biodiversity of zoobenthic hard-substrate sublittoral

17
Biodiversity of zoobenthic hard-substrate sublittoral communities in the Eastern Mediterranean (North Aegean Sea) Chryssanthi Antoniadou * , Chariton Chintiroglou Aristotle University, School of Biology, Department of Zoology, P.O. Box 134, Gr-540 06 Thessaloniki, Greece Received 24 May 2004; accepted 27 September 2004 Abstract The spatial dispersion of zoobenthos from sublittoral hard substrate communities in the northern part of the Aegean Sea has been studied during summer 1997 and 1998. Material was collected by SCUBA diving, by totally scraping off five replicate quadrates (400 cm 2 each) at three depth levels (15, 30, 40 m) from six sites located in Chalkidiki peninsula, plus one in Kavala Gulf. The examination of the 19,343 living specimens collected revealed the presence of 314 species. Though the multivariate analyses showed high similarity between stations, the structure of this sciaphilic algal community seems to have an increased spatial heterogeneity. Four distinct facies were recorded in accordance with the occurrence of different algal forms, the degree of hard substrate inclination and the water clarity. A short review on the biodiversity of sublittoral communities in the Mediterranean revealed the affinity between the western and the eastern basin and also among the photophilic and the sciaphilic algal communities. Ó 2004 Elsevier Ltd. All rights reserved. Keywords: biodiversity; zoobenthos; hard substrate; community dynamic; algal forms; Aegean Sea 1. Introduction Ecological studies on hard bottom zoobenthos of the Mediterranean Sea, mostly concern the Western and Central basins (Bitar, 1982; Hong, 1982; Richards, 1983; Bellan-Santini, 1985; Poulicek, 1985; Giangrande, 1988; Cardell and Gili, 1988; Sarda`, 1991; Fraschetti et al., 2001; 2002; Terlizzi et al., 2002, 2003), whereas the relevant reports about the Eastern Mediterranean are very limited (Chintiroglou and Koukouras, 1992; Chin- tiroglou, 1996; Ergen and Cinar, 1997; Morri et al., 1999; Damianidis and Chintiroglou, 2000; Karalis et al., 2003; Antoniadou, 2004; Chintiroglou et al., 2004a,b). Three different ecological layers can be distinguished within the infralittoral hard substratum, i.e. the upper, where the photophilic algae community is found; the intermediate, which is dominated by several hydrozoan species; and the lower, where the sciaphilic algae community occurs (Bellan-Santini et al., 1994; Antonia- dou et al., 2004a,b). The lower infralittoral zone is poorly studied, as opposed to the other two layers (Bellan- Santini et al., 1976; Leung Tack Kit, 1976; Fraschetti et al., 2002; Karalis et al., 2003; Chintiroglou et al., 2004a) and also, to the circalittoral zone, where the coralligenous community has been studied (True, 1970; Hong, 1982; Laborel, 1987; Sartoretto, 1998). The quantitative assess- ment of the zoobenthic biodiversity within the lower infralittoral zone is limited to the work of Marinopoulos (pers. commun.), who conducted research at the French coasts of the Mediterranean, with emphasis on the free motile fauna. Apart from this unpublished report, the relevant information concentrates on specific taxonomic groups (Giangrande et al., 2003; Terlizzi et al., 2003; Antoniadou, 2004; Antoniadou et al., 2004a,b). The study * Corresponding author. E-mail address: [email protected] (C. Antoniadou). 0272-7714/$ - see front matter Ó 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.ecss.2004.09.032 Estuarine, Coastal and Shelf Science 62 (2005) 637–653 www.elsevier.com/locate/ECSS

Upload: others

Post on 10-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biodiversity of zoobenthic hard-substrate sublittoral

Estuarine, Coastal and Shelf Science 62 (2005) 637–653

www.elsevier.com/locate/ECSS

Biodiversity of zoobenthic hard-substrate sublittoralcommunities in the Eastern Mediterranean

(North Aegean Sea)

Chryssanthi Antoniadou*, Chariton Chintiroglou

Aristotle University, School of Biology, Department of Zoology, P.O. Box 134, Gr-540 06 Thessaloniki, Greece

Received 24 May 2004; accepted 27 September 2004

Abstract

The spatial dispersion of zoobenthos from sublittoral hard substrate communities in the northern part of the Aegean Sea hasbeen studied during summer 1997 and 1998. Material was collected by SCUBA diving, by totally scraping off five replicate quadrates

(400 cm2 each) at three depth levels (15, 30, 40 m) from six sites located in Chalkidiki peninsula, plus one in Kavala Gulf. Theexamination of the 19,343 living specimens collected revealed the presence of 314 species. Though the multivariate analyses showedhigh similarity between stations, the structure of this sciaphilic algal community seems to have an increased spatial heterogeneity.

Four distinct facies were recorded in accordance with the occurrence of different algal forms, the degree of hard substrate inclinationand the water clarity. A short review on the biodiversity of sublittoral communities in the Mediterranean revealed the affinitybetween the western and the eastern basin and also among the photophilic and the sciaphilic algal communities.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: biodiversity; zoobenthos; hard substrate; community dynamic; algal forms; Aegean Sea

1. Introduction

Ecological studies on hard bottom zoobenthos of theMediterranean Sea, mostly concern the Western andCentral basins (Bitar, 1982; Hong, 1982; Richards, 1983;Bellan-Santini, 1985; Poulicek, 1985; Giangrande, 1988;Cardell and Gili, 1988; Sarda, 1991; Fraschetti et al.,2001; 2002; Terlizzi et al., 2002, 2003), whereas therelevant reports about the Eastern Mediterranean arevery limited (Chintiroglou and Koukouras, 1992; Chin-tiroglou, 1996; Ergen and Cinar, 1997; Morri et al., 1999;Damianidis and Chintiroglou, 2000; Karalis et al., 2003;Antoniadou, 2004; Chintiroglou et al., 2004a,b).

Three different ecological layers can be distinguishedwithin the infralittoral hard substratum, i.e. the upper,where the photophilic algae community is found; the

* Corresponding author.

E-mail address: [email protected] (C. Antoniadou).

0272-7714/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ecss.2004.09.032

intermediate, which is dominated by several hydrozoanspecies; and the lower, where the sciaphilic algaecommunity occurs (Bellan-Santini et al., 1994; Antonia-dou et al., 2004a,b). The lower infralittoral zone is poorlystudied, as opposed to the other two layers (Bellan-Santini et al., 1976; Leung Tack Kit, 1976; Fraschettiet al., 2002; Karalis et al., 2003; Chintiroglou et al., 2004a)and also, to the circalittoral zone, where the coralligenouscommunity has been studied (True, 1970; Hong, 1982;Laborel, 1987; Sartoretto, 1998). The quantitative assess-ment of the zoobenthic biodiversity within the lowerinfralittoral zone is limited to the work of Marinopoulos(pers. commun.), who conducted research at the Frenchcoasts of the Mediterranean, with emphasis on the freemotile fauna. Apart from this unpublished report, therelevant information concentrates on specific taxonomicgroups (Giangrande et al., 2003; Terlizzi et al., 2003;Antoniadou, 2004; Antoniadou et al., 2004a,b). The study

Page 2: Biodiversity of zoobenthic hard-substrate sublittoral

638 C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

of the biodiversity in the Mediterranean has obtaineda priority status in environmental management (Costello,1998; Gaston and Spicer, 1998; Bianchi andMorri, 2000),however, it cannot be assessed due to paucity ofquantitative data (Stergiou et al., 1997).

The present study took place at the lower layer of theinfralittoral zone (below 15 m), where the sciaphilic algalcommunity normally occurs on inclined hard substrate(Peres, 1982). The aim was to detect (1) the spatialvariability of zoobenthos and (2) the most criticalfactors that influence its distributional range, addingto the understanding of sublittoral community trends.

2. Materials and methods

2.1. Sampling sites

Seven coastal stations were selected at differentlocations in the northern part of the Aegean Sea(Fig. 1). All sites share some common physical char-acteristics, such as hard substrate down to 30–40 mdepth and inclination bigger than 50 � (Antoniadouet al., 2004a). At each site, one to three depth levels wereset (15, 30 and 40 m) for the bathymetrical study of thelower infralittoral zone.

2.2. Sampling techniques

2.2.1. Physico-chemical factorsTemperature, salinity, conductivity, dissolved O2 and

pH were measured in the water column with the WTW

salinity-conductivity-O2 meter and Lovibond Checkit(pH meter) micro-electronic equipment. Water claritywas measured with the Secchi disc. The inclination ofhard substratum was calculated with a clinometer,while the speed and direction of currents wererecorded with the autographic current meter Sensordataa�s SD-4.

2.2.2. Data collectionAt each site and depth level, sampling was carried out

by SCUBA diving using a 400 cm2 quadrate sampler, bytotally scraping off the substrate, including both sessileand motile species (Leung Tack Kit, 1976; Hong, 1982;Karalis et al., 2003). Five replicates were collectedduring summer of 1997 and 1998. Overall, 75 sampleswere obtained. All samples were sieved (0.5 mm) andpreserved in 10% formalin. After the sorting process,the macrofauna was counted and identified at specieslevel. Algae were also identified and the dominant spe-cies were recorded.

