autonomous robotic boat platform - bradley...

92
Autonomous Robotic Boat Platform Team: Ryan Burke, Leah Cramer, Noah Dupes, & Darren McDannald November 20 th , 2014 Advisors: Mr. Nick Schmidt, Dr. José Sánchez, & Dr. Gary Dempsey Department of Electrical and Computer Engineering 1

Upload: others

Post on 18-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Autonomous Robotic Boat Platform

Team: Ryan Burke, Leah Cramer, Noah Dupes, & Darren McDannald

November 20th, 2014

Advisors: Mr. Nick Schmidt, Dr. José Sánchez, & Dr. Gary Dempsey

Department of Electrical and

Computer Engineering

1

Page 2: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Presentation Outline

• Background– Objective– Block Diagram– Division of Labor

• L. Cramer– Circle Detection

• R. Burke– GPS/Compass/MCU Interfacing

• D. McDannald– Central Processing and Remote Control

• N. Dupes– Motor Control

2

Page 3: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Presentation Outline

3

• Background– Objective– Block Diagram– Division of Labor

• L. Cramer– Circle Detection

• R. Burke– GPS/Compass/MCU Interfacing

• D. McDannald– Central Processing and Remote Control

• N. Dupes– Motor Control

Page 4: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Objective

• Design and build an autonomous boat platform– Versatile

– Robust

• 8th annual RoboBoat competition

(Virginia Beach, VA)

• Competition time frame: June – July

4Images taken from [1].

Page 5: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Catamaran Boat Design

5Image taken from [1].

Page 6: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

6

Page 7: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Division of Labor

7

Task Person(s) Assigned to Task

Central Processing Darren

Image Processing Leah, Noah

GPS/Compass Interfacing Ryan

Motor Control Noah, Ryan

Remote Control Darren

Page 8: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Presentation Outline

8

• Background– Objective– Block Diagram– Division of Labor

• L. Cramer– Circle Detection

• R. Burke– GPS/Compass/MCU Interfacing

• D. McDannald– Central Processing and Remote Control

• N. Dupes– Motor Control

Page 9: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

9

C++

Images taken from [2], [3], [4].

Page 10: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

10

Competition Snapshots

Images taken from [1].

Page 11: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Circle Detection

11

Simple Background Test Image Complex Background Test Image

Page 12: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Impact of Color Space on Hough Transform

12

XYZ Colorspace RGB Colorspace L*a*b Colorspace

Page 13: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Impact of Edge Detection on Hough Transform

Original Image

13

Results of Canny edge detection and Hough Transform

Page 14: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Impact of Edge Detection on Hough Transform

Results of Sobel edge detection and Hough Transform

14

Page 15: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Impact of Gaussian Filtering on Hough Transform

Results of Sobel edge detection and Hough Transform

Page 16: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

16

Circle Detection with OpenCV

Original Image

Processed Image

Page 17: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Experimental OpenCV Results

17

Circle detection results using OpenCV.

Page 18: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Project Task Progress

18

Gantt Chart

Page 19: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Presentation Outline

19

• Background– Objective– Block Diagram– Division of Labor

• L. Cramer– Circle Detection

• R. Burke– GPS/Compass/MCU Interfacing

• D. McDannald– Central Processing and Remote Control

• N. Dupes– Motor Control

Page 20: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Gantt Chart Revisions

20

Page 21: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

GPS/Compass Unit Block Diagram

21

Page 22: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Processor Interface

22

Page 23: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

RS-232 Serial CommunicationFrame format & baud rate:

• 8 data bits

• No parity bit

• 1 stop bit

• 9600 baud

Serial message received after transmitting “a”

23

Page 24: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Compass/Processor Interface

24

Page 25: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Compass Data Collection

Compass readings:

• Values 0 – 3600

• Represent 0.0° – 360.0°

Serial stream containing compass bearings

25

Page 26: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Preliminary GPS Interface

26

Page 27: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Raw GPS Output

GPS readings:

• Six serial data packets

• Transmission every second

• Transmission at 9600 baud

Serial stream directly from GPS sensor

27

Page 28: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Verification of GPS Data

28

Page 29: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

GPS/Processor Interface

29

Page 30: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Initialized GPS Output

Initialized GPS readings:

• Single data packet

• 10 Hz transmission

• 115.2 kbaud

Serial stream containing GLL (Geographic Latitude and Longitude) data

30

Page 31: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Compass/GPS/Processor Interface

31

Page 32: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Parsed GPS Data

Parsed NMEA sentence:

• Extracted longitude & latitude data

– Degrees (±)

– Minutes

– Decimal minutes

Serial stream containing GLL and parsed longitude and latitude data

32

Page 33: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Final GPS/Compass Unit Output

Processor message:

• Longitude

• Latitude

• Bearing

Baud Rate:

• 115.2 kbaud

33

Serial stream containing bearing and parsed longitude and latitude data

Page 34: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Progress

34

Page 35: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Presentation Outline

35

• Background– Objective– Block Diagram– Division of Labor

• L. Cramer– Circle Detection

• R. Burke– GPS/Compass/µC Interfacing

• D. McDannald– Central Processing and Remote Control

• N. Dupes– Motor Control

Page 36: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Schedule changes

Proposed Gantt Chart

Changes to the Gantt Chart

36

Page 37: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

RC Subsystem Block Diagram

37

Page 38: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Futaba T6EX and the R617FS

• 2 joy sticks

• 2 switches

• 2.4 Ghz

38Image taken from [5,6].

