barra predicting risk at short horizons

Upload: richarddalaud24

Post on 03-Apr-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    1/26

    msci.com

    ModelInsight

    PredictingRiskatShortHorizonsACaseStudyfortheUSE4DModel

    JoseMenchero,

    Andrei

    Morozov

    and

    Andrea

    Pasqua

    [email protected]

    [email protected]

    [email protected]

    January2013

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    2/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    2 of26

    ContentsIntroduction.................................................................................3

    Evaluating the Accuracy of Risk Forecasts.......................

    3

    Bias Statistics............................................................................................................4

    Mean Rolling Absolute Deviation (MRAD)......................................................4

    Adjusted MRAD.......................................................................................................7

    Cross-sectional Bias Statistics.............................................................................7

    Q-statistics.................................................................................................................7

    The USE4 Model and Data Set.......................................... 10

    Estimating Volatility

    ................................................................

    11

    Exponentially Weighted Moving Averages (EWMA).................................11

    GARCH(1,1)..........................................................................................................13

    Volatility Regime Adjustment (VRA)...............................................................13

    Empirical Results.................................................................... 16

    Setting the Correlation Half-Life.......................................... 22

    Conclusion...............................................................................24

    References...............................................................................25

    Client Service Information is Available 24 Hours a Day............................26

    Notice and Disclaimer.........................................................................................26

    About MSCI............................................................................................................26

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    3/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    3 of26

    IntroductionEquityfactormodelsareafairlyrecentinvention.BarrRosenbergpioneeredtheuseofmultifactorrisk

    modelsasarobustwaytoestimatetheassetcovariancematrix(1974).In1975hefoundedBarra,which

    developedthefirstcommerciallyavailableriskmodelforUSequities,dubbedUSE1.

    Initially,theUSE1Modelwasestimatedfromquarterlydata.Later,asdatabecomemorewidely

    available,theobservationfrequencywasincreasedtomonthly.Formanyyears,usingmonthly

    observationstoestimatethefactorcovariancematrixwasstandardpractice.Forinstance,theBarra

    USE3Model,releasedin1998,usedmonthlyfactorreturnswithahalflifeof90monthsinthe

    estimationprocess.

    TheInternetBubblepresentedaseriouschallengeformodelsestimatedwithmonthlydata.Thecruxof

    theproblemwasthatvolatilitychangesweretoorapidandextremetobereliablycapturedusinglow

    frequencyobservations.Inresponsetothischallenge,BarraresearchersdevelopedtheUSE3SModel,

    whichuseddailyfactorreturnsforestimatingthecovariancematrix.Thehigherfrequencyof

    observationsallowedthemodeltoadaptmorerapidlytochanginglevelsofvolatility.

    Althoughthe

    USE3S

    Model

    employed

    daily

    factor

    returns,

    it

    maintained

    aprediction

    horizon

    of

    one

    month.Thiswasaccomplishedbyexplicitlyaccountingfortheeffectsofserialcorrelationinfactor

    returns,whichcancausesignificantdeviationsfromthefamiliarsquarerootoftimescaling.For

    instance,thereturnstotheMomentumfactortypicallyexhibitpositiveserialcorrelation.Thismakesthe

    factorsignificantlymorevolatileatthemonthlyhorizonthanwouldbesuggestedbyapplyingsquare

    rootoftimescalingtodailyvolatility.

    Formanyinstitutionalinvestors,however,therelevanthorizonmaybemuchshorterthanonemonth.

    Inthispaper,wefocusononedaypredictionhorizons.Onepossibleapproachforpredictingriskatone

    dayhorizonswouldbetotaketheforecastsfromamonthlymodelandsimplyapplysquarerootoftime

    scalingtobringthepredictionhorizontoasingleday.However,therearetwoshortcomingswiththis

    approach.First,themonthlymodeliscalibratedforalongerhorizonandwillnothavetheappropriate

    responsivenessfor

    aone

    day

    forecast.

    Second,

    the

    serial

    correlation

    adjustments

    that

    were

    used

    to

    provideaccurateforecastsatamonthlyhorizonnowrepresentsourcesoferrorataonedayhorizon.In

    otherwords,iftheobservationfrequencyissynchronizedwiththepredictionhorizon,thenserial

    correlationadjustmentsshouldnotbeincorporated.

    Inthispaper,wehighlightsomeofthemodelingissuesthatmustbeaddressedwhenconstructinga

    modelwithaonedaypredictionhorizon.Centraltothischallengeistheidentificationofareliable

    metrictoevaluatetheaccuracyofriskforecasts.

    EvaluatingtheAccuracyofRiskForecastsBuildingasoundriskmodelfirstrequiresareliablemeansofevaluatingtheaccuracyofriskforecasts.

    Thisprovidesanessentialguideforsettingmodelparametersandevaluatingperformance.Ideally,our

    measureofforecastingaccuracywillprovidebothtimeandportfolioresolution,meaningthatthe

    measurecanbeusedtoevaluateriskforecastsforasingleportfolioacrosstime,orforacollectionof

    portfolioswithinasingletimeperiod.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    4/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    4 of26

    BiasStatisticsOnecommonlyusedmeasuretoevaluatetheaccuracyofriskforecastsisthebiasstatistic,which

    conceptuallyrepresentstheratioofrealizedrisktoforecastrisk.Tocomputethebiasstatisticfora

    portfolio n ,wefirstusetheriskmodeltopredicttheportfoliovolatility nt atthestartofeveryperiod

    t.We

    then

    observe

    the

    out

    of

    sample

    return

    of

    the

    portfolio

    ntR

    overthe

    subsequent

    period.

    The

    standardizedreturnisdefinedby

    ntnt

    nt

    Rz

    , (1)

    andexpressestheportfolioreturnasazscore.Thebiasstatisticisgivenbythestandarddeviationof

    standardizedreturns,

    2

    1

    1

    1

    T

    n nt n

    t

    B z zT

    , (2)

    whereT isthenumberofdaysinthetestingwindow.

    Conceptually,thebiasstatisticmeasureswhethertheriskforecastswereaccurate,onaverage,fora

    singleportfolioacrosstime.Foraccurateforecasts,weexpecttherealizedbiasstatistictobecloseto1.

    However,duetosamplingerror,thebiasstatisticwillneverbeexactly1evenforperfectrisk

    forecasts.Instead,itiscustomarytoidentifyaconfidenceinterval.Assumingnormallydistributed

    returnsandperfectforecasts,the95percentconfidenceintervalisapproximately1 2 / T .

    Twoattractivefeaturesofthebiasstatisticarethatitissimpletointerpretandprovidesportfolio

    resolution.Unfortunately,itdoesnotprovidetimeresolution,meaningthatitpossibletounderpredict

    risk

    for

    some

    sub

    periods

    and

    over

    predict

    it

    for

    others

    while

    nonetheless

    obtaining

    a

    bias

    statistic

    close

    to1.Inotherwords,thebiasstatisticmayallowcancellationoferrorsacrosstime.Thisbecomes

    especiallyproblematicoverlongsampleperiodsencompassingmanyyearsandmultiplemarket

    regimes.Ariskmodelusermustbeconfidentthatvolatilityforecastsarereliableforallmarketregimes

    notjustonaverage.

    MeanRollingAbsoluteDeviation(MRAD)Onewaytopartiallymitigatethetimeresolutionproblemistodividethelongsampleperiodinto

    smallersubperiods,andtocomputethebiasstatisticsoverthesesubperiods.Forinstance,ifweselect

    12daysasthelengthofoursubperiod,weobtain,

    11 21

    11n nt n

    t

    B z z

    , (3)

    where denotesthestartofthe12daysubperiod.Thewindowisthenrolledforwardonedayatatimeuntilreachingtheendoftheentiresample.

