background hypotheses and predictions

1
Methods and Future Plans Background Wild fires are a natural and important ecological process in the boreal forest (Paye9e 1992). Plant communi?es in black spruce dominated forests are ?ghtly linked with their fire cycle in terms of their species diversity and plant traits (Roberts 2004; Nilsson and Wardle 2005). § Highly flammable needles of black spruce and other evergreen shrubs promote the spread of fire over an area, whereas thick sphagnum moss mats resist burning due to their high water reten?on abili?es, resul?ng in a low severity fire and complete crown mortality (Johnson 2001; Boby 2010; Turetsky 2010). § The structure and composi?on of these pre-fire communi?es, among other things, can influence fire severity through their plant func?onal traits and promote a fire regime that permits for self-replacement successional pathways (Kurkowski et al. 2008; Kasischke et al. 2010; Bernhardt et al. 2011). Results from recent studies have shown that shiRs in Interior Alaska’s fire regime is resul?ng in larger, more frequent fires (Kasischke and Turetsky 2006). § Ongoing and future climate change across Alaska is influencing the fire regime and has the poten?al to shiR the current state of Interior Alaska’s black spruce forests to deciduous dominated forests (Gillet et al. 2004; Duffy et al. 2005 Johnstone et al. 2010). § A state shiR to deciduous-dominated forests is expected to have implica?ons on the global carbon cycle, nutrient cycling, plant produc?vity and local wildlife (Johnstone et al. 2010). M.Sc. Candidate: Emilia Grzesik Hypotheses and Predictions Advisor: Teresa Hollingsworth 1. I hypothesize that variability in plant species’ fire-ecological trait plas9city (specifically, fire-resis9ve and fire-adap9ve plant traits) is influenced by a site’s previous burn severity. I predict post-fire black spruce dominated plant communi9es that undergo high-severity fires will contain greater plas9city in species-specific fire-ecological plant traits than communi9es that undergo low-severity fires. I predict black spruce dominated plant communi9es that occur in areas of moderate moisture will contain a grater plas9city in species-specific fire-ecological plant traits than a community in an area of low or high moisture (figure 2). 2. I hypothesize that there are emergent proper9es of black spruce dominated plant communi9es, such as plant species richness and biomass/fuel loads, that can indicate the poten9al of a site to reburn or burn severely based on community- level flammability. I predict black spruce dominated plant communi9es that contain high fuel loads and high percent cover of flammable, fine fuels will have a greater poten9al to reburn/burn severely than communi9es with lower fuel loads and lower percent cover of flammable, fine fuels. 3. I plan to apply the results of this study to a framework that can be used by fire managers to assess a black spruce dominated community’s ability to reburn based on site characteris9cs, plant composi9on and fuel load. Figure 2. A hypothe?cal model depic?ng how poten?al for severe fire (through smouldering combus?on) and the magnitude of its effects change over gradients of moisture and organic layer depth (reproduced from Johnstone and Chapin 2006). The 28 BNZ LTER’s RSN sites that were sampled for this study vary across 3 ecoregions in Interior Alaska, span a moisture gradient and vary in age (?me-since-fire). Each site was previously sampled for plant and lichen species richness (percent cover) using the Braun-Blanquet method of cover classifica?on. We collected trait plas?city data for Vaccinium uliginosum and Hylacomium splendens, the two most ubiquitous species within these sites. We measured