Page 39: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

How the Remote Works

• X and Y potentiometer for each joystick

• Each potentiometer maps to a channels 1 – 4 respectively

• Two switches maps to channel

5 – 6

39Image taken from [7].

Page 40: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Design Approach

• Measure pulse widths using a MCU

• Decide if you send data from the central processor or the RC unit

• Convert pulse widths into motor commands

Output of the RC Receiver Channels 1-4

2.5 ms/devV

olt

age

40

Page 41: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Time calculation

• Fclk_I/0 = 16 Mhz

• N = 256

• Top = 249

• 4 ms to overflow

• Each time step is 16 µs

41

Page 42: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Results

• For the joysticks the neutral position

• Switch 1 is in the on position

• Min = 63 (1 ms)

• Neutral = 94 (1.5 ms)

• Max = 125 (2 ms)

Channels 1 – 4 are the 2 joysticks channel 5 is the kill switch

42

Page 43: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Deciding on an OS for the Central Processor

• Ubuntu 14.04 release

• Open-Source

• ROS support

43Image taken from [8].

Page 44: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Serial Communication Between the Central Processor and Various Subsystems

• A C++ class to access a subsystem

• Sets attributes and have multiple instances of each connection

• Able to request and receive data

44Image taken from [9].

Page 45: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Camera Driver and Installation of OpenCV on Our Linux Machine

• Installed Camera under the UVC driver

• Ubuntu has a script to install OpenCV

45Image taken from [2,4].

Page 46: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Completion of Tasks

46

Page 47: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Presentation Outline

47

• Background– Objective– Block Diagram– Division of Labor

• L. Cramer– Circle Detection

• R. Burke– GPS/Compass/µC Interfacing

• D. McDannald– Central Processing and Remote Control

• N. Dupes– Motor Control

Page 48: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Motor Configuration Selection

• Diamond configuration

– Consists of four motors

– Allows for strafing

– Allows for 360 rotation

Diamond configuration on a catamaran platform

48

Page 49: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Thruster Selection-T100

• Created by Blue Robotics

• Brushless DC (BLDC)

• Sensorless

• Provides 2.36 kgf ( 5.2 lbf )

of forward thrust

• 11.5 A max current

• Weighs 295 g ( 0.65 lbs )

• Costs $110 (budget of $1500) T100 Thruster Size Comparison

49Image taken from [11].

Page 50: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Brushless Motors

• Utilize a three phase configuration

Figure 1: Y-configuration of a three phase motor

Figure 2: Three phase digital commutation

50Images taken from [12], [13].

Page 51: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Transistor Configuration For Three Phase Drive

Three phase drive circuit consisting of six transistors, six flyback diodes, and a y-configuration three phase motor

51Image taken from [14].

Page 52: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Power Consumption Of Transistors

Type MOSFET BJT IGBT

Power consumption calculation

𝐼𝐷2 × 𝑅𝐷𝑆 𝑉𝐶𝐸(𝑆𝑎𝑡) × 𝐼𝐶 + 𝑉𝐵𝐸(𝑆𝑎𝑡) × 𝐼𝐵 𝑉𝐶𝐸(𝑆𝑎𝑡) × 𝐼𝐶

Typical values 𝑅𝐷𝑆 = 10 𝑚Ω 𝑉𝐶𝐸(𝑠𝑎𝑡) = 2 𝑉

𝑉𝐵𝐸(𝑠𝑎𝑡) = 1.3 𝑉

𝐻𝑓𝑒 = 10

𝑉𝐶𝐸(𝑆𝑎𝑡) = 1.8 𝑉

Power consumption of a 11.5 A drive using typical transistor values

11.52 𝐴 × 10 𝑚Ω=

1.15 𝑊

2 𝑉 × 11.5 𝐴 + 1.3 𝑉 × 1.15 𝐴=

24.5 𝑊

1.8 𝑉 × 11.5 𝐴=

20.7 𝑊

52

Page 53: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Selection of a Three Phase Commutation Driver

• Pre-driver

• Sensorless

• Input complexity

• Output characteristics

53Image taken from [15].

Page 54: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Selection of the A4960 by Allegro

The Allegro pre-driver A4960 motor controller attached to a six FET BLDC motor drive configuration. Image obtained from

54Image taken from [15].

Page 55: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Selection of the A4960 by Allegro

The Allegro pre-driver A4960 motor controller with MCU input

55Image taken from [15].

Page 56: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Selection of the A4960 by Allegro

The Allegro pre-driver A4960 motor controller with MCU input

56Image taken from [15].

Page 57: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Latest Progression of Gantt

57

Page 58: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Autonomous Robotic Boat Platform

Team: Ryan Burke, Leah Cramer, Noah Dupes, & Darren McDannald

November 20th, 2014

Advisors: Mr. Nick Schmidt, Dr. José Sánchez, & Dr. Gary Dempsey

Department of Electrical and

Computer Engineering

58

Page 59: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

APPENDIX

59

Page 60: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

60

[source: wikipedia]http://en.wikipedia.org/wiki/Hough_transform

𝑦 = −𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃𝑥 +

𝑟

𝑠𝑖𝑛𝜃

𝑟 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃

Page 61: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

61

[source: wikipedia]http://en.wikipedia.org/wiki/Hough_transform

Page 62: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

62

[source: wikipedia]http://en.wikipedia.org/wiki/Hough_transform

Page 63: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

63

𝑥 = 𝑎 + 𝑟𝑐𝑜