    TheconventionalMeanRollingAbsoluteDeviation,orMRAD,isdefinedasthemeanabsolutedeviation

    ofthebiasstatisticsfromtheiridealvalueof1,

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    5/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    5 of26

    1

    111

    n

    n

    MRAD BN T

    , (4)

    whereN isthenumberofportfoliosand ( 11)T isthetotalnumberof(overlapping)12daysub

    periods.By

    virtue

    of

    the

    absolute

    value,

    MRAD

    penalizes

    both

    under

    prediction

    and

    over

    prediction

    of

    risk.Assumingperfectforecasts,normallydistributedreturns,and12daysubperiods,itmaybeshown

    thattheexpectedvalueofMRADisapproximately0.17.

    Realfinancialdata,ofcourse,tendtohavefattails.InFigure1,weplottheexpectedvalueofMRAD

    versuskurtosisforperfectriskforecasts.Theseresultsweregeneratedviasimulationbydrawing12

    randomlygeneratedreturnsfromafattaileddistributionwithstandarddeviationequalto1.Thefat

    tailswereobtainedusingastudenttdistributionwiththeappropriatenumberofdegreesoffreedom.

    Weseethatasthekurtosisrisestoevenmodestlevels,theexpectedMRADforperfectforecasts

    increasessignificantly.

    Figure 1: MRAD versus kurtosis for perfect risk forecasts. Kurtosis levels were varied using a student t-distribution with the appropriate number of degrees of freedom.

    Kurtosis

    3 4 5 6 7 8 9 10

    MRAD

    0.17

    0.18

    0.19

    0.20

    0.21

    0.22

    0.23

    0.24

    WhiletheMRADmeasurehelpsmitigatecancelationoferrorsoverthelongrun,itisnotsuitableforrisk

    modelcalibration,asitmayspuriouslyfavoroverlyresponsiveforecasts.Thiscanbestbeseenbya

    simulationexperiment.Wegeneratedonemillionsimulatedreturnsfromastandardnormal

    distribution.Wethenestimatedthevolatilityusingexponentiallyweightedaverageswithagivenhalf

    lifeparameter.Sincethesimulatedreturnsarestationary(i.e.,theirdistributiondoesnotchangeover

    time),thetrueoptimalhalflifeisinfinite,asthiseliminatessamplingerrorandhencerecoversthe

    perfectriskforecast.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    6/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    6 of26

    InFigure2,wepresenttheresultsofthesimulationstudy.Whereasthetrueoptimalhalflifeisinfinite,

    Figure2spuriouslypointstoanoptimalhalflifeofonlysixdays.Furthermore,theminimumMRADis

    approximately0.16,wellbelowthetheoreticallowerboundof0.17forperfectforecasts.Howcanthese

    puzzlingresultsbeexplained?

    Figure 2: Conventional MRAD versus EWMA volatility half-life. Returns were generated using a standardnormal distribution. The conventional MRAD displays a spurious minimum at a six-day half-life, and exhibitsa value below the theoretical lower bound for perfect forecasts.

    VolatilityHalfLife(Days)

    0 5 10 15 20 25 30 35 40

    ConventionalM

    RAD

    0.15

    0.16

    0.17

    0.18

    0.19

    0.20

    0.21

    0.15

    0.16

    0.17

    0.18

    0.19

    0.20

    0.21

    0.22

    SpuriousMinimum

    ThisconundrumisresolvedbyrecognizingthatthebiasstatisticandbyextensiontheMRADisnot

    atrueoutofsamplemeasure.Thismaybesurprisingatfirstglance,sincethebiasstatisticiscomputed

    usingoutofsamplezscores.Nevertheless,becauseriskforecastsareupdateddaily,thebiasstatistic

    usesinformationinthevolatilityforecaststhatwasnotknownatthestartofthe12dayperiod.

    Thatthistendstofavoroverlyresponsiveriskforecastsmaybeseenbythefollowingthought

    experiment.Assumeforsimplicitythatreturnsaredrawnfromastandardnormaldistribution.Suppose

    that,by

    chance,

    the

    portfolio

    experiences

    several

    large

    standardized

    returns.

    In

    this

    case,

    the

    12

    day

    biasstatisticislikelytoexceed1.However,byoverreactingtotheeventanddramaticallyincreasingrisk

    forecasts,thesubsequentzscoreswillbeartificiallyreduced.Althoughtheriskforecastsfollowingthe

    eventarebiasedupward,therealizedbiasstatisticiscloserto1.Conversely,astringofsmallreturnsis

    likelytoleadtoabiasstatisticlessthan1.Byreducingriskforecasts,thesubsequentstandardized

    returnswillbeartificiallyinflated,againleadingtoabiasstatisticcloserto1.Inotherwords,excessive

    responsivenessproducesnoisyandinaccurateriskforecasts,althoughtherealizedbiasstatisticsmaybe

    deceptivelycloseto1.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    7/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    7 of26

    AdjustedMRADAstraightforwardwaytoremovetheinsampleeffectistosimplyuseriskforecaststakenfromthestart

    ofthe12dayperiod,andtoholdtheseforecastsconstantoverthenext12days.Thisleadstothe

    adjustedMRADmeasure.AnadvantageoftheadjustedMRADmeasureisthatitusesnoinformationin

    thevolatilityforecaststhatwasnotknownatthestartofthe12daysubperiod,andtherefore

    representsatrue

    out

    of

    sample

    measure.

    A

    disadvantage

    of

    the

    adjusted

    MRAD

    is

    that

    it

    requires

    using

    somewhatstaleforecasts.

    CrossSectionalBiasStatisticsAnothermeasureofforecastingaccuracyisthecrosssectionalbiasstatistic,

    2

    1

    1

    1

    N

    t nt t

    n

    B z zN

    . (5)

    Thisis

    similar

    to

    the

    time

    series

    bias

    statistic

    of

    Equation

    2,

    except

    that

    now

    the

    standard

    deviation

    is

    computedacrossportfoliosforasingleday t.Sincethecrosssectionalbiasstatisticusesnoinformation

    forvolatilityforecaststhatwasunknownatthestartofthesubperiod,itrepresentsatrueoutof

    samplemeasure.

    Conceptually,thecrosssectionalbiasstatisticmeasureswhethertheriskmodelforecastswere

    accurate,onaverage,foracollectionofportfoliosonasingleday.Itcannot,however,answerwhether

    theriskmodelforecastswereaccurateforindividualportfolios.Inotherwords,thecrosssectionalbias

    statisticprovidestimeresolution,butnotportfolioresolution.Consequently,itispossibletoobtaina

    crosssectionalbiasstatisticcloseto1,evenifriskforecastsforindividualportfolioswerepoor.In

    particular,thismayoccurifoverpredictionerrorsforsomeportfoliosarecanceledbyunderprediction

    errorsforothers.

    QstatisticsPatton(2011)describesmeasuresofforecastaccuracyintermsoflossfunctions.Hedefinesaloss

    functionasrobustiftherankingofanytwovolatilityforecastsbyexpectedlossisthesamewhether

    therankingisdoneusingthetruevariance(unobservable)orsomeunbiasedvarianceproxy(e.g.,

    squaredreturn).OneexampleofarobustlossfunctionistheQstatistic,definedforportfolio n andtime tas

    2 2lnnt nt nt Q z z . (6)

    Pattonfurther

    shows

    that

    the

    Q

    statistic

    is

    the

    unique

    loss

    function

    (up

    to

    trivial

    additive

    and

    multiplicativeconstants)thatdependssolelyonstandardizedreturns(i.e.,zscores).ThismakestheQ

    statisticidealforevaluatingriskmodelaccuracy,becauseitplaceseveryobservationonanequalfooting

    (whetherthevolatilityishighorlow).