func?onal traits related to rhizomatous root sprou?ng and and water reten?on in V. uliginosum and H. splendens, respec?vely. Addi?onally, we measured understory vegeta?on and soil organic biomass to quan?fy fuel loads. We will use this data to inves?gate pa9erns between fuel load and species richness within a site to understand how community-level flammability can indicate the poten?al of a site to reburn. The results of this study will highlight the vulnerability of certain loca?ons along the boreal black spruce dominated landscape to severe burning and the ability of the black spruce forest type to remain resilient to fire as a whole. Figure 1. Distribu?on of all the LTER’s RSN sites in environmental space. Individual sites are represented by points and sites age by color (pink=1 or Young, green=2 or Intermediate and blue=3 or Mature). This figure is in support of the recent change in fire regime. Young sites encompass a greater range over the environmental landscape, signifying a greater propor?on of land has burned in recent fires. References Bernhardt, E., Hollingsworth, T. N., Chapin, F. S., & Viereck, L. A. (2011). Fire severity mediates climate driven shiRs in understory composi?on of black spruce stands in interior Alaska. Journal of Vegeta7on Science, 22, 32–44. Gille9, N. P., & Weaver, A. J. (2004). Detec?ng the effect of climate change on Canadian forest fires, 31. Group, D. M., & Arc?c, I. (2005). IMPACTS OF LARGE-SCALE ATMOSPHERIC – OCEAN VARIABILITY ON ALASKAN FIRE SEASON SEVERITY, 15(4), 1317–1330. Johnstone, J. F., Iii, F. S. C., Hollingsworth, T. N., Mack, M. C., Romanovsky, V., & Turetsky, M. (2010). Fire , climate change , and forest resilience in interior Alaska 1, 1312, 1302–1312. Kasischke, E. S., & Turetsky, M. R. (2006). Recent changes in the fire regime across the North American boreal region — Spa?al and temporal pa9erns of burning across Canada and Alaska, 33(July). Kasischke, E. S., Verbyla, D. L., Rupp, T. S., Mcguire, A. D., Murphy, K. A., Jandt, R., … Turetsky, M. R. (2010). Alaska ’ s changing fire regime — implica?ons for the vulnerability of its boreal forests 1, 1324, 1313–1324. Kurkowski, T. A., Mann, D. H., Rupp, T. S., & Verbyla, D. L. (2008). Rela?ve importance of different secondary successional pathways in an Alaskan boreal forest. Canadian Journal of Forest Research, 38(7), 1911–1923. Lynch, J. A., Clark, J. S., Bigelow, N. H., Edwards, M. E., & Finney, B. P. (2003). Geographic and temporal varia?ons in fire history in boreal ecosystems of Alaska, 108. Nilsson, M., & Wardle, D. A. (2005). Understory vegeta?on as a forest ecosystem driver : evidence from the northern Swedish boreal forest. Oby, L. E. A. B., Chuur, E. D. A. G. S., Ack, M. I. C. M., & Erbyla, D. A. V. (2010). Quan?fying fire severity , carbon , and nitrogen emissions in Alaska ’ s boreal forest, 20(6), 1633–1647. Paye9e, S. 1992. Fire as a controlling process in the NorthAmerican boreal forest. In: Shugart, H.H., Leemans, R. & Bonan, G.B. (eds.) A systems analysis of the global boreal forest, pp. 144–169. Cambridge University Press, Cambridge, UK. Roberts, M. R. (2004). Response of the herbaceous layer to natural disturbance in North American forests, 1283, 1273–1283. Turetsky, M. R., Mack, M. C., Hollingsworth, T. N., & Harden, J. W. (2010). The role of mosses in ecosystem succession and func?on in Alaska ’ s boreal forest 1, 1264, 1237–1264. Figure 3. Average soil organic fuel load (g/cm^2) plo9ed against a) moisture class (R^2= 0.62 and p=0.038) and b) age (R^2=0.70 and p=0.25). Soil layer fuel loads were average for each site, then averaged for each moisture or age class. Fibric and mesic fuel load averages were summed to determine total average soil fuel load. (A) (B)