2.3. Statistics

The analysis of phytobenthos was based on the mostdominant species in terms of percent cover, in order toidentify the ‘pilot species’ (Bellan-Santini, pers. com-mun.) at each site, that function as a secondary substratefor the distribution of zoobenthos (Abbiati et al., 1987;Giangrande, 1988).

The analysis of zoobenthos was based on themethods of Karalis et al., (2003) and Chintiroglouet al., 2004a,b. Thus, the numerical abundance on a scale

GREECE

23o 24o

40o

41o

Nautical miles

Fig. 1. Map of the study area indicating sampling sites.

Page 3: Biodiversity of zoobenthic hard-substrate sublittoral

639C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

of 1 m2 (A m�2), the mean dominance (mD), thefrequency (F) and diversity indices (Margalef’s richness,Shannon–Wiener and Pielou’s evenness, based on log2)were calculated.

In order to check the null hypothesis that theabundance of the dominant taxa does not differsignificantly between sites and depth levels, a two-wayANOVA test was carried out. A logarithmic trans-formation (logxC1) was used to normalize the varianceof numerical abundances (Zar, 1984; Clarke and Green,1988). The data obtained per sampling site wereanalyzed with multidimensional scaling techniques,based on the Bray–Curtis similarity and log transformednumerical abundances, using PRIMER package (Clarkeand Warwick, 1994). The significance of the multivariateresults was assessed with ANOSIM test. SIMPERanalysis was applied to identify the contribution of eachspecies to the overall similarity within a site and thedissimilarity among sites (Clarke and Warwick, 1994).The BIOENV procedure was used to examine whichenvironmental parameters are related to the observedbiotic pattern (MDS plot) and the degree of this relation(Clarke and Warwick, 1994).

3. Results

3.1. Abiotic factors

The values of the main abiotic parameters showedslight variations in relation to depth or location ofsampling sites, e.g. the reduced water clarity at St.5 andthe decrease in salinity at St.7 (Antoniadou et al.,2004b), while water currents follow the general patternof cyclonic circulation in North Aegean Sea (Stergiouet al., 1997). According to degree of slope, the sam-pling sites can be ranked as highly (O80 �, St.1, St.3)moderately (60–80 �, St.2, St.4, St.6, St.7) and slightly(!60 �, St.5) inclined.

3.2. Community structure

Overall, 19,343 individuals were counted, belongingto 314 species. The dominant taxon, in terms of speciesrichness, was molluscs (56%), followed by polychaetes(27%) and crustaceans (21%). The species richness ofthe higher taxonomic groups was quite uniform betweensites (Fig. 2).

Fig. 2. Taxa contribution to species richness (up) and total abundance (down) per sampling site and depth level.

Page 4: Biodiversity of zoobenthic hard-substrate sublittoral

640 C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

Seventy-one species were common (21 Polychaeta, 2Sipuncula, 25 Mollusca, 18 Crustacea, 2 Brachiopoda, 2Echinodermata, 1 Tunicata), according to populationdensity and frequency (over 60%) values. From thesespecies only six, i.e. Bittium latreillii, Syllis hyalina,Dexamine spinosa, Hiatella arctica, Nereis rava andModiolus adriaticus occured at all sites (Appendix).

Table 1

Two-way ANOVA results (asterisk indicates statistically significant

differences)

Taxa Spatial distribution Bathymetric distribution

F p F p

Polychaeta 13.39 !0.05* 15.94 !0.05*

Bivalvia 8.22 !0.05* 15.94 !0.05*

Gastropoda 13.78 !0.05* 7.48 !0.05*

Peracarida 5.43 !0.05* 13.69 !0.05*

In terms of numerical abundances, four taxa weredominant (Fig. 2). The dispersion of these taxa was notequal among the seven sampling sites or the three depthlevels, (ANOVA results, Table 1). The partial differencesamong sites and depths for polychaetes, bivalves, gastro-pods and peracarids are depicted in Fig. 3.

3.3. Diversity

The values of diversity indices were high (Table 2).Richness values (d ) ranged from 9.2 to 16.4, H# valuesfrom 4.4 to 5.6 and J# values from 0.71 to 0.90. At mostof the sites the gastropod Bittium latreillii was thedominant species (mDO50%), while at St.2 and St.4spirorbids and B. latreillii provide approximately 70%of the cumulative dominance. These two taxa havea strong, negative influence on the diversity indices

Polychaeta

1,8

2

2,2

2,4

2,6

Bivalvia

1,5

1,7

1,9

2,1

2,3

2,5

Gastropoda

1,7

1,9

2,1

2,3

2,5

2,7

2,9

Peracarida

15 30 401,4

2,4

3,4

4,4

5,4

Depth (m)

2,8mAPolychaeta

1,7

2

2,3

2,6

2,9

3,2

3,5mA

Bivalvia

0

2

4

6

8

Gastropoda

1

1,4

1,8

2,2

2,6

3

3,4

Peracarida

St.1 St.2 St.3 St.4 St.5 St.6 St.70

2

4

6

8

Sampling sites

Fig. 3. Mean numerical abundance (mA) of the dominant taxa (left: sampling sites, right: depth level).

Page 5: Biodiversity of zoobenthic hard-substrate sublittoral

641C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

Table 2

Biocoenotic parameters and diversity indices per sites and depth levels

Site/depth

level (m)

Biocoenotic parameters Diversity indices

N S d d* J J* H H*

St.1/15 1854 95 12.49 14.13 0.463 0.813 3.042 5.327

St.1/30 2892 116 14.43 16.47 0.422 0.820 2.899 5.615

St.1/40 300 58 9.99 10.80 0.698 0.896 4.093 5.229

St.2/15 3156 82 10.05 11.54 0.416 0.710 2.647 4.480

St.2/30 1412 98 13.37 14.13 0.682 0.820 4.516 5.390

St.3/15 1385 99 13.55 14.10 0.682 0.786 4.523 5.196

St.3/30 1318 95 13.08 13.99 0.629 0.823 4.136 5.396

St.3/30’ 1211 78 10.85 11.94 0.539 0.794 3.391 4.978

St.3/40 360 76 12.74 13.22 0.785 0.876 4.906 5.460

St.4/15 1431 78 10.60 10.81 0.741 0.785 4.657 4.908

St.4/30 2555 90 11.34 12.66 0.484 0.818 3.144 5.300

St.5/15 206 51 9.38 9.21 0.856 0.856 4.855 4.835

St.6/30 424 64 10.41 10.96 0.706 0.825 4.238 4.934

St.7/15 442 70 11.33 11.58 0.794 0.846 4.866 5.168

St.7/30 271 73 12.85 12.91 0.893 0.909 5.527 5.609

d, Margalef’s richness; H, Shannon–Wiener index; J, Pielou’s evenness; S, number of species; N, number of individuals; * refers to the above values

after the exclusion of the two dominant taxa.

(especially H and J ), which, consequently, had to berecalculated by excluding these taxa. The values of theindices were thus responding to the large number ofrecorded species (Bitar, 1982; Antoniadou et al., 2004a).

3.4. Similarity analysis

The study of the similarity of sampling sites wasfocused on phytobenthos and zoobenthos. With respectto the percent cover of the dominant algal species, non-metric MDS indicates the separation of the sites in fourmain groups (Fig. 4), which represent four differentfacies: (1) a facies of the red algalWomersleyella setacea,Polysiphonia sp., Lithothamnion sp. and the green algaHalimeda tuna (group A); (2) a facies of the red algalPseudolithophyllum expansum, Lithophyllum sp., Litho-thamnion sp. and Peyssonnelia sp. (group B); (3) a faciesof the red algal Gelidium pectinatum, P. expansum andthe brown alga Cutleria multifida (group C); and (4)a facies of the brown alga Padina pavonica and the greenalga Codium bursa (group D).

DC

B

A

12

7

5

13

6 4

3

24

31

3

15 m

30 m

40 m

Fig. 4. Non-metric multidimensional scaling based on algal cover and

the Bray–Curtis similarity index. Stress value: 0.12.

With respect to the zoobenthic species, non-metricMDS indicates the separation of the sites in four maingroups (Fig. 5) that correspond well to the algal facies.The discrimination of the four groups is confirmed byone-way ANOSIM (global RZ0:93, p!0:1). SIMPERanalysis showed that 10–17 species contribute to 60% ofthe average similarity of groups and 35–57 species to90%, while 26–50 species contribute to 60% of theaverage dissimilarity of groups and 85–138 species to90% (Tables 3 and 4). The BIOENV procedure showedthat water clarity is the factor that relates mostly withthe community structure (Spearman rank correlation0.59), followed by substrate inclination (Spearman rankcorrelation 0.48).

4. Discussion

The lower infralittoral zone constitutes a particularecological unity within the benthic typology of the

30 m

40 m

15 m

3

12

7

A

B

C

5

61

3

42

4

13

Fig. 5. Non-metric multidimensional scaling, based on zoobenthos and

the Bray–Curtis similarity index, calculated from root transformed

numerical abundance data. Stress value: 0.08.

Page 6: Biodiversity of zoobenthic hard-substrate sublittoral

642 C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

Mediterranean (Augier, 1982; Peres, 1982; Bellan-Santini et al., 1994) where hydrodynamics, sedimenta-tion and light are the factors that influence its faunisticstructure (Hong, 1982; Terlizzi et al., 2003).