    Anotherkeypropertyofrobustlossfunctionsisthattheyareminimizedinexpectationwhenthe

    predictedvolatilityequalsthetruevolatility.Forotherlossfunctions,thisisnottrue.Thatis,abiased

    volatilityforecastcanminimizethelossfunction.Thiswouldobviouslybeproblematicforriskmodel

    calibrationpurposes.TheMRADisanexampleofalossfunctionthatisnotrobust.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    8/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    8 of26

    AlsonotethattheQstatisticclearlysatisfiesbothtimeandportfolioresolution.Thatis,itisnotbased

    onaveraging,soitisnotpossibletooffsetanoverforecastingerrorforoneobservationwithanunder

    forecastingerrorforadifferentobservation.Ofcourse,theQstatisticcanbeaveragedeitheracross

    timeoracrossportfoliostoobtainthedesiredresolution.

    Intuitively,wecanthinkoftheQstatisticasbeingcomprisedoftwopenaltyfunctions.Thefirstterm,2

    ntz ,becomeslargewhenriskforecastsaretoolowandthereforerepresentsanunderforecasting

    penaltyfunction.Thesecondterm, 2ln ntz ,representstheoverforecastingpenaltyfunctionanddominateswhenriskforecastsaretoohigh.

    ItisimportanttounderstandtheexpectedvalueoftheQstatisticforperfectriskforecasts.Ifreturns

    arenormallydistributed,theexpectedvalueoftheQstatisticisapproximately2.27.AswiththeMRAD,

    however,itisarathersensitivefunctionofkurtosis.InFigure3weplottheexpectedvalueoftheQ

    statisticversuskurtosis,assumingperfectriskforecasts.

    Figure 3: Q-statistic versus kurtosis for perfect risk forecasts. Kurtosis levels were varied using a student t-

    distribution with the appropriate number of degrees of freedom.

    Kurtosis

    3 4 5 6 7 8 9 10

    Q

    statistic

    2.25

    2.30

    2.35

    2.40

    2.45

    2.50

    2.55

    2.60

    ItisalsointerestingtoconsiderhowbiasesinvolatilityforecastsaffectchangesintheQstatistic.

    Assumethat

    returns

    are

    drawn

    from

    astandard

    normal

    distribution

    (i.e.,

    with

    true

    volatility

    of

    1).

    Let

    thevolatilityforecastsbedenotedby P .Onemayshowthattheexpectedlossrelativetoperfect

    forecastsisgivenby

    21

    2ln 1P

    P

    E Q

    . (7)

    ThisfunctionisplottedinFigure4.Ifthepredictedvolatilityisequaltothetruevolatility 1P ,thentheexpectedlossiszero.Notealsothatthelossfunctionisasymmetric.Thatis,itpenalizesunder

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    9/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    9 of26

    predictionofriskmoreheavilythanoverpredictionofrisk.Forinstance,ifthepredictedvolatilityishalf

    thetruevolatility,thentheincreaseinQstatisticisapproximately1.61.However,ifthepredicted

    volatilityisdoublethetruevolatility,thentheincreaseinQstatisticisonlyabout0.64.Thisisanother

    attractivefeatureoftheQstatistic,sincemostinvestmentmanagersregardunderpredictionofriskas

    moreproblematicthanoverpredictionofrisk.

    Figure 4: Increase in Q-statistic versus predicted volatility when the true volatility is 1. Results were obtainedassuming a normal distribution. The asymmetry indicates that the Q-statistic penalizes under-forecasting ofrisk more heavily than over-forecasting of risk.

    PredictedVolatility

    0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    Q

    0.0

    0.5

    1.0

    1.5

    2.0

    ItisinstructivetorepeatthesimulationexerciseofFigure2,exceptnowusingtheadjustedMRADand

    Qstatistics.TheresultsarepresentedinFigure5.Weseethatneitherofthesemeasuresexhibitsa

    spuriousminimum,thuscorrectlypointingtoaninfiniteoptimalhalflife.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    10/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    10 of26

    Figure 5: Q-statistic and adjusted MRAD versus EWMA volatility half-life. Returns were generated using astandard normal distribution. Neither quantity exhibits a spurious minimum, thus correctly pointing to aninfinite half-life.

    VolatilityHalfLife(Days)

    0 5 10 15 20 25 30 35 40

    Q

    2.2

    2.3

    2.4

    2.5

    2.6

    MRAD

    0.15

    0.16

    0.17

    0.18

    0.19

    0.20

    0.21

    0.22

    0.23

    MeanQ

    MRAD(Adjusted)

    TheUSE4ModelandDataSetTheempiricaldatasetusedforthisstudyconsistsofthehistoryofdailyfactorreturnsfromtheBarraUS

    EquityRiskModel(USE4).Thehistoryofdailyfactorreturnsstartsin1993,whilethevolatilityforecasts

    inourempiricalstudybeginonJuly19,1995.Thedatasetcontains4,328tradingdays,endingon

    September21,2012.

    TheUSE4Modelisavailableinlonghorizon(USE4L)andshorthorizon(USE4S)versions.Bothmodels

    sharethesamefactorstructureandfactorreturns,butdifferintheirresponsiveness.TheUSE4SModel

    isdesignedtoprovidethemostaccurateforecastsataonemonthpredictionhorizon.TheUSE4LModel

    is

    tailored

    for

    longer

    term

    investors

    who

    are

    willing

    to

    trade

    some

    degree

    of

    forecasting

    accuracy

    for

    greaterstabilityintheriskforecasts.WiththelaunchofUSE4D,theUSE4Modelisnowavailableina

    thirdversionfordailyhorizonforecasts.Again,theUSE4DModelsharesthesamefactorstructureand

    factorreturnsasthetwootherUSE4Modelvariants.

    Here,webrieflyreviewsomehighlightsoftheUSE4Model.EmpiricalresultscanbefoundinYang,

    Menchero,Orr,andWang(2011),whilemethodologydetailsaredescribedinMenchero,Orr,andWang

    (2011).TheUSE4Modelcontains73factors,comprisedof: (a)theCountryfactor,whichisthe

    regressionintercept,(b)60industryfactors,and(c)12stylefactors.Factorreturnsareestimatedby

    performingdailycrosssectionalregressionsofstockreturnsagainstthestartofdayfactorexposures.

    TheestimationuniverseistheMSCIUSAIMI,abroadindexrepresentingtheUSmarket.Themodel

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    11/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    11 of26

    employssquarerootofmarketcapitalizationastheregressionweights.Theexactcolinearitybetween

    industryfactorexposuresandtheCountryfactorisremovedbyconstrainingtheindustryfactorreturns

    tobecapweightedmeanzeroeveryperiod.

    AsdescribedbyMenchero(2010),theestimatedfactorreturnsmaybeinterpretedasthereturnsof

    factormimickingportfolios.TheCountryfactorportfolioessentiallyrepresentsthecapweighted

    estimationuniverse(i.e.,MSCIUSAIMI).Theindustryfactorportfoliosaredollarneutralandcapture

    theperformanceoftheindustrynetofthemarketandotherstyles.Thestylefactorportfoliosaredollar

    neutralandhaveunittiltontheparticularstyle,withzeroexposuretoindustriesandotherstyles.

    EstimatingVolatilityThesimplestwaytoestimatevolatilityistocomputethesamplestandarddeviationoveratrailing

    window.Ifstockreturndistributionswerestationary,thenusingthemaximumsamplesizeandequally

    weightingeveryobservationwouldminimizesamplingerrorandhenceproducethemostaccurate

    forecast.