Upload: others

Post on 24-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Methods and Future Plans

Background

Wildfiresareanaturalandimportantecologicalprocessintheborealforest(Paye9e1992).Plantcommuni?esinblacksprucedominatedforestsare?ghtlylinkedwiththeirfirecycleintermsoftheirspeciesdiversityandplanttraits(Roberts2004;NilssonandWardle2005).§  Highlyflammableneedlesofblackspruceandotherevergreenshrubs

promotethespreadoffireoveranarea,whereasthicksphagnummossmatsresistburningduetotheirhighwaterreten?onabili?es,resul?nginalowseverityfireandcompletecrownmortality(Johnson2001;Boby2010;Turetsky2010).

§  Thestructureandcomposi?onofthesepre-firecommuni?es,amongotherthings,caninfluencefireseveritythroughtheirplantfunc?onaltraitsandpromoteafireregimethatpermitsforself-replacementsuccessionalpathways(Kurkowskietal.2008;Kasischkeetal.2010;Bernhardtetal.2011).

ResultsfromrecentstudieshaveshownthatshiRsinInteriorAlaska’sfireregimeisresul?nginlarger,morefrequentfires(KasischkeandTuretsky2006).§  OngoingandfutureclimatechangeacrossAlaskaisinfluencingthefire

regimeandhasthepoten?altoshiRthecurrentstateofInteriorAlaska’sblackspruceforeststodeciduousdominatedforests(Gilletetal.2004;Duffyetal.2005Johnstoneetal.2010).

§  AstateshiRtodeciduous-dominatedforestsisexpectedtohaveimplica?onsontheglobalcarboncycle,nutrientcycling,plantproduc?vityandlocalwildlife(Johnstoneetal.2010).

M.Sc. Candidate: Emilia Grzesik

Hypotheses and Predictions

Advisor: Teresa Hollingsworth

1.   Ihypothesizethatvariabilityinplantspecies’fire-ecologicaltraitplas9city(specifically,fire-resis9veandfire-adap9veplanttraits)isinfluencedbyasite’spreviousburnseverity.•  Ipredictpost-fireblacksprucedominatedplantcommuni9esthatundergohigh-severityfireswillcontaingreater

plas9cityinspecies-specificfire-ecologicalplanttraitsthancommuni9esthatundergolow-severityfires.•  Ipredictblacksprucedominatedplantcommuni9esthatoccurinareasofmoderatemoisturewillcontainagrater

plas9cityinspecies-specificfire-ecologicalplanttraitsthanacommunityinanareaofloworhighmoisture(figure2).

2.   Ihypothesizethatthereareemergentproper9esofblacksprucedominatedplantcommuni9es,suchasplantspeciesrichnessandbiomass/fuelloads,thatcanindicatethepoten9alofasitetoreburnorburnseverelybasedoncommunity-levelflammability.•  Ipredictblacksprucedominatedplantcommuni9esthatcontainhighfuelloadsandhighpercentcoverof

flammable,finefuelswillhaveagreaterpoten9altoreburn/burnseverelythancommuni9eswithlowerfuelloadsandlowerpercentcoverofflammable,finefuels.

3.Iplantoapplytheresultsofthisstudytoaframeworkthatcanbeusedbyfiremanagerstoassessablacksprucedominatedcommunity’sabilitytoreburnbasedonsitecharacteris9cs,plantcomposi9onandfuelload.

Figure2.Ahypothe?calmodeldepic?nghowpoten?alforseverefire(throughsmoulderingcombus?on)andthemagnitudeofitseffectschangeovergradientsofmoistureandorganiclayerdepth(reproducedfromJohnstoneandChapin2006).

The28BNZLTER’sRSNsitesthatweresampledforthisstudyvaryacross3ecoregionsinInteriorAlaska,spanamoisturegradientandvaryinage(?me-since-fire).Eachsitewaspreviouslysampledforplantandlichenspeciesrichness(percentcover)usingtheBraun-Blanquetmethodofcoverclassifica?on.Wecollectedtraitplas?citydataforVacciniumuliginosumandHylacomiumsplendens,thetwomostubiquitousspecieswithinthesesites.Wemeasuredfunc?onaltraitsrelatedtorhizomatousrootsprou?ngandandwaterreten?oninV.uliginosumandH.splendens,respec?vely.Addi?onally,wemeasuredunderstoryvegeta?onandsoilorganicbiomasstoquan?fyfuelloads.Wewillusethisdatatoinves?gatepa9ernsbetweenfuelloadandspeciesrichnesswithinasitetounderstandhowcommunity-levelflammabilitycanindicatethepoten?alofasitetoreburn.Theresultsofthisstudywillhighlightthevulnerabilityofcertainloca?onsalongtheborealblacksprucedominatedlandscapetosevereburningandtheabilityoftheblackspruceforesttypetoremainresilienttofireasawhole.