Twenty-eight quantitative studies have refered to thehard substrate (including also two algal dominatedassemblages on soft bottoms, e.g. maerl and Squamar-iacea facies) sublittoral communities in the Mediterra-nean (Table 5). Thirteen of these deal with thephotophilic algae community, four with the sciaphilicalgae, four with the coralligenous, one with maerl andone with Squamariacea facies, while the rest generallyrefers to hard substrate. Most of them refer to the upperor middle layer of the infralittoral zone, as only 12studies have been conducted deeper than 15 m. Severalreports refer to specific taxa (Polychaeta (11), Peracar-ida (1), Mollusca (4)) and twelve include a study of allzoobenthic taxa.

The study of the available data shows that thezoobenthic structure of the sciaphilic algae communityis similar in the Western and Eastern Mediterranean(about 45%). Additionally, a similarity (commonspecies) of 35% is observed between the photophilicand the sciaphilic algae communities. This is due to thebroader distribution of species that characterises thephotophilic algae community (Bellan-Santini, pers.commun.). The similarity of the sciaphilic algaecommunity with maerl and the facies of Squamariacea,is confined to cases where the red algal generaPeyssonnelia, Lithophyllum, Lithothamnion and Pseudo-lithophyllum showed increased presence. The highestnumber of common species was recorded in corallige-nous communities of French coasts, while the lowest inphotophilic algae communities of Spanish coasts. This isprobably due to the inflow of many Atlantic species in

Table 3

Ranked species contribution to 50% similarity within groups

Group A (63.7%) Group B (53%) Group C (58.7%)

Bittium latreillii Bittium latreillii Bittium latreillii

Nereis rava Foraminifera Foraminifera

Hiatella arctica Syllis hyalina Modiolus adriaticus

Lyssianassa costae Hiatella arctica Hiatella arctica

Halocynthia papillosa Modiolus barbatus Copepoda

Amphipholis squamata Corophium insidiosum Dexamine spinosa

Syllis hyalina Alvania mamillata Glycera tesselata

Vermiliopsis

infundibulum

Pusillina radiata Pusillina radiata

Mysidacea Dexamine spinosa Caecum trachea

Eunice vittata Phtisica marina Leptochelia savignyi

Lysidice ninetta Syllis hyalina

Serpula concharum Microdeutopus

anomalus

Phascolosoma granulatum

Apseudes latreillei

Gnathia vorax

Ophiothrix fragilis

the Mediterranean, via the Spanish coasts, whichconstitutes a transitional zone between the two seas.

The similarity was high between St.1 and St.3 at alldepth layers. This was expected since these two stationsshare some common characteristics, namely the highslope of the rocky substrate (w90 �), great depth andsimilar abiotic factors. Next follow St.2 and St.4, whichare both on a reef system and have a moderate inclinesubstrate (60–70 �). These four stations plus St.5 arelocated in the Chalkidiki peninsula. However, St.5discriminates as it hosts a low number of macrobenthicspecies and individuals. The lowest value in water claritywas also recorded at this station, where the inclinationwas slight (55 �) and the substrate is of purely organicmaterial (dead colonies of the scleractinian Cladocoracaespitosa). St.6 was placed at 40 m; the mainenvironmental factor is the reduced water clarity, dueto inflows of Strymonas River (Stergiou et al., 1997).Finally, St.7 discriminates mostly due to lower salinity.Its geographic position is the most remote of thestations, with particular hydrological features (Stergiouet al., 1997). All sites however showed high similarity(over 50%), thus one community was detected, i.e. thesciaphilic algae community (Augier, 1982; Peres, 1982).

Many authors suggest that zoobenthos is commonlyrelated to algal zonation and it is generally affected bythe presence of different algal forms (Abbiati et al.,1987; Giangrande, 1988; Fraschetti et al., 2002; Gian-grande et al., 2003; Antoniadou, 2004; Antoniadouet al., 2004b). The distribution of zoobenthos isdependent on the occurrence of the four algal facies.Most of the dominant algal species are sciaphilous, withthe exception of the photophilous Padina padina andCodium bursa (Boudouresque, 1984). The bathymetricdistribution of these species is mainly determined bylight, which is the result of two key factors: substrateinclination and water clarity (dissolved organic matter).The BIOENV analysis identified these two factors as themost related with the biotic pattern.

The sciaphilic algae community has a considerablespatial heterogeneity. As the SIMPER analysis showed,both similarities within groups and dissimilaritiesbetween groups were made up of small contributionfrom a large number of species, indicating a diversecommunity with a highly complex structure (Dahl andDahl, 2002). This heterogeneity may be conditioned bythe presence of several algal species with differentarchitecture (Chemello and Milazzo, 2002). Thus, fan-shaped structures and filamentous forms dominategroup A; filamentous, bush like and encrusting formsgroup C and encrusting forms group B (MDS plot). Theforms from group A are characterized by higherdiversity and abundance. The first two facies wererecorded at 15 m and 30 m depth, while the third at40 m. The facies of encrusting algal occurs mainly onvertical substrate at the deeper parts of the infralittoral

Page 7: Biodiversity of zoobenthic hard-substrate sublittoral

Table 4

Ranked

Groups Groups B–D (64.2%) Groups C–D (55.5%)

Lyssiana Bittium latreillii Bittium latreillii

Foramin Trypanosyllis zebra Spirorbidae

Bittium l Foraminifera Foraminifera

Corophiu Modiolus barbatus Glycera tesselata

Modiolus Alvania mamillata Modiolus adriaticus

Mysidac Hiatella arctica Copepoda

Alvania Microdeutopus anomalus Pusillina radiata

Nereis ra Paranthura nigropunctata Alvania mamillata

Hiatella Glycera tesselata Leptochelia savignyi

Serpula Megathiris detruncata Caecum trachea

Amphiph Polygordiidae Dexamine spinosa

Glycera Setia turicolata Gibbula mangus

Syllis pro Modiolus adriaticus Modiolus barbatus

Megathir Anatoma crispata Amphiglena mediterranea

Ophiothr Gwynia capsula Platynereis dumerilii

Stauroce Dexamine spinosa Rissoina bruguieri

Lithopha Nereis rava Cumella limicola

Leptoche Halocynthia papillosa Lentidium mediterraneum

Halocyn Phascolosoma granulatum Nereis rava

Phtisica Pusillina radiata Jujubinus exasperatus

Dexamin Acanthocardia aculeata Megathiris detruncata

Pomatoc Stenothoe monoculoides Sphaerosyllis pirifera

Nassariu Cumella limicola Eunice vittata

Modiolus Nereis zonata Paranthura nigropunctata

Gwynia c Tanais dulongi Dosinia exoleta

Anatoma Vermiliopsis infundibulum Syllis hyalina

Chama g Leptochelia savignyi

Microdeu Platynereis dumerilii

Raphitom Raphitoma echinata

Polydora Apseudes latreillei

Eunice v

Caecum

Corophiu

Phascolo

Tanais d

Gnathia

643

C.Antoniad

ou,C.Chintiro

glou/Estu

arin

e,Coasta

landShelf

Scien

ce62(2005)637–653

species contribution to 50% dissimilarity among groups

A–B (57.8%) Groups A–C (55.9%) Groups A–D (64.6%) Groups B–C (56.5%)

ssa costae Bittium latreillii Bittium latreillii Bittium latreillii

ifera Spirorbidae Lyssianassa costae Spirorbidae

atreillii Foraminifera Foraminifera Modiolus adriaticus

m insidiosum Copepoda Corophium insidiosum Copepoda

barbatus Lyssianassa costae Halocynthia papillosa Caecum trachea

ea Caecum trachea Serpula concharum Microdeutopus anomalus

mamillata Modiolus adriaticus Amphipholis squamata Glycera tesselata

va Glycera tesselata Pomatoceros triqueter Nereis rava

arctica Leptochelia savignyi Apseudes latreillei Pusillina radiata

concharum Pusillina radiata Gnathia vorax Leptochelia savignyi

olis squamata Corophium insidiosum Caecum trachea Hiatella arctica

tesselata Dexamine spinosa Nassarius incrassatus Gibbula mangus

lifera Amphipholis squamata Hiatella arctica Eunice vittata

is detruncata Alvania mamillata Ophiothrix fragilis Amphiglena mediterranea

ix fragilis Modiolus barbatus Staurocephalus rubrovittata Alvania mamillata

phalus rubrovittata Microdeutopus anomalus Lithophaga lithophaga Platynereis dumerilii

ga lithophaga Halocynthia papillosa Polygordiidae Lentidium mediterraneum

lia savignyi Lentidium mediterraneum Setia turicolata Sphaerosyllis pirifera

thia papillosa Gibbula mangus Copepoda Dexamine spinosa

marina Cumella limicola Platynereis dumerilii Megathiris detruncata

e spinosa Lysiannasa caesarea Microdeutopus anomalus Rissoina bruguieri

eros triqueter Syllis prolifera Amphiglena mediterranea Cumella limicola

s incrassatus Nereis rava Rissoina bruguieri Lysiannasa caesarea

adriaticus Sphaerosyllis pirifera Chama gryphoides Acanthocardia aculeata

apsula Megathiris detruncata Lysiannasa caesarea Dosinia exoleta

crispata Acanthocardia aculeata Polydora caeca Aspidosiphon muelleri

ryphoides Hiatella arctica Stenothoe monoculoides Gwynia capsula

topus anomalus Ophiothrix fragilis Syllis prolifera Jujubinus exasperatus

a echinata Staurocephalus rubrovittata Gnathia vorax

caeca Raphitoma echinata Alvania cimex

ittata Nassarius incrassatus

trachea Dosinia exoleta

m acherusicum

soma granulatum

ulongi

vorax

Page 8: Biodiversity of zoobenthic hard-substrate sublittoral

644 C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

Table 5

Composition of sublittoral communities in the Mediterranean

Researcher Community Depth

(m)