    Stockreturndistributions,however,arenotstationary.Eventsthatoccurredtenyearsagohavelittleto

    dowithcurrentvolatilitylevels.Therefore,toreflectcurrentmarketconditions,wemustgivemore

    weighttorecentobservations.Thecrucialquestionishowmuchmore?Ontheonehand,ifwegivetoo

    muchweighttorecentobservations,thenwebaseourestimatesonveryfewdatapointsandweare

    stronglypenalizedwithsamplingerror.Bycontrast,ifwegivetoomuchweighttodistantobservations,

    thenweareharmedbyincorporatingstaledataintoourvolatilityestimates.Makinggoodriskforecasts

    forrealfinancialdatarequiresanoptimaltradeoffbetweenthesetwoeffects.

    ExponentiallyWeightedMovingAverages(EWMA)

    A

    simple,

    yet

    effective,

    technique

    for

    attaching

    more

    weight

    to

    recent

    observations

    is

    exponential

    weightedmovingaverages(EWMA).Inthisapproach,thevarianceiswrittenasaweightedaverageof

    laggedsquaredreturns.

    2 2

    t m t m

    m

    w r

    , (8)

    wheretheweights mw sumto1,anddecreasebyfixedproportioneveryperiod.Morespecifically,

    1m mw w

    ,where isthedecayfactor.TheEWMAestimatecanbeconvenientlyrewrittenin

    recursiveformasaweightedaveragebetweenyesterdayssquaredreturnandyesterdaysvariance

    forecast,

    2 2 21 11t t tr . (9)

    Therelativeweightweplaceonyesterdaysvarianceforecastdeterminestheresponsivenessofthe

    modelandisrelatedtotheEWMAvolatilityhalflifeparameterasfollows,

    ln 0.5

    lnHL

    . (10)

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    12/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    12 of26

    TheEWMAvolatilityhalflifeisacriticalmodelparameter.Toguideusinselectinganappropriatevalue,

    wecomputetheaverageadjustedMRADandQstatisticforUSE4dailyfactorreturns,withtheaverages

    takenoverallfactorsandtimeperiods.InFigure6,weplotthesequantitiesversustheEWMAvolatility

    halflife.UnlikethesimulatedresultsinFigure5,weseethatrealfinancialdatadoexhibitaclear

    minimum.Figure6showsthattheoptimalvolatilityhalflifebyboththeQstatisticandtheadjusted

    MRADis

    about

    21

    trading

    days,

    or

    one

    month.

    Reassuringly,

    both

    out

    of

    sample

    statistics

    point

    to

    the

    sameoptimalhalflife.Notethata21dayvolatilityhalflifecorrespondstoadecayfactorof0.97

    accordingtoEquation10.

    Figure 6: Q-statistic, adjusted MRAD, and conventional MRAD versus volatility half-life for EWMA forecastsusing USE4 daily factor returns. The optimal half-life is about one month (21 trading days) by either the Q-statistic or the adjusted MRAD. The conventional MRAD spuriously points to an optimal half-life of about fivetrading days.

    VolatilityHalfLife(Days)

    0 20 40 60 80 100

    Q

    2.35

    2.40

    2.45

    2.50

    2.55

    2.60

    MRAD

    0.2000

    0.2200

    0.2400

    0.2600

    0.2800

    0.3000

    MeanQ

    MRAD(Conventional)

    MRAD(Adjusted)

    Forcomparisonpurposes,wealsopresenttheconventionalMRADinFigure6.Notethatthismeasure

    suggestsanoptimalhalflifeofjustfivedays.AlsoobservethattheminimumMRADiswellbelowthe

    minimumvalueoftheadjustedMRAD.Theseresultsillustratethistimeusingrealfinancialdata

    thesameeffectseeninthesimulatedresultsofFigure2.Thatis,insampleeffectsspuriouslypointto

    excessivelyshorthalflifeparameters,whichinturnproducedeceptivelyattractiveMRADvalues.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    13/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    13 of26

    GARCH(1,1)ThemethodofGeneralizedAutoRegressiveConditionalHeteroskedasticty,orGARCH,wasdevelopedby

    Engle(1982),Bollerslev(1986)andothersinthe1980s.Bynow,therearemanyvariationsofGARCH.An

    excellentsurveyofthesetechniquesisprovidedbyBauwens,Laurent,andRombouts(2006)

    Inthis

    paper,

    we

    focus

    on

    the

    most

    widespread

    variant

    of

    GARCH,

    namely

    GARCH(1,1).

    In

    this

    approach,

    varianceestimatesaregivenby

    2 2 2 2

    1 1t t tr

    . (11)

    Thisexpressespredictedvarianceasaweightedaverageofthreeterms:(a)yesterdayssquaredreturn,

    withweight,(b)yesterdaysvarianceforecast,withweight ,and(c)alongrunvariance,with

    weight .Thestabilityconditionrequiresthattheweightssumto1,

    1 . (12)

    Wedetermine

    the

    parameters

    using

    maximum

    likelihood

    estimation

    with

    atwo

    year

    look

    back

    window.

    WeestimateGARCHparametersseparatelyforeveryfactorinthemodel.

    GARCHhasseveralconceptuallyappealingattributes.First,themodelprovidesformeanreversionin

    volatilityforecaststhroughthelongrunvarianceterminEquation11.Also,GARCHreplicatesthe

    volatilityclusteringoftenfoundinfinancialtimeseries.Finally,bysettingthe parametertozero,

    GARCH(1,1)encompassesEWMAasaspeciallimitingcase.

    VolatilityRegimeAdjustment(VRA)TheUSE4DModelutilizestheVolatilityRegimeAdjustment(VRA)techniquetoestimatefactor

    volatilities.ThistechniquewasfirstintroducedwiththelaunchoftheBarraUSEquityModel(USE4),as

    describedby

    Menchero,

    Orr,

    and

    Wang

    (2011).

    The

    central

    concept

    behind

    this

    approach

    is

    to

    use

    cross

    sectionalobservationstocalibratethemodeltocurrentvolatilitylevels.

    Riskmodelsbaseforecastsonhistoricalobservations.However,sincevolatilitylevelsvaryacrosstime,

    thismayleadtocertainbiasesintheriskforecasts.Forinstance,enteringaperiodoffinancialcrisis,

    volatilitylevelstendtorise.Inthiscase,riskmodelsusethelowervolatilitypasttopredictthehigher

    volatilityfuture,thuscausingatendencytounderpredictriskduringtheseperiods.Conversely,

    immediatelyfollowingaperiodoffinancialturmoil,therearemanyextremeeventsintheestimation

    window,whichcreatesatendencytooverpredictriskatsuchtimes.Sinceriskmodelsarenotcrystal

    balls,thereisnowaytocompletelyeliminatethesebiases.TheVRAtechnique,however,isdesignedto

    mitigatethesebiasesbyusingcrosssectionalobservationstocalibratethemodeltocurrentvolatility

    levels.

    ThefirststepintheVRAtechniqueistoestimatefactorvolatilitiesusingEWMA,asinEquation8.This

    estimateischaracterizedbythevolatilityhalflifeparameter,definedbyEquation10.Next,wecompute

    thecrosssectionalbiasstatistic,asinEquation5.Thecomputationisperformedoverthezscoresof

    dailyfactorreturns,usingtheEWMAvolatilityforecastsfromthefirststep.Wecanthinkofthecross

    sectionalbiasstatisticasprovidinganinstantaneousmeasureofriskforecastingbias.Thefactor

    volatilitymultiplier,attime t,isdefinedintermsofthetrailingcrosssectionalbiasstatistics,

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    14/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    14 of26

    2F

    t m t m

    m

    u B

    , (13)

    where mu istheexponentialweightcharacterizedbytheVRAhalflifeparameter.

