered a debate about coexistence of GM and non GM crops. Depending on the coexistence regulations incentives for cultivation of GM crops differ.