Area Total number

of Species

Polychaeta

species

Mollusca

species

Crustacea

species

Diversity

(H’ J’ d)

Bellan (1964) PA 0.5–2 WM – 84–41c – – –

Bellan (1964) C 20–40 WM – 70–42c – – –

Bellan (1964) Ma O40m WM – 28–8c – – –

Bellan (1964) Sq O40m WM – 108–35c – – –

Laubier, pers. commun. C 20–40 WM 429 137–52c 67–30c 50–17 –

Bellan–Santini, pers. commun. PA 0.5–2 WM 452 110–54c 76–24c 93–29c –

Kocatas, pers. commun. PA 1–3 EM 183 48–18c 44–18c 56–16c –

Hong (1982) C 5–35 WM 498 109 135 93 5.8

Richards (1983) HS 1–5 WM – – 41 – –

Poulicek (1985) PA, SA 3–30 WM – – 109–50c – –

Cardell and Gili (1988) PA 1–3 WM – 71–33c – – –

Marinopoulos, pers. commun. PA 3–7 WM 248 74–50c 88–46c 86–29c 5.57 0.70 31.4

Marinopoulos, pers. commun. SA 20–30 WM 140 45–31c 57–38c 38–21c 6.20 0.86 22.4

Marinopoulos, pers. commun. C 30–40 WM 141 42–29c 68–44c 31–21c 6.04 0.84 22.6

Sarda (1991) PA 1–5 WM – 175–43 – – 3.6

Sarda (1991) SA 15–40 WM – 100–43 – – 3.9

Chintiroglou and Koukouras (1992) PA 1–5 NA 64 25–14c 13–10c 17–9c –

Chintiroglou (1996) HS 3–18 NA – 87–48c – –a –

Chintiroglou et al. (2004a) PA 1–3 NA 100 45–20c 9–4c 31–12c 4.11 0.56 10.13

Chintiroglou et al. (2004b) HS 1–8 NA – 24–14c

Ergen and Cinar (1997) PA 0.5–5 EM 166 91–45c 27–15c 48–21c –

Koukouras et al. (1998) HS 3–18 NA 207 87–48c 53–36c 50–31c –

Damianidis and Chintiroglou (2000) PA 1–3 NA – 48–26c – – –

Chemello and Milazzo (2002) PA 1–5 WM – – 57–36c – 2.45

Fraschetti et al. (2002) PA 1–2 WM – 58–24c – – –

Terlizzi et al. (2003) HS 5–25 WM – – 133–58c – –

Giangrande et al. (2003) HS 5–25 WM – 152–52c – – –

Present study SA 15–40 NA 314 77 108 59 4.41 0.54 39.6

PA, photophilic algae; SA, sciaphilic algae; C, coralligenous; HS, hard substrate; Ma, maerl; Sq, facies of Squamariacea; WM, Western

Mediterranean; EM, Eastern Mediterranean; NA, North Aegean; c, number of species also found in this study.

zone (Boudouresque, 1984). Its main feature is the bio-construction of substratum through the biosyntheticprocess of various calcareous algal (i.e. the genusPeyssonnelia, Lithothamnion, Lithophyllum, Pseudolitho-phyllum, etc.). Within group A, a secondary split can beobserved, in accordance to the dominant algalforms: e.g. fan-shaped forms (Padina pavonica, thatdominates St.2 and St.4 at 15 m) and filamentous forms(Womersleyella setacea and Polysiphonia sp., thatdominate the rest of the stations). The facies ofP. pavonica, have been studied in both the Westernand Eastern Mediterranean (Bellan-Santini, pers. com-mun.; Kocatas, pers. commun.). It occurs on horizontalor slightly inclined hard substrates, under low hydrody-namics and increased light, as this alga is a typicalphotophilous species (Boudouresque, 1984). However,P. pavonica have been recently reported from shallowwater down to 30 m depth in the South Aegean (Cocitoet al., 2000) and to a 15 m depth in the North Aegean(present study). It seems that the increased water clarity(above 20 m) and the moderate inclination of St.2 andSt.4 ensure sufficient light for the growth of P. pavonica,while depth favours its occurrence by decreasing thehydrodynamics. The facies of Womersleyella setacea

have a special interest, as this red alga is an introducedand probably invasive species (Boudouresque andVerlaque, 2002), which is well distributed in theMediterranean (Athanassiadis, 1997). It forms paucis-pecific assemblages with increasing turf development,where a large amount of sediment is entrapped (Piazziand Cinelli, 2000). Thus, the entrapped sedimentincreases the complexity of the system, by offeringmicrohabitats suitable for the settlement of many softsediment zoobenthic species. A detailed examination ofthe ecological preferences of the dominant zoobenthosshows that 31% of the species has large ecologicaldistribution, as they live in both hard and soft substratecommunities; 22.7% is typical soft substrate inhabitants,while the rest 46.3% are species related with hardsubstrate or meadows (Appendix 1). The hard substratebiotopes consist of highly complex habitats, leading toa co-occurrence of various species with different eco-logical preferences. Ecological diversity is an elementarycomponent of the definition of biodiversity (Gaston andSpicer, 1998). Consequently, these communities, withtheir rich fauna of typical hard and soft substrate, canplay a key role in the maintenance of biodiversity in thebroader geographical area.

Page 9: Biodiversity of zoobenthic hard-substrate sublittoral

Appendix 1

St.4 St.5 St.6 St.7

15 m 30 m 15 m 30 m 15 m 30 m

57 20 13 11

* * * * * *

* *

* * * 2

* * * * * *

*

*

* *

* * * * * *

*

* *

*

*

*

*

*

*

59 38 6 15 16 3

10 4 1 5 1

1 2

1

1 2 1 1

(continued on next page)

645

C.Antoniad

ou,C.Chintiro

glou/Estu

arin

e,Coasta

landShelf

Scien

ce62(2005)637–653

Ecological distribution (EC) of species per sampling site

Taxa EC St.1 St.2 St.3

15 m 30 m 40 m 15 m 30 m 15 m 30 m 30 m’ 40 m

Foraminifera HS,SS 94 107 21 185 99 127 88 126 17

Porifera

Agelas oroides (Schmidt, 1864) HS * * * * * * * * *

Aplysina aerophoba (Schmidt, 1864) HS

Chondrosia reniformis (Nardo, 1833) HS,M * * *

Coscinoderma sporadense (Voultsiadou, 1991) HS *

Diplastrella bistellata (Schmidt, 1864) HS * * * * * * * * *

Eryllus euastrum (Schmidt, 1870) HS * *

Halisarca dujardini (Johnston, 1842) HS *

Ircinia foetida (Schmidt, 1862) HS *

Ircinia pausifilamentosa (Vacelet, 1961) HS * *

Ircinia spinosula (Schmidt, 1862) HS

Oscarella lobularis (Schmidt, 1862) HS *

Petrosia ficiformis (Poiret, 1798) HS * * * * * * * *

Spongia officinalis (Linnaeus, 1759) HS *

Spongia nitens (Schmidt, 1862) HS *

Sycon raphanus (Schmidt, 1862) HS * * * *

Cnidaria

Alcyonium palmatum (Pallas, 1766) HS *

Balanophylia sp. HS * * * *

Caryophyllia inornata (Duncan, 1878) HS * * * * *

Caryphyllia smithii (Stokes and Broderip, 1828) HS *

Caryophyllia sp. HS *

Cladocora caespitosa (Linnaeus, 1767) HS * * *

Cladopsammia sp. HS *

Epizoanthus sp. HS * * * * *

Eunicella cavolinii (Koch, 1887)

Eunicella singularis (Esper, 1791) HS * *

Eunicella verrucosa (Pallas, 1766) HS * * * * *

Hoplangia durotrix (Gosse, 1860) HS * * *

Leptopsammia pruvoti (Lacaze-Duthiers, 1897) HS * *

Leptopsammia sp. HS * * * *

Madracis pharensis (Heller, 1868) HS * * *

Polycyathus sp. HS

Stenocyathus vermiformis (Pourtales, 1868) HS *

Nematoda SS 42 37 7 36 24 81 34 41 3

Polychaeta

Amphiglena mediterranea (Leyding, 1851) PA,HS,M,SS 14 3 21 10 24 7 4 3

Amphitrite variabilis (Risso, 1826) HS,C,M,SS 2 1 1 2 2 2 1

Aponuphis bilineata (Baird, 1870) HS,C,Ma,SS 1

Arabella iricolor (Montagu, 1804) HS,C,SS,M

Branchiomma bombyx (Dalyell, 1853) HS,SS 2 1 1 3 5 3

Page 10: Biodiversity of zoobenthic hard-substrate sublittoral

Appendix 1 (continued)