    Ifthefactorvolatilitymultiplierisgreaterthan1,itsaystheoriginalEWMAestimatesweretoolow,and

    riskforecastsshouldbeadjustedupward.Conversely,when Ft

    islessthan1,EWMAestimateswere

    toohighandriskforecastsshouldbeadjusteddownward.Theadjustedvolatilityforecastforfactor kattime tisgivenby

    F

    kt t kt . (14)

    Thisadjustmentisdesignedtoremovetheaveragebias,withallfactorvolatilitiesscaledbythesame

    proportion.

    VolatilityestimationwiththeVRAtechniquethereforerequirestwohalflifeparameters:theEWMA

    volatilityhalf

    life

    defined

    in

    Equation

    10,

    and

    the

    VRA

    half

    life

    used

    in

    Equation

    13.

    To

    find

    the

    optimal

    valuesforthesetwoparameters,weperformasearchfortheglobalminimumQstatisticoverthetwo

    dimensionalspace.InFigure7,weplotcurvesofQstatistics(averagedacrossfactorsandtimeperiods)

    versustheVRAhalflifeforseveralvaluesoftheEWMAvolatilityhalflife.Wefindthatthecombination

    thatminimizestheQstatisticisa42dayEWMAvolatilityhalflifeinconjunctionwithatwodayVRA

    halflife.

    Figure 7: Q-statistic curves versus VRA half-life for three values of EWMA volatility half-life. The Q-statistic isminimized at a VRA half-life of two days and an EWMA volatility half-life of 42 days.

    VolatilityRegimeHalfLife(days)

    0 5 10 15 20

    Q

    2.41

    2.42

    2.43

    2.44

    21day

    VOL

    HL

    84dayVOLHL

    42dayVOLHL

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    15/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    15 of26

    Atfirstglance,atwodayVRAhalflifemayseemsurprisinglyshort.Recall,however,thatitisprimarily

    thepenaltyofsamplingerrorthatimposeslimitsontheresponsivenessofthemodel.IntheEWMA

    approach,wherevolatilitiesareestimatedonefactoratatime,samplingerrorisrelativelylarge.Inthe

    VRAapproach,bycontrast,welargelymitigatesamplingerrorbyvirtueofusing73crosssectional

    observationseveryday.

    AlthoughatwodayVRAhalflifeisoptimalintermsofforecastingaccuracy,itmayleadtoratherlarge

    dailyfluctuationsinpredictedvolatilities.Toreducesuchvariability,theUSE4DModelcombinesthe42

    dayEWMAvolatilityhalflifewithafourdayVRAhalflife.Thisprovidesconsiderablymorestabilityin

    volatilityforecasts,whileproducingonlyamodestincreaseintheQstatistic,asevidentfromFigure7.

    Thefinancialcrisisperiodof2008and2009affordsaprimeexampletoillustratethebehaviorofthe

    VRAtechnique.InFigure8,weplotthefactorvolatilitymultiplier Ft

    togetherwiththefactorcross

    sectionalvolatility(CSV),definedas

    21t kt

    k

    CSV f K

    . (15)

    Figure 8: Factor volatility multiplier and factor cross-sectional volatility (CSV) for the USE4D model. Resultswere smoothed using 10-day rolling windows.

    Year

    2008 2009 2010

    FactorVolatilityMult

    iplier

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    FactorCSV(percentd

    aily)

    0

    1

    2

    3

    4

    5

    6Factor

    Volatility

    Multiplier

    Factor

    CSV

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    16/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    16 of26

    InJanuary2008,weseethatfactorCSVspikedfrom60bpstoabout150bpsperday.Thefactor

    volatilitymultiplierrespondedquicklytotheincreasedvolatilitylevels,reachingamaximumvalueof1.7

    duringthemonth.ThenextbigspikeinfactorCSVcameatthestartofSeptember2008,whenlevels

    stoodatabout100bpsperday.Overthenexttwomonths,theselevelshadmorethandoubledto250

    bpsperday.Again,thefactorvolatilitymultiplierquicklydetectedtheincreasedvolatilitylevels,hitting

    apeak

    of

    1.8

    in

    October

    2008.

    BytheendofApril,2009,theworstofthefinancialstormwasover,andfactorvolatilitylevelsstoodat

    about150bpsperday.Thenexteightmonthssawastrongseculardeclineinvolatilitylevels,withfactor

    CSVhittingalowofabout50bpsperdaybytheendof2009.Overthistimeofrapidlydeclining

    volatility,thefactorvolatilitymultiplierwaswellbelow1,hittinglowsofabout0.6duringthisperiod.

    ThisexampledemonstratestheeffectivenessoftheVRAtechniqueforreducingvolatilityforecastsin

    theaftermathofafinancialcrisis.

    EmpiricalResultsInthissection,wecompareforecastsforsixdifferentsetsofvolatilityestimates.Thedatasetusedfor

    ourstudyisthefullhistoryofUSE4dailyfactorreturns,asdescribedpreviously.Thefirstsetofvolatility

    estimatesistakendirectlyfromtheUSE4Dmodel,whichusesavolatilityhalflifeof42daysandaVRA

    halflifeoffourdays.Next,weconsiderahighlyresponsiveEWMAforecast,withvolatilityhalflifeof

    fourdays(i.e.,equaltotheVRAhalflifeofUSE4D).WerefertothisastheEWMA(4)forecast.Wealso

    considertheEWMA(21)forecast,whichusestheoptimalvolatilityhalflifeof21days,asseeninFigure

    6.ThelastEWMAforecastweconsiderisEWMA(42),whichusesthesamevolatilityhalflifeasUSE4D.

    WealsoreportresultsfortheGARCH(1,1)model,describedabove.Finally,weexaminetheUSE4S

    model,withvolatilityforecastsscaledtoaonedayhorizon.

    Beforepresentingresultsonforecastingaccuracy,weconsiderthestabilityofthevolatilityforecasts.To

    investigate

    this,

    we

    first

    compute

    for

    factor

    k

    and

    day

    t

    the

    absolute

    change

    in

    volatility

    forecast

    over

    thepreviousday,

    , , 1

    ,

    , 1

    k t k t

    k t

    k t

    v

    . (16)

    Wethendefinetheforecastvariabilityastheaverageoverallfactorsandalltimeperiods,

    ,

    ,

    1k t

    k t

    v vKT

    . (17)

    Thevariability

    for

    each

    volatility

    forecast

    is

    reported

    in

    Table

    1.

    The

    variability

    ranged

    from

    alow

    of

    63

    bpsforUSE4S,toahighof7.96percentforEWMA(4).TheUSE4DModelhadanintermediatevariability

    at2.82percent.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    17/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    17 of26

    Table 1: Comparison for six different volatility estimates. Averages were computed across all 73 factors and4328 trading days. Differences in Q-statistics are relative to the USE4D model.

    Variability Conventional Adjusted Q Statistic

    Model (Percent) MRAD MRAD Q Statistic (Difference)

    USE4D 2.82 0.2124 0.2478 2.4182 0.0000

    EWMA(4) 7.96 0.2059 0.3092 2.5231 0.1049

    EWMA(21) 1.66 0.2239 0.2562 2.4455 0.0274

    EWMA(42) 0.85 0.2403 0.2590 2.4564 0.0382

    GARCH(1,1) 4.33 0.2147 0.2622 2.4486 0.0304

    USE4S 0.63 0.2507 0.2647 2.4631 0.0450

    InTable1,wealsoreportMRADandQstatisticsforthesixvolatilityforecasts.Bytheconventional

    MRADmeasure,

    EWMA(4)

    has

    the

    lowest

    score.