Figure1.Distribu?onofalltheLTER’sRSNsitesinenvironmentalspace.Individualsitesarerepresentedbypointsandsitesagebycolor(pink=1orYoung,green=2orIntermediateandblue=3orMature).Thisfigureisinsupportoftherecentchangeinfireregime.Youngsitesencompassagreaterrangeovertheenvironmentallandscape,signifyingagreaterpropor?onoflandhasburnedinrecentfires.

ReferencesBernhardt,E.,Hollingsworth,T.N.,Chapin,F.S.,&Viereck,L.A.(2011).FireseveritymediatesclimatedrivenshiRsinunderstorycomposi?onofblacksprucestandsininteriorAlaska.JournalofVegeta7onScience,22,32–44.Gille9,N.P.,&Weaver,A.J.(2004).Detec?ngtheeffectofclimatechangeonCanadianforestfires,31.Group,D.M.,&Arc?c,I.(2005).IMPACTSOFLARGE-SCALEATMOSPHERIC–OCEANVARIABILITYONALASKANFIRESEASONSEVERITY,15(4),1317–1330.Johnstone,J.F.,Iii,F.S.C.,Hollingsworth,T.N.,Mack,M.C.,Romanovsky,V.,&Turetsky,M.(2010).Fire,climatechange,andforestresilienceininteriorAlaska1,1312,1302–1312.Kasischke,E.S.,&Turetsky,M.R.(2006).RecentchangesinthefireregimeacrosstheNorthAmericanborealregion—Spa?alandtemporalpa9ernsofburningacrossCanadaandAlaska,33(July).Kasischke,E.S.,Verbyla,D.L.,Rupp,T.S.,Mcguire,A.D.,Murphy,K.A.,Jandt,R.,…Turetsky,M.R.(2010).Alaska’schangingfireregime—implica?onsforthevulnerabilityofitsborealforests1,1324,1313–1324.Kurkowski,T.A.,Mann,D.H.,Rupp,T.S.,&Verbyla,D.L.(2008).Rela?veimportanceofdifferentsecondarysuccessionalpathwaysinanAlaskanborealforest.CanadianJournalofForestResearch,38(7),1911–1923.Lynch,J.A.,Clark,J.S.,Bigelow,N.H.,Edwards,M.E.,&Finney,B.P.(2003).Geographicandtemporalvaria?onsinfirehistoryinborealecosystemsofAlaska,108.Nilsson,M.,&Wardle,D.A.(2005).Understoryvegeta?onasaforestecosystemdriver :evidencefromthenorthernSwedishborealforest.Oby,L.E.A.B.,Chuur,E.D.A.G.S.,Ack,M.I.C.M.,&Erbyla,D.A.V.(2010).Quan?fyingfireseverity,carbon,andnitrogenemissionsinAlaska’sborealforest,20(6),1633–1647.Paye9e,S.1992.FireasacontrollingprocessintheNorthAmericanborealforest.In:Shugart,H.H.,Leemans,R.&Bonan,G.B.(eds.)Asystemsanalysisoftheglobalborealforest,pp.144–169.CambridgeUniversityPress,Cambridge,UK.Roberts,M.R.(2004).ResponseoftheherbaceouslayertonaturaldisturbanceinNorthAmericanforests,1283,1273–1283.Turetsky,M.R.,Mack,M.C.,Hollingsworth,T.N.,&Harden,J.W.(2010).Theroleofmossesinecosystemsuccessionandfunc?oninAlaska’sborealforest1,1264,1237–1264.

Figure3.Averagesoilorganicfuelload(g/cm^2)plo9edagainsta)moistureclass(R^2=0.62andp=0.038)andb)age(R^2=0.70andp=0.25).Soillayerfuelloadswereaverageforeachsite,thenaveragedforeachmoistureorageclass.Fibricandmesicfuelloadaveragesweresummedtodeterminetotalaveragesoilfuelload.

(A) (B)