St.4 St.5 St.6 St.7

15 m 30 m 15 m 30 m 15 m 30 m

1

1

5 2

1 2

3 36 2 4 8

1

1

35 88 3

2 1 4 2 3 1

1

1 1

4 2 1 2 1

3

1 1

1

4

1 1

1

9 8 2 4 9

4 1 1

54 33 15 11 24 14

11 5 6 2 1 5

1 4

1 1

30 17 3 2 4

8

3

15 1

646

C.Antoniadou,

C.Chintiro

glou/Estu

arin

e,Coasta

landShelf

Scien

ce62(2005)637–653

Taxa EC St.1 St.2 St.3

15 m 30 m 40 m 15 m 30 m 15 m 30 m 30 m’ 40 m

Capitella capitata (Fabricius, 1780) SS 3

Chrysopetalum debile (Grube, 1855) C,HS,M,Ma,SS 1 1

Dodecaceria concharum (Orsted, 1843) HS,M

Dorvillea rubrovittata (Grube, 1855) HS,PA,C,Ma 1 1

Euclymene oerstedii (Claparede, 1836) SS,HS 1

Eunice oerstedii (Stimpson, 1854) PA,C,M,Ma 7 1

Eunice torquata (Quatrefages, 1865) PA,C,M,Ma 2 3

Eunice vittata (Delle Chiaje, 1929) SS,Ma,HS 22 19 5 8 4 13 6 1

Euphrosine foliosa

(Audouin and Milne Edwards, 1833)

C,PA,M,Ma,SS 1

Eusyllis blomstrandi (Malmgren, 1867) PA,Ma,SS 2 1 4 2 1 1

Exogone naidina (Orsted, 1845) PA,M,SS 6 2 1 11 2 5

Ficopomatus enigmaticus (Fauvel, 1923) HS,C

Glycera tesselata (Grube, 1863) HS,C,M,Ma,SS 21 13 2 19 18 23 22 13 8

Glycinde nordmanni (Malmgren, 1865) SS,M 1

Goniada maculata (Ortsed, 1843) SS,M 1

Grubeosyllis limbata (Claparede, 1868) SS,M,PA 3 3 9 7 2

Haplosyllis spongicola (Grube, 1855) C,HS 2 2 1 2 1 1 2

Harmothoe areolata (Grube, 1860) C,M,HS,SS 1

Harmothoe ljungmani (Malmgren, 1867) C,M,SS

Harmothoe spinifera (Ehlers, 1864) PA,C,HS,SS 2 1 1 1

Heteromastus filiformis (Claparede, 1864) SS,HS

Hydroides pseudouncinatus (Zibrowius, 1968) HS,C,F 1

Janita fimbriata (Delle Chiaje, 1822) HS 2 1

Jasmineira candela (Grube, 1863) HS,SS 1 1

Kefersteinia cirrata (Keferstein, 1862) C,HS,M,Ma,SS 1 1 2 1 1

Laetmonice hystrix (Savignyi, 1820) C,M,SS 2

Laonice cirrata (Sars, 1851) SS 1

Lumbrineris coccinea (Renier, 1804) PA,C,Ma, 1

Lysidice ninetta

(Audouin and Milne Edwards,1833)

HS,C,M,Ma,SS 4 5 3 6 6 3 7

Marphysa fallax (Marion and Bobretzky, 1875) HS,C,M,SS 1 3

Nematonereis unicornis (Grube, 1840) HS,PA,M,SS 3 3 3 10 1 1

Nereis rava (Ehlers, 1868) HS,C,M,Ma,SS 31 12 6 13 50 20 3 1

Nereis zonata (Malmgren, 1867) HS,C,M,Ma,SS 4 1 1 8 17 2 1 1

Onuphis sp. SS 1

Palola siciliensis (Grube, 1840) C,M,SS,Ma

Phyllodoce madeirensis (Langerhans, 1880) HS,C,SS 1 1 1

Pionosyllis lamelligera (Saint-Joseph, 1856) C,M,Ma,SS 1 1 1 1

Placostegus crystallinus (Zibrowius, 1968) HS,C,F 2

Platynereis dumerilii

(Audouin and Milne Edwards, 1833)

HS,PA,C,M,SS 14 7 3 2 22 4 6

Polycirrus aurianticus (Grube, 1860) HS,PA,M,C 1

Polydora caeca (Orsted, 1843) HS,SS

Polygordiidae (archianelida) SS 1

Polyopthalmus pictus (Dujardin, 1839) HS,M,SS 1

Page 11: Biodiversity of zoobenthic hard-substrate sublittoral

Pomatoceros triqueter (Linnaeus, 1865) HS,C,F 1 4 6 2 3 6

Protula sp. HS,C 1 1 1 1 1

10 1

1 4 7

2

3 2 3 1

145

2

11 19 1 3 3

1 1 2

32 14 13 9 6 11

1

14 8 5 5 1

1

1 2 2

1 9 2 6 2

5 10 9 6 10 5

1 1

1

12 2 1 2 7 3

23 12 6 2 4 7

20 21 1 4

2

1 1 1 1

1 1

1

1 2

11 3 2 5 3

5 4

23 3 4

1 8 2 6 3 6

(continued on next page)

647

C.Antoniad

ou,C.Chintiro

glou/Estu

arin

e,Coasta

landShelf

Scien

ce62(2005)637–653

Pterosyllis formosa (Claparede, 1863) PA,M 1

Sabella fabricii (Kroyer, 1856) C,M,Ma,SS 2

Sabella pavonina (Savignyi, 1820) C,M,Ma,SS 2 1

Sclerocheilus minutus (Grube, 1863) HS,C,M,SS 1

Scoletoma funchalensis (Kinberg, 1865) HS,PA,Ma,SS 2 1 3 7 3 1

Serpula concharum (Langerhans, 1880) HS,C,F 1 3 1 3

Serpula vermicularis (Linnaeus, 1767) HS,C,F 2 1

Spermosyllis torulosa (Claparede, 1864) SS 1 1

Sphaerosyllis pirifera (Claparede, 1868) HS,M,Ma 19 21 2 6 10 26 10 11 4

Spirorbidae HS,F 1876 182

Syllidia armata (Quatrefages, 1865) HS,M,SS 2

Syllis amica (Quatrefages, 1865) HS,C,PA 1 9

Syllis armillaris (Muller, 1771) HS,PA,M,SS

Syllis cornuta (Rathke, 1843) HS,PA,C,M,SS 7 7 4 2 11 7 1 5 4

Syllis gracilis (Grube, 1840) HS,C,M,SS

Syllis hyalina (Grube, 1843) HS,C,SS 34 20 10 24 9 24 19 13 21

Syllis krohnii (Ehlers, 1864) HS,PA,C,M,SS 2 1

Syllis prolifera (Krohn, 1852) HS,PA,M,SS 16 6 2 12 5 13 2 3 3

Syllis vittata (Grube, 1840) HS,PA,M,Ma 6 1

Terebella lapidaria (Linneaus, 1767) PA,HS,M,SS 1

Terebellides stroemi (Sars, 1835) SS 1 5

Theostoma oerstedi (Claparede, 1864) PA 1

Trypanosyllis coeliaca (Claparede, 1868) PA,HS,Ma 1 2 2 7 2 2 4 1

Trypanosyllis zebra (Grube, 1860) HS,PA,C,SS 7 2 1 3 8 3 1 1

Vermiliopsis infundibulum (Gmelin, 1788) HS,C,F 1 2 1 7 13 2 3 3

Vermiliopsis labiata (Costa, 1861) HS,C 1

Xenosyllis scabra (Ehlers, 1864) M,Ma,SS

Sipuncula

Aspidosiphon muelleri (Diesing, 1851) C,Cr 15 5 2 17 1 18 2 3

Phascolosoma granulatum (Leuckart, 1828) C,Cr 10 12 9 9 4 2 3

Platyhelminthes U 1

Mollusca

Acanthocardia aculeata (Linnaeus, 1758) SS 1 2 8 4 1 2

Acanthocardia tubercolata (Linnaeus, 1758) SS 2 2 1

Acanthochitona fascicularis (Linnaeus, 1767) HS 1

Acmaea virginea (Mueller O.F., 1776) HS,PA 1 2

Anatoma crispata (Fleming, 1828) DC 7 3 2 1 13 13 5

Anomia ephippium (Linnaeus, 1758) HS,F 1 1 2

Alvania aspera (Philippi, 1844) PA 1

Alvania semistriata (Montagu, 1808) PA 2

Alvania cimex (Linnaeus, 1758) PA 8 31 2 2 1 9 23 5 6

Alvania discors (Allan, 1818) SS,M

Alvania mamillata (Risso, 1826) PA,C 18 88 10 3 7 12 34 17 16

Arca tetragona (Poli, 1795) HS 2 2 2 2 10 6 4 2

Ascobulla fragilis (Jeffreys, 1856) M 1

Barbatia pulchella (Reeve, 1844) HS 1

Page 12: Biodiversity of zoobenthic hard-substrate sublittoral

Appendix 1 (continued)