    However,

    as

    we

    have

    seen,

    the

    conventional

    MRAD

    stronglyfavorsoverlyresponsiveforecastswhichcanmaketheMRADappearartificiallylow.Thetrue

    outofsamplemeasures(adjustedMRADandQstatistic)paintadifferentpictureofforecasting

    accuracy.

    ByeithertheadjustedMRADortheQstatistic,theUSE4Dmodelproducedthemostaccuratevolatility

    forecasts.WealsoreportinTable1thedifferenceinaverageQstatisticrelativetotheUSE4DModel.

    Theaveragewascomputedoverall73factorsandtheentiresampleperiodof4,328tradingdays.The

    secondmostaccurateforecastswereprovidedbytheEWMA(21)model,whichhadaQstatistic0.0274

    aboveUSE4D.TheleastaccurateforecastswerefortheEWMA(4)model,whichscoredaQstatistic

    0.1049abovetheUSE4Dmodel.

    ItisausefulexercisetotranslatedifferencesinQstatisticsintoforecastingerrors.Thisisdifficulttodo

    precisely,sinceitdependsontheforecasterrorsofeachestimateaswellasthereturndistributionsofthetestportfolios.Nevertheless,aroughsensecanbegleanedfromEquation7andFigure4.Wesee

    thatadifferenceinQstatisticof0.10translatesroughlyintoapredictedvolatilityof 0.81P (i.e.,19

    percentunderforecastingbias)or 1.28P (28percentoverprediction).Similarly,aQstatistic

    differenceof0.03correspondsroughlytoforecastsof 0.89P (11percentunderforecast)or

    1.14P (14percentoverforecast).

    Itisalsoimportanttoconsiderthestatisticalsignificanceofthesefindings.Onewaytogaugestatistical

    significanceistocountthenumberoffactorsforwhichUSE4DproducedlowerQstatisticsthanthe

    otherforecasts.ComparedwithGARCH(1,1),theUSE4DmodelproducedlowerQstatisticsfor71ofthe

    73factors.

    Relative

    to

    EWMA(42)

    or

    USE4S,

    the

    USE4D

    model

    outperformed

    for

    72

    of

    the

    73

    factors.

    Finally,versusEWMA(4)orEWMA(21),theUSE4Dmodeloutperformedforallfactors.Thelikelihoodof

    theseresultsoccurringbymerechanceisexceedinglysmall.Thus,wecanconcludewithhighstatistical

    confidencethattheUSE4Dmodelprovidedmoreaccurateriskforecaststhantheotherapproaches.

    Although,onaverage,theUSE4DModelproducedmoreaccurateforecastsoverthefullsampleperiod,

    itisimportanttoinvestigatethepersistenceoftheseresultsacrosstime.Forinstance,ifthe

    outperformancewasdueprimarilytoaspecificsubperiod(suchasthe2008/2009financialcrisis),it

    maycallintoquestiontherobustnessoftheVRAmethodology.Toexplorethispossibility,wedefinethe

    cumulativeQincrement,

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    18/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    18 of26

    1 1

    1 K A Bkt kt

    k t

    Q Q QKT

    , (18)

    where Akt

    Q istheQstatisticforforecast A ,factor k,attime t,and Bkt

    Q isthecorrespondingquantity

    forforecastB .Wecanthinkof Q askeepingarunningtallyofthedifferenceinaccuracy

    betweenforecasts A andB .Attheendofthesampleperiod, T ,thecumulativeQincrementbecomessimplytheaveragedifferenceinQstatisticbetweenthetwoforecasts.HereweletforecastB

    representtheUSE4Dmodel,whereasforecast A isusedtorepresentthealternative.

    InFigure9weplotthecumulativeQincrementforallmodelsrelativetoUSE4D.Notethatallofthelines

    haveapersistentupwardslope,indicatingthattheUSE4Dmodelconsistentlyprovidedmoreaccurate

    forecastsacrossallmarketregimes.

    Figure 9: Cumulative Q increment (relative to USE4D) versus time for five sets of volatility forecasts. Thepersistent upward slope indicates that the USE4D consistently provided more accurate forecasts acrossdifferent market regimes.

    Year

    1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

    CumulativeQ

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    EWMA(4)

    EWMA(21)

    EWMA(42)

    GARCH(1,1)

    USE4S

    Inordertodevelopgreaterintuitionforhowtheseforecastscompare,itisusefultocomparetime

    seriesplotsofthevolatilityforecastsforspecificfactors.

    InFigure10,weplotthepredictedvolatilityoftheUSE4CountryfactorcomputedwithEWMA(42)and

    USE4D,overtheperiod20072010.Weseethatoverthelastfourmonthsof2008,theUSE4DModel

    predictedsignificantlyhighervolatilityfortheCountryfactorthantheEWMA(42)forecast.

    Conversely,forthelasteightmonthsof2009,theEWMA(42)forecastsweresignificantlyhigher.These

    resultsareconsistentwiththegreaterresponsivenessofUSE4DrelativetoEWMA(42).

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    19/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    19 of26

    Figure 10: Predicted volatility of USE4 Country factor for USE4D and EWMA(42) forecasts.

    Year

    2007 2008 2009 2010

    Vo

    latility(Percent)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    USE4D

    EWMA(42)

    InFigure

    11

    we

    plot

    the

    volatility

    of

    the

    Earnings

    Yield

    factor

    for

    GARCH(1,1)

    and

    USE4D

    over

    the

    time

    period20072010.Thiswasafactortowhichmanyquantitativeinvestorshadpositiveexposureover

    thisperiod.

    PriortotheQuantMeltdownofAugust2007,weseethattheGARCH(1,1)forecastswereverystable

    andaboutatthesamelevelasUSE4Dforecasts.DuringtheheightoftheQuantMeltdown,the

    GARCH(1,1)forecastswereabove12percent,versuseightpercentforUSE4D.

    Forthenexttwoyears,whiletheQuantMeltdownremainedintheestimationwindow,theGARCH(1,1)

    forecastswereveryjumpy.InAugust2009,astheeventexitstheestimationwindow,weseethatthe

    GARCH(1,1)forecastssuddenlybecomemorestable.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    20/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    20 of26

    Figure 11: Predicted volatility of USE4 Earnings Yield factor for USE4D and GARCH(1,1) forecasts.

    Year

    2007 2008 2009 2010

    Vo

    latility(Percent)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    USE4D

    GARCH(1,1)

    Aswe

    have

    seen,

    the

    Q

    statistic

    is

    composed

    of

    an

    over

    forecasting

    and

    an

    under

    forecasting

    penalty

    function.Forperfectriskforecasts,theexpectedvalueoftheunderforecastingpenaltyfunctionis

    exactly1.Assumingnormaldistributionandperfectriskforecasts,theexpectedvalueoftheover

    forecastingpenaltyfunctionis1.27.Plottingthesetwopenaltyfunctionsversustimeandcomparing

    themtotheiridealvaluescanyieldimportantinsightintowhetherthevolatilityforecastsweretoohigh

    ortoolow.

    InFigure12,weplotthemeanQstatistic,togetherwiththeoverforecastingandunderforecasting

    penaltyfunctions,averagedacrossall73factors,forEWMA(42)volatilityforecasts.Theplotcoversthe

    financialcrisisperiodof2008and2009,andlinesweresmoothedusing10dayrollingaverages.TheQ

    statisticexhibitsseveraldistinctpeaksoverthecourseof2008,withthelargestsuchpeakoccurringin

    October2008.Weseethateachofthesepeaksin2008wascausedbyaspikeintheunderforecasting

    penaltyfunction,

    implying

    that

    the

    EWMA(42)

    forecast

    was

    not

    responsive

    enough

    during

    this

    period.

    WecanevenusetheQstatistictoestimatethemagnitudeofthebias.InOctober2008,theQstatistic

    wasatabout3.9,orabout1.6abovetheidealposition.FromFigure4,weseethistranslatesroughly

    intoa50percentunderpredictionofrisk.Bycontrast,weseethatoverthelasteightmonthsof2009,

    therelativelyhighvalueoftheQstatisticwasdominatedbytheoverforecastingpenaltyfunction.In

    thiscase,theEWMA(42)modeldidnotadaptquicklyenoughtoreducedvolatilitylevelsinthewakeof

    thefinancialcrisis.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    21/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    21 of26

    Figure 12: Plot ofQ-statistic together with over-forecasting and under-forecasting penalty functions for theEWMA(42) forecast. The quantities represent averages across factors. Lines were smoothed using 10-dayrolling windows. The EWMA(42) forecast generally under-forecasts for much of 2008 and over-forecasts formost of 2009.

    Year

    2008 2009 2010

    QStatistic

    0

    1

    2

    3

    4

    5

    QStatistic

    UnderforecastPenalty

    OverforecastPenalty

    InFigure13weplotfortheUSE4DforecaststhemeanQstatistic,averagedacrossallfactors,together

    withoverforecastingandunderforecastingpenaltyfunctions.FromFigure13,itisclearlyevidentthat

    theQstatisticforUSE4Dwasmuchclosertotheidealvalueof2.27thanthecorrespondingplotin

    Figure12forEWMA(42).Furthermore,weseethattheoverforecastingandunderforecastingpenalty

    functionsneverdeviatedtoofarfromtheiridealpositions.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    22/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    22 of26

    Figure 13: Plot ofQ-statistic together with over-forecasting and under-forecasting penalty functions for theUSE4D forecast. The quantities represent averages across factors. Lines were smoothed using 10-day rollingwindows. Compared to EWMA(42) forecasts, the USE4D Q-statistics are much closer to their ideal values.Furthermore, the over-forecasting and under-forecasting penalties stay relatively close to their ideal values,indicating that the model adapts well to changing volatility levels.

    Year

    2008 2009 2010

    Q

    Statistic

    0

    1

    2

    3

    4

    5

    QStatistic

    UnderforecastPenalty

    OverforecastPenalty

    SettingtheCorrelationHalfLifeThusfar,wehaveonlyconsideredvolatilityforecasts.Inbuildingafactorcovariancematrix,however,

    wemustalsoestimatetheoffdiagonalcovariances.Thesearegivenbytheproductofthefactor

    volatilitiesandthefactorcorrelations.Thecorrelations,inturn,areestimatedusingEWMAwitha

    specifiedhalflifeparameter.

    Thecorrelationhalflifeisacrucialmodelparameter.Ifitistoolong,theremaybeapenaltybyusing

    staledatainourcorrelationestimates.Ifthecorrelationhalflifeistooshort,thenthecovariancematrix

    maybecomenoisyandillconditioned,leadingtopoorperformanceandunderestimationofriskof

    optimizedportfolios,

    as

    described

    by

    Menchero,

    Wang,

    and

    Orr

    (2011).

    Onewaytodeterminetheoptimalcorrelationhalflifeistocomputethevaluethatproducesthebest

    outofsampleperformanceofoptimizedportfolios.Tostudythis,weconstructtheminimumriskfully

    investedfactorportfolioatthestartofeveryday.TheCountryfactorexposureandthesumofindustry

    factorexposuresareconstrainedtoequal1.InFigure14weplottheoutofsamplerealizedvolatility

    overthefullsampleperiodasafunctionofcorrelationhalflife.Weseethat200daysappearsoptimal,

    asthisminimizestheoutofsamplerealizedvolatility.Ifthecorrelationhalflifeistoolong,wedoseea

    penaltyinoutofsamplevolatilitybyusingstaledata.Note,however,thatthispenaltyisrelatively

    modest:8.6percentat500daysversus8.3percentat200days.Bycontrast,whenthecorrelationhalf

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    23/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    23 of26

    lifebecomestooshort,thereisasteeppenaltyinoutofsamplevolatility.Inthiscase,modelestimates

    areharmedbytoomuchnoiseinthecorrelationestimates.

    Figure 14: Out-of-sample volatility for minimum-risk fully invested factor portfolio versus correlation half-life.

    The out-of-sample period consisted of 4328 trading days. The volatility was minimized near a correlation half-life of 200 days.

    CorrelationHalfLife(Days)

    0 100 200 300 400 500

    Volatility(Annualized)

    8.0

    8.5

    9.0

    9.5

    10.0

    10.5

    MinRiskFullyInvested

    Thereareseveralotherpossiblewaysofselectingthecorrelationhalflifeparameter.Forinstance,one

    maystudythehalflifeparameterthatminimizestheoutofsamplevolatilitiesofstyleoptimized

    portfolios.Anotherwaytosetthecorrelationhalflifeistoinvestigatethevaluethatproducesthebest

    betaforecasts.Yetanotherapproachistodeterminewhichcorrelationhalflifeproducesthemost

    accurateriskforecastsforfactorpairportfolios.

    TheresultsoftheseinvestigationswerequalitativelysimilartotheresultsofFigure14.Namely,the

    optimalcorrelationhalflifeiscloseto200days.Ifthecorrelationhalflifeistoolong,wefindaweak

    penalty,butobserveamuchlargerpenaltyifthecorrelationhalflifeistooshort.Basedonthese

    studies,weselecta200daycorrelationhalflifefortheUSE4Dmodel.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    24/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    24 of26

    ConclusionWehaveinvestigatedtherelativeaccuracyofvariousvolatilityforecastsoveraonedayprediction

    horizon.WeexaminedseveralEWMAforecasts,aGARCH(1,1)model,theUSE4SModel(scaledtoaone

    dayhorizon),andfinallytheUSE4DModel.WefoundthattheUSE4DModelprovidedthemostaccurate

    forecastsamong

    all

    models

    considered.

    Furthermore,

    the

    outperformance

    was

    consistent

    across

    factors

    aswellaspersistentacrosstime.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    25/26

    MSCI AnalyticsResearch msci.com2013MSCIInc.Allrightsreserved.Pleaserefertothedisclaimerattheendofthisdocument.

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    25 of26

    References

    Bollerslev.1986.GeneralizedAutoregressiveConditionalHeteroskedasticity.JournalofEconometrics:

    307

    327.

    Bauwens,Laurent,andRombouts.2006.MultivariateGARCHModels:ASurvey.JournalofApplied

    Econometrics,vol.21:79109.

    Engle.1982.AutoregressiveConditionalHeteroskedasticitywithEstimatesofVarianceUKInflation.

    Econometrica:9871008.

    Menchero.2010.TheCharacteristicsofFactorPortfolios.JournalofPerformanceMeasurement,vol.

    15,no.1(Fall):5262.

    Menchero,OrrandWang.2011.TheBarraUSEquityModel(USE4).MethodologyNotes.

    Menchero,Wang,andOrr.2012.ImprovingRiskForecastsforOptimizedPortfolios,FinancialAnalysts

    Journal,May/June2012:4050.

    Patton.2011.VolatilityForecastComparisonusingImperfectVolatilityProxies.Journalof

    Econometrics,vol.160(1),246256.

    Rosenberg,Barr.March1974.ExtraMarketComponentsofCovarianceinSecurityReturns,Journalof

    FinancialandQuantitativeAnalysis,vol.9,263274.

    Yang,Menchero,OrrandWang.2011.TheBarraUSEquityModel(USE4).EmpiricalNotes.