St.4 St.5 St.6 St.7

15 m 30 m 15 m 30 m 15 m 30 m

254 1510 1 138 87 26

45 88 4 7

1 1

3 2

1 1

1 3

1 2

8 10 1

1 4 1

1

1 1 1

1

37

2 1 1 1

2 2 2

2 3 3

2

38 24 34 59 22 11

1

3 21

6 1 2

3 66

1

1

648

C.Antoniadou,

C.Chintiro

glou/Estu

arin

e,Coasta

landShelf

Scien

ce62(2005)637–653

Taxa EC St.1 St.2 St.3

15 m 30 m 40 m 15 m 30 m 15 m 30 m 30 m’ 40 m

Barbatia scabra (Poli, 1795) C 1

Benthonella tenella (Jeffreys, 1856) CTM 3

Bittium latreillii (Payraudeau, 1826) HS,PA,C 1131 1880 121 340 400 414 547 629 90

Bolma rugosa (Linnaeus, 1767) PA,C 2

Buccinulum corneum (Linnaeus, 1758) PA,DC 1

Caecum trachea (Montagu, 1803) DC 38 33 4 4 44 20 27

Callistochiton pachylasmae (Monterosato, 1878) C 1

Callochiton septemvalvis (Montagu, 1803) HS 1

Chama (Psilopus) gryphoides (Linnaeus, 1758) HS 1 1 1

Chiton olivaceus (Spengler, 1797) HS

Chlamys varia (Linnaeus, 1758) HS,SS 1 3

Chrysallida doliolum (Philippi, 1844) SS 4 5 1

Cerithium vulgatum (Bruguiere, 1792) PA 2 1 1 3 2

Cerithiopsis tubercolaris (Montagu, 1803) DC 2 4 1 1 3 1 1 1

Clanculus corallinus (Gmelin, 1791) PA,C 1 1 1

Clanculus jussieui (Payraudeau, 1826) PA 1

Clavus maravignai (Bivona, 1838) SS 1

Conus mediterraneus (Hwass in Bruguiere, 1792) PA 1

Cylichnina umbilicata (Montagu, 1803) CTM 2 1

Dendrodoris sp. PA

Discodoris atromaculata (Bergh, 1880) PA,C,G 1

Dosinia exoleta (Linnaeus, 1758) SS 1 16 2 4 4

Emarginula adriatica (Costa O.G., 1829) HS,M 1

Emarginula huzardii (Payraudeau, 1826) HS 2

Emarginula octaviana (Coen, 1939) HS 1 1

Engina leucozona (Philippi, 1843) PA 1

Epitonium communis (Lamarck, 1822) PA 1

Erato voluta (Montagu, 1803) DC 1

Euspira macilenta (Philippi, 1884) SS 2 1 1

Fasciolaria lignaria (Linnaeus, 1758) PA 1

Folinella excavata (Philippi, 1836) SS 2 11 1 1 1 5 12 2

Fusinus pulchellus (Philipi, 1884) C,G 1 1

Gibbula adansonii (Payraudeau, 1826) SS,M 1

Gibbula mangus (Linnaeus, 1758) DC 15 34 2 5 2 18 14 15 1

Hadriana oretea (De Gregorio, 1885) SS,DC 1

Haedropleura septangularis (Montagu, 1803) SS 1

Haminaea navicula (DaCosta, 1778) SS 3 9 2 1 4 5

Hiatella arctica (Linnaeus, 1767) HS,C 17 10 6 78 49 38 31 20 10

Homalopoma sanguineum (Linnaeus, 1758) M,C 2 5 3 2 5

Hypselodoris webbi (D’Orbignyi, 1839) PA 1

Irus irus (Linnaeus, 1758) C 1 1 1 3 1 4 1 2

Jujubinus exasperatus (Pennant, 1777) C 1 10 1 3 8 6 13 4 1

Lentidium mediterraneum (Costa O.G., 1839) SS 1 7 2 2 5 11 3

Lepidochiton monterosatoi (Kaas and Van Belle, 1981) HS 1 1 1

Lima lima (Linnaeus, 1758) HS,C 1

Limapontia capitata (Mueller, 1774) U

Page 13: Biodiversity of zoobenthic hard-substrate sublittoral

Limatula subovata (Jeffreys, 1876) HS,DC,C 4 3 1 3 3 6

Lithophaga lithophaga (Linnaeus, 1758) HS,Cr 1 5 2

8 12

1 1

1 2

1

1 3

97 38 5 15 7 3

4 11 4

1

1 1

2 24 1

1 3 5

1 1

1

1

1

1

1

1

6 14 1 3 1 2

4 1

1 1 1

1 1 1 2 3

3

1 1 1

1 1

2

(continued on next page)

649

C.Antoniad

ou,C.Chintiro

glou/Estu

arin

e,Coasta

landShelf

Scien

ce62(2005)637–653

Lucinella divaricata (Linnaeus,1758) SS 17 4 1 2

Luria lurida (Linnaeus, 1758) PA 1

Mangelia attenuata (Montagu, 1803) SS 1

Mangelia vauquelini (Payraudeau, 1826) M 2 1

Manzonia crassa (Kanmacher, 1798) M 2 7 1 3 2 1

Marshallora adversa (Montagu, 1803) U 1

Melanella polita (Linnaeus, 1758) SS,M 1 1 1 1

Metaxia metaxae (Delle Chiaje, 1828) M

Mitra cornicula (Linnaeus, 1758) PA,M,SS 1

Mitrolumna olivoidea (Cantraine, 1835) PA 1 1 1 1 1

Modiolus adriaticus (Lamarck, 1819) DC,SS 23 19 1 165 49 85 28 29

Modiolus barbatus (Linnaeus, 1758) HS,M 1 27 13 9 42 3 12 7 16

Monophorus perversus (Linnaeus, 1758) PA,M 2 5

Muricopsis cristata (Poiret, 1883) PA 3

Musculus costulatus (Risso, 1826) HS 2 3 1 3 3 3

Myrtea spinifera (Montagu, 1803) SS 1 1

Nassarius incrassatus (Stroem, 1768) PA,SS 1 1

Nassarius limata (Chemnitz, 1795) PA,SS 1

Ocinebrina aciculata (Lamarck, 1822) PA 1

Odostomia conoidea (Brocchi, 1814) SS,M 3

Omalogyra atomus(Philippi, 1841) SS 1 1 1

Paradoris indecora (Bergh, 1881) PA

Payraudeautia intricata (Donovan, 1804) M 2

Petalifera petallifera (Rang, 1828) U 1

Philbertia densa (Monterosato, 1884) PA

Philine catena (Montagu, 1803) M,SS,DC

Pirenella conica (Blainville, 1826) SS 1 1

Pleurobranchus membranaceus (Montagu, 1815) DC 1

Pseudosimnia carnea (Poiret, 1789) C,G 1 1

Pseudotorinia architae (Costa O.G., 1841) DC 1

Pusillina radiata (Philippi, 1836) PA 16 56 8 4 17 48 74 32 7

Raphitoma echinata (Brocchi, 1814) C 4 22 3 3 5 10 1 8

Raphitoma concinna (Scacchi, 1836) PA,C 1

Raphitoma leufroyi (Michaud, 1828) C 2 2 2 2

Rissoa violacea Desmarest, 1814) PA,SS 1

Rissoina bruguieri (Payraudeau, 1826) M 9 38 4 4 2 14 18 7

Setia turricolata (Monterosato, 1884) PA 7 10 10 3

Skeneopsis planorbis (Fabricus, 1780) U 1

Stramonita haemastoma (Linnaeus, 1758) PA

Striacta lactea (Linnaeus, 1758) HS

Tricolia pullus

pullus (Linnaeus, 1758)

PA,M 1 6

Truncatella subcylindrica (Linnaeus, 1767) SS 1

Turbonilla lactea (Linnaeus, 1758) SS 2 1 1

Umbraculum umbraculum (Roeding, 1798) C,DC 1

Vexillum littorale (Philippi, 1843) PA 1

Vexillum tricolor (Gmelin, 1791) PA 1 3 1 2 1

Page 14: Biodiversity of zoobenthic hard-substrate sublittoral

Appendix 1 (continued)

St.4 St.5 St.6 St.7

15 m 30 m 15 m 30 m 15 m 30 m

1

1

1

2 2 6 3

1

16

1 1 2

1 1

99 89 3 4

8

9 16

19 3 1

1

22 28 2 25 1 3

1

5 5 3

2 7 4

64

20 1 2 1

1

85 32 1 9 1

1 1

5 19 4 1 1

5 1 61 10

1 3

1

5

39 17 10 1 10

650

C.Antoniadou,

C.Chintiro

glou/Estu

arin

e,Coasta

landShelf

Scien

ce62(2005)637–653

Taxa EC St.1 St.2 St.3

15 m 30 m 40 m 15 m 30 m 15 m 30 m 30 m’ 40 m

Crustacea

Achaeus cranchii (Leach, 1817) LED 1 1 1

Achelia echinata (Hodge, 1864) HS 1

Alpheus dentipes (Guerin-Meneville, 1832) LED 3 3

Ampelisca scarsi (Cheuvreux, 1888) DC,CTM,SS

Amphithoe ramondii (Audouin, 1826) PA,M

Aora spinicornis (Afonso, 1976) PA,M 5 7

Apseudes intermedius (Milne-Edwards, 1828) PA,HS,DC 2 3 3 4

Athanas nitescens (Leach, 1814) LED 10 22 1 2 1

Balanus a. amphitrite (Darwin, 1854) HS

Caprella acanthifera (Leach, 1814) PA,C,M,F 1 2 38 1

Caprella rapax (Mayer, 1890) PA 1 2 21 4 9 2

Cestopagurus timidus (Roux, 1830) LED 10 4

Chelonibia sp. HS 1

Collomastix pusilla (Grube, 1861) PA,C,M,DC,SS

Copepoda U 38 19 1 56 42 59 21

Corophium acherusicum (Costa, 1851) PA,F

Corophium acutum (Cheuvreux, 1908) PA,M,F 3 1 1

Corophium insidiosum (Crawford, 1937) PA,F,SS

Cumella limicola (G.O. Sars, 1879) HS,M,SS 2 20 1 6 10 22 12 2

Cymodoce truncata (Montagu, 1804) HS,M,SS 5 1 1

Dexamine spiniventris (Costa, 1853) PA,M 11 3 1

Dexamine spinosa (Montagu, 1813) PA,C,M,SS 17 31 6 23 17 28 28 16 3

Endeis spinosa (Montagu, 1808) HS 1

Eualus occultus (Lebour, 1936) LED 2

Eurydice truncata (Norman, 1868) SS 1

Eusirus longipes (Boeck, 1861) CTM,SS 1

Galathea intermedia (Lilljeboorg, 1851) LED 1

Gnathia vorax (Lucas, 1849) PA,HS,M,SS 1 1 1

Gnathia praniza stage PA,HS,M,SS 1 6 1 4 1

Hyale camptonyx (Heller, 1866) PA 3 4

Idotea baltica

basteri (Audouin, 1827)

PA,HS,M 1 2 10 9 2 1 3

Iphinoe sp. SS 5 1 2 1 5 3 1

Leptocheirus pectinatus (Norman, 1869) PA,C 1

Leptochelia savignyi (Kroyer, 1842) PA,HS,M,SS 23 11 5 29 11 40 11 4 2

Leucothoe spinicarpa (Abildgaard, 1789) PA,M,F,CD,SS

Liljeborgia psaltrica (Krapp-Schickel, 1975) DC,SS 1

Lysianassa caesarea (Ruffo, 1978) PA 1 15 1 2 15 19 7 5 1

Lysianassa costae (Milne-Edwards, 1830) PA,MDC,SS

Lysianassa longicornis (Lucas, 1849) PA,M,CTM,SS 1

Lysianassa plumosa (Boeck, 1871) DC,CTM,SS

Lysmata seticaudata (Risso, 1816) LED 1

Metaphoxus simplex (Bate, 1857) DC,CTM,SS 1 3 1 2 3

Microdeutopus anomalus (Rathke, 1843) PA,M,F 14 11 41 19 15 12 3 1

Page 15: Biodiversity of zoobenthic hard-substrate sublittoral

Mysidacea U 1 8 1 3 1 5 4

Orchomene humilis (Costa, 1853) PA,M 2 1 2 1

1

2

2 5 4

1

1 3

1

1

2

5 2

1

3 2 6

1 6

2

1

* * * * *

*

*

*

*

* * *

*

3 2

*

* *

* * * * *

* * *

*

*

* *

7

1 3 2 6 22 7

1

(continued on next page)

651

C.Antoniad

ou,C.Chintiro

glou/Estu

arin

e,Coasta

landShelf

Scien

ce62(2005)637–653

Pagurus anachoretus (Risso, 1827) LED 1

Pagurus sp. LED 1

Paradoxostoma sp. U 1

Paranthura nigropunctata (Lucas, 1849) PA,HS,M 2 1

Perioculodes longimanus (Bate and Westwood, 1868) CTM,SS 1

Phtisica marina (Slabber, 1749) PA,C,DC,SS 3 6 3 1 2 6 3

Pilumnus spinifer (H. Milne-Edwards, 1834) LED 2

Pisa armata (Latreille, 1803) LED

Pisa mucosa (Linnaeus, 1758) LED 1

Pseudocuma longicornis (Bate, 1858) SS 1

Pycnogonum littorale (Storm, 1762) HS 1

Scyllariidae U 1

Stenothoe monoculoides (Montagu, 1815) PA,M 2 3 3 1

Synchelidium longidigitatum (Ruffo, 1947) PA,M,DC 3

Tanais dulongii (Audouin, 1826) PA,HS,M,SS 2 7 1 1

Thoralus cranchii (Leach, 1817) LED 2 1 5 1 1

Unidentified sp. 1 U

Urothoe elegans (Bate, 1857) DC,CTM,SS 1

Verruca spengleri (Darwin, 1854) HS 2

Bryozoa

Bicellariela ciliata (Linnaeus, 1758) HS * * * * * * * * *

Bugula stolonifera (Ryland, 1960) HS

Chorizopora brongriatii (Audouin, 1826) HS

Cibrillina punctata (Hassall, 1841) HS * *

Crisia sp. HS *

Cryptosula pallasiana (Moll, 1803) HS

Electra pilosa (Linnaeus, 1767) HS * * * * * *

Escharoides coccinea (Abildgaard, 1806) HS

Lichenopora radiata (Audouin, 1826) HS 2 2 2 6 1

Microporella ciliata (Pallas, 1766) HS *

Pentapora fascialis (Pallas, 1766) HS * * * * * * *

Plagioecia patina (Lamarck, 1816) HS * * * *

Reptadeonella violacea (Johnston, 1847) HS * * * * * * * *

Reteporella septentrionalis (Harmer, 1933) HS * * * * * *

Schizoporella unicornis (Johnston, in Wood, 1844) HS * * * *

Scruparia sp HS * * * * *

Smittina landsborovi (Johnston, 1847) HS * * * *

Smittoidea reticulata (MacGillivray, 1842) HS

Tubulipora phalangea (Couch, 1844) HS * * * * * * * *

Brachiopoda

Gwynia capsula (Jeffreys, 1859) HS,C 5 1 1 1 16 17

Megathiris detruncata (Gmelin, 1790) HS,C 1 26 5 13 25 3 12

Echinodermata

Amphipholis squamata (DelleChiaje, 1829) LED 1 9 1 1 2 1

Asterina gibbosa (Pennant, 1777) HS 1

Centrostephanus longispinus (Philippi, 1845) HS,C 1 1 1

Page 16: Biodiversity of zoobenthic hard-substrate sublittoral

652 C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

Appendix

1(continued)

Taxa

EC

St.1

St.2

St.3

St.4

St.5

St.6

St.7

15m

30m

40m

15m

30m

15m

30m

30m’

40m

15m

30m

15m

30m

15m

30m

Echinocyamuspusillus(O

.F.M

uller,1776)

SS,D

C,CTM

15

75

19

Echinoidaejuveniles

U1

21

31

24

51

Ophiothrixfragilis(A

bildgaard,in

O.F.Muller,1789)

LED

43

Tunicata

Cionaintestinalis(Linnaeus,1758)

HS,F

2

Didem

num

sp.

HS

1

Halocynthia

papillosa

(Linnaeus,1767)

HS,C,G

31

211

29

11

Microcosm

ussabatieri(R

oule,1885)

HS,C

2

Styelacanopus(Savignyi,1816)

HS

14

11

11

Styelaplicata

(Lesueur,1823)

HS

HS,hard

substrate;M,meadows;C,coralligenous;SS,softsubstrate;PA,photophilic

algae;

Ma,maerl;F,fouling;G,caves;DC,detriticcoastalbottoms;CTM,coastalterrigenousmud;LED,

largeecologicaldistribution;U,unknown.Numbersreferto

thenumericalabundance;asteriskatcolonialorsessilespecies,numericalabundance

ofdominantspeciesper

samplingsite

(Am

�2)and

depth

level

inbold.

References

Abbiati, M., Bianchi, C.N., Castelli, A., 1987. Polychaete vertical

zonation along a littoral cliff in the west Mediterranean. P.S.Z.N.I:

Marine Ecology 8, 33–48.

Antoniadou, C., 2004. Crustaceans distribution pattern on vertical

cliffs in the North Aegean (Eastern Mediterranean). Fresenius

Environmental Bulletin 13, 726–732.

Antoniadou, C., Koutsoubas, D., Chintiroglou, C., Molluscan fauna

from infralittoral hard substrate assemblages in the North Aegean

Sea. Belgian Journal of Zoology, in press.

Antoniadou, C., Nicolaidou, A., Chintiroglou, C., Polychaetes

associated with the sciaphilic algae community in the North

Aegean Sea: spatial and temporal variability. Helgoland, Marine

Research, in press.

Athanassiadis, A., 1997. North Aegean Marine Algae IV. Womer-

sleyella setacea (Hollenberg) R.E. Norris (Rhodophyta, Ceram-

iales). Botanica Marina 40, 473–476.

Augier, H., 1982. Inventory and Classification of Marine Benthic

Biocenoses of the Mediterranean. Council of Europe, Publication

Section, Strasbourg, 45 pp.

Bellan, G., 1964. Polychaetes des horizons superieurs de l’etage

infralittoral rocheux dans la region Provencale. Tethys 1, 349–366.

Bellan-Santini, D., Desrosiers, G., Brethes, J.C., 1976. Action du rejet

thermique de l’usine de Martigues-Ponteau sur les peuplements de

substrat durs a dominance de zoobenthos dans la partie superieure

de l’etage infralittoral. Tethys 8, 83–92.