  • 7/28/2019 Barra Predicting Risk at Short Horizons

    26/26

    ModelInsighPredictingRiskatShortHorizons(USE4D

    January2013

    ClientServiceInformationisAvailable24HoursaDay

    [email protected]

    NoticeandDisclaimer This document and all of the information contained in it, including without limitation all text, data, graphs, charts (collectively, the Information) is the property of MSCI Inc. or it

    subsidiaries (collectively, MSCI), or MSCIs licensors, direct or indirect suppliers or any third party involved in making or compiling any Information (collectively, with MSCI, th

    InformationProviders)

    and

    is

    provided

    for

    informational

    purposes

    only.

    The

    Information

    may

    not

    be

    reproduced

    or

    redisseminated

    in

    whole

    or

    in

    part

    without

    prior

    written

    permissio

    fromMSCI.

    TheInformationmaynotbeusedtocreatederivativeworksortoverifyorcorrectotherdataorinformation. Forexample(butwithoutlimitation),theInformationmaynotbeusedtocreateindices,databases,riskmodels,analytics,software,orinconnectionwiththeissuing,offering,sponsoring,managingormarketingofanysecurities,portfolios,financialproductso

    otherinvestmentvehiclesutilizingorbasedon,linkedto,trackingorotherwisederivedfromtheInformationoranyotherMSCIdata,information,productsorservices.

    TheuseroftheInformationassumestheentireriskofanyuseitmaymakeorpermittobemadeoftheInformation. NONEOFTHEINFORMATIONPROVIDERSMAKESANYEXPRESSOIMPLIED WARRANTIES OR REPRESENTATIONS WITH RESPECT TO THE INFORMATION (OR THE RESULTS TO BE OBTAINED BY THE USE THEREOF), AND TO THE MAXIMUM EXTENT

    PERMITTEDBYAPPLICABLELAW,EACH INFORMATIONPROVIDEREXPRESSLYDISCLAIMSALL IMPLIEDWARRANTIES(INCLUDING,WITHOUTLIMITATION,ANY IMPLIEDWARRANTIESO

    ORIGINALITY, ACCURACY, TIMELINESS, NONINFRINGEMENT, COMPLETENESS, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE) WITH RESPECT TO ANY OF TH

    INFORMATION.

    Without limiting any of the foregoing and to the maximum extent permitted by applicable law, in no event shall any Information Provider have any liability regarding any of th

    Informationforanydirect,indirect,special,punitive,consequential(includinglostprofits)oranyotherdamagesevenifnotifiedofthepossibilityofsuchdamages.Theforegoingshallno

    excludeorlimitanyliabilitythatmaynotbyapplicablelawbeexcludedorlimited,includingwithoutlimitation(asapplicable),anyliabilityfordeathorpersonalinjurytotheextenttha

    suchinjuryresultsfromthenegligence orwilfuldefaultofitself,itsservants,agentsorsubcontractors.

    Informationcontaininganyhistorical information, dataoranalysisshouldnotbe takenasan indicationorguaranteeofany futureperformance,analysis, forecastorprediction. Pas

    performancedoes

    not

    guarantee

    future

    results.

    Noneofthe Informationconstitutes anoffertosell(orasolicitationofanoffertobuy),anysecurity,financialproductorotherinvestmentvehicleoranytradingstrategy.Youcannoinvestinanindex.

    MSCIsindirectwhollyownedsubsidiaryInstitutionalShareholder Services,Inc.(ISS)isaRegisteredInvestmentAdviserundertheInvestment AdvisersActof1940. Exceptwithrespectoanyapplicable productsorservicesfrom ISS(includingapplicableproductsorservicesfromMSCIESGResearch Information,whichareprovidedby ISS),neitherMSCInoranyof it

    products orservicesrecommends, endorses,approves orotherwiseexpresses anyopinionregarding any issuer, securities, financial productsor instruments or trading strategies an

    neitherMSCInoranyofitsproductsorservicesisintendedtoconstitute investmentadviceorarecommendation tomake(orrefrainfrommaking)anykindofinvestmentdecisionand

    maynotbereliedonassuch.

    TheMSCIESG Indicesuseratingsandotherdata,analysisand information fromMSCIESGResearch. MSCIESGResearch isproducedby ISSor itssubsidiaries. IssuersmentionedoincludedinanyMSCIESGResearchmaterialsmaybeaclientofMSCI,ISS,oranotherMSCIsubsidiary,ortheparentof,oraffiliatedwith,aclientofMSCI,ISS,oranotherMSCIsubsidiary

    includingISSCorporateServices,Inc.,whichprovidestoolsandservicestoissuers. MSCIESGResearchmaterials,includingmaterialsutilizedinanyMSCIESGIndicesorotherproducts

    havenotbeensubmittedto,norreceivedapprovalfrom,theUnitedStatesSecuritiesandExchangeCommissionoranyotherregulatorybody.

    Anyuseoforaccesstoproducts,servicesorinformationofMSCIrequiresalicensefromMSCI. MSCI,Barra,RiskMetrics,ISS,CFRA,FEA,andotherMSCIbrandsandproductnamesarthetrademarks,servicemarks,orregisteredtrademarksorservicemarksofMSCIoritssubsidiariesintheUnitedStatesandotherjurisdictions. TheGlobalIndustryClassificationStandar

    (GICS)wasdevelopedbyandistheexclusivepropertyofMSCIandStandard&Poors. GlobalIndustryClassificationStandard(GICS)isaservicemarkofMSCIandStandard&Poors.

    AboutMSCIMSCI Inc. isa leadingprovider of investmentdecisionsupport tools to investorsglobally, including assetmanagers, banks, hedge funds andpension funds.MSC

    productsandservicesincludeindices,portfolioriskandperformanceanalytics,andgovernancetools.

    Thecompanysflagshipproductofferingsare:theMSCIindiceswithclosetoUSD7trillionestimatedtobebenchmarkedtothemonaworldwidebasis1;Barramulti

    assetclassfactormodels,portfolioriskandperformanceanalytics;RiskMetricsmultiassetclassmarketandcreditriskanalytics;IPDrealestateinformation,indices

    andanalytics;MSCIESG(environmental,socialandgovernance)Researchscreening,analysisandratings;ISSgovernanceresearchandoutsourcedproxyvotingand

    reporting services; FEA valuation models and risk management software for the energy and commodities markets; and CFRA forensic accounting risk research

    legal/regulatoryriskassessment,andduediligence.MSCIisheadquarteredinNewYork,withresearchandcommercialofficesaroundtheworld.

    1AsofMarch31,2012,aspublishedbyeVestment, LipperandBloomberginSeptember2012 Jan 2013

    Americas Europe,MiddleEast&Africa AsiaPacific

    Americas

    Atlanta

    Boston

    Chicago

    Montreal

    Monterrey

    NewYork

    SanFrancisco

    SaoPaulo

    Stamford

    Toronto

    1.888.588.4567(tollfree)

    +1.404.551.3212

    +1.617.532.0920

    +1.312.675.0545

    +1.514.847.7506

    +52.81.1253.4020

    +1.212.804.3901

    +1.415.836.8800

    +55.11.3706.1360

    +1.203.325.5630

    +1.416.628.1007

    CapeTown

    Frankfurt

    Geneva

    London

    Milan

    Paris

    +27.21.673.0100

    +49.69.133.859.00

    +41.22.817.9777

    +44.20.7618.2222

    +39.02.5849.0415

    0800.91.59.17(tollfree)

    ChinaNorth

    ChinaSouth

    HongKong

    Seoul

    Singapore

    Sydney

    Tokyo

    10800.852.1032(tollfree)

    10800.152.1032(tollfree)

    +852.2844.9333

    798.8521.3392(tollfree)

    800.852.3749(tollfree)

    +61.2.9033.9333

    +81.3.5226.8222