Bellan-Santini, D., 1985. The Mediterranean Benthos: reflections and

problems raised by a classification of the benthic assemblages. In:

Moraitou-Apostolopoulou, M., Kiortsis, V. (Eds.), Mediterranean

Marine Ecosystems. NATO Conference Series, 1. Ecology, NATO,

pp. 19–48.

Bellan-Santini, D., Lacazet, J.C., Poizat, C., 1994. Les biocenoses

marines et littorales de Mediterranee, synthese, menaces et

perspectives. Museum National d’Histoire Naturelle, Paris, 246 pp.

Bianchi, C.N., Morri, C., 2000. Marine biodiversity of the Mediter-

ranean Sea: situation, problems and prospects for future research.

Marine Pollution Bulletin 40, 367–376.

Bitar, G., 1982. Influence d’un grand emissaire urbain sur la

distribution du zoobenthos de substrat dur dans la region de

Marseille (Mediterranee nord-occidentale). Tethys 10, 200–210.

Boudouresque, C.F., 1984. Groupes ecologiques d’algues marines et

phytocenoses benthique en Mediterranee occidentale: une revue.

Giornale Botanica Italiana 118, 7–42.

Boudouresque, C.F., Verlaque, M., 2002. Biological pollution in the

Mediterranean Sea: invasive versus introduced macrophytes.

Marine Pollution Bulletin 44, 32–38.

Cardell, M.J., Gili, J.M., 1988. Distribution of a population of annelid

polychaetes in the ‘‘trottoir’’ of the midlittoral zone on the coast of

North-EastSpain,WesternMediterranean.MarineBiology99, 83–92.

Chemello, R., Milazzo, M., 2002. Effect of algal architecture on

associated fauna: some evidence from phytal mollusks. Marine

Biology 140, 981–990.

Chintiroglou, C., 1996. Feeding guilds of polychaetes associated with

Cladocora caespitosa (L.) (Anthozoa, Cnidaria) in the North

Aegean Sea. Israel Journal of Zoology 42, 261–274.

Chintiroglou, C., Antoniadou, C., Baxevanis, A., Damianidis, P.,

Karalis, P., Vafidis, D., 2004a. Peracarida populations of hard

substrate assemblages in ports of the NW Aegean Sea (Eastern

Mediterranean). Helgoland Marine Research 58, 54–61.

Chintiroglou, C., Damianidis, P., Antoniadou, C., Lantzouni, M.,

Vafidis, D., 2004b. Macrofauna biodiversity of mussel bed

assemblages in Thermaikos Gulf (northern Aegean Sea). Helgoland

Marine Research 58, 62–70.

Chintiroglou, C., Koukouras, A., 1992. A population of the sea

anemone Anemonia viridis (Forskal 1775) and its associated flora

Page 17: Biodiversity of zoobenthic hard-substrate sublittoral

653C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

and fauna in the North Aegean Sea. International Revue Ges

Hydrobiology 77, 483–495.

Cocito, S., Bianchi, C.N., Morri, C., Peirano, A., 2000. First survey of

sessile communities on subtidal rocks in an area with hydrothermal

vents: Milos Island, Aegean Sea. Hydrobiologia 426, 113–121.

Clarke, K.R., Green, R.H., 1988. Statistical design and analysis for

a ‘biological effects’ study. Marine Ecology Progress Series 46,

213–226.

Clarke, K.R., Warwick, R.M., 1994. Change in Marine Communities:

An Approach to Statistical Analysis and Interpretation. Natural

Environment Research Council, UK, 144 pp.

Costello, M.J., 1998. To know, research, manage and conserve marine

biodiversity. Oceanis 24, 25–49.

Dahl, L., Dahl, K., 2002. Temporal, spatial and substrate-dependent

variations of Danish hard-bottom macrofauna. Helgoland Marine

Research 56, 159–168.

Damianidis, P., Chintiroglou, C., 2000. Structure and function of

Polychaetofauna living in Mytilus galloprovincialis assemblages in

Thermaikos Gulf (N Aegean Sea). Oceanologica Acta 23, 323–337.

Ergen, Z., Cinar, M.E., 1997. Polychaeta of the Antalya bay

(Mediterranean coast of Turkey). Israel Journal of Zoology 43,

229–241.

Fraschetti, S., Bianchi, C.N., Terlizzi, A., Fanelli, G., Morri, C.,

Boero, F., 2001. Spatial variability and human disturbance in

shallow subtidal hard substrate assemblages: a regional approach.

Marine Ecology Progress Series 212, 1–12.

Fraschetti, S., Giangrande, A., Terlizzi, A., Miglietta, M.P., Della

Tommasa, L., Boero, F., 2002. Spatio-temporal variation of

hydroids and polychaetes associated with Cystoseira amentacea

(Fucales: Phaeophyceae). Marine Biology 140, 949–957.

Gaston, K., Spicer, J.I., 1998. Biodiversity. An Introduction, Black-

well, Oxford, 109 pp.

Giangrande, A., 1988. Polychaete zonation and its relation to algal

distribution down a vertical cliff in the Western Mediterranean

(Italy): a structural analysis. Journal of Experimental Marine

Biology and Ecology 120, 263–276.

Giangrande, A., Delos, A.L., Fraschetti, S., Musco, L., Licciano, M.,

Terlizzi, A., 2003. Polychaete assemblages along a rocky shore on

the South Adriatic coast (Mediterranean Sea): patterns of spatial

distribution. Marine Biology 143, 1109–1116.

Hong, J.S., 1982. Contribution a l’etude des peuplements d’un fond de

Concretionnent Coralligene dans la region marseillaise en Medi-

terranee Nord-Occidental. Bulletin Korea Ocean Research and

Development Institute 4, 27–51.

Karalis, P., Antoniadou, C., Cintiroglou, C., 2003. Structure of the

artificial hard substrate assemblages in ports in North Aegean Sea

(Thermaikos Gulf). Oceanologica Acta 26, 215–224.

Koukouras, A., Kuhlmann, D., Voultsiadou, E., Vafidis, D., Dounas,

C., Chintiroglou, C., Koutsoubas, D., 1998. The macrofaunal

assemblage associated with the scleractinia coral Cladocora

caespitosa (L.) in the Aegean Sea. Annales de l’Institut Ocean-

ographique Paris 74, 97–114.

Laborel, J., 1987. Marine biogenic constructions in the Mediterranean.

A review. Scientifique Report Port-Cros National Park 13, 13–126.

Leung Tack Kit, D., 1976. Etude de la faune marine de substrat

rocheux dans la zone de rejet des eaux residuaire de la ville de

Marseille. Tethys 7, 191–212.

Morri, C., Bianchi, C.N., Cocito, S., Peirano, A., DeBiasi, A.M.,

Aliani, S., Pansini, M., Boyer, M., Ferdeghini, F., Pestarino, M.,

Dando, P., 1999. Biodiversity of marine sessile epifauna at an

Aegean island subject to hydrothermal activity: Milos, Eastern

Mediterranean Sea. Marine Biology 135, 729–739.

Peres, J.M., 1982. Major benthic assemblages. In: Kinne, O. (Ed.),

Marine Ecology. John Wiley, London, pp. 373–522.

Piazzi, L., Cinelli, F., 2000. Effets de l’expansion des Rhodophycee

introduites Acrothamnion preissi et Womersleyella setacea sur les

communautes algales des rhizomes de Posidonia oceanica de

Mediterranee occidentale. Cryptogamie Algologie 21, 291–300.

Poulicek, M., 1985. Les mollusques des biocenoses a algues photo-

philes en Mediterranee: II. – Analyse du peuplement. Cahiers de

Biologie Marine 26, 127–136.

Richards, G.W., 1983. Molluscan zonation on rocky shores in Malta.

Journal of Conchology 31, 207–224.

Sarda, R., 1991. Polychaete communities related to plant covering in

the midlittoral and infralittoral zones of the Balearic Islands

(Western Mediterranean). P.S.Z.N.I.: Marine Ecology 12, 341–360.

Sartoretto, S., 1998. Bioerosion des concretions coralligenes de

Mediterranee par les organismes perforants: essai de quantification

des processus. C.R. Academie Science Paris 327, 839–844.

Stergiou, K.I., Christou, E.D., Georgopoulos, D., Zenetos, A.,

Souvermezoglou, C., 1997. The Hellenic Seas: physics, chemistry,

biology and fisheries. Oceanography and Marine Biology Annual

Revue 35, 415–538.

Terlizzi, A., Fraschetti, S., Guidetti, P., Boero, F., 2002. The effects of

sewage discharge on shallow hard substrate sessile assemblages.

Marine Pollution Bulletin 44, 544–550.

Terlizzi, A., Scuderi, D., Fraschetti, S., Guidetti, P., Boero, F., 2003.

Molluscs on subtidal cliffs: patterns of spatial distribution. Journal

of the Marine Biological Association of the UK 83, 165–172.

True, M.A., 1970. Etude quantitative de quatre peuplements sciaphiles

sur substrat rocheux dans la region Marseillaise. Bulletin Institut

Oceanographique Monaco 69, 1–48.

Zar, J.H., 1984. Biostatistical Analysis. Prentice Hall, New Jersey,

718 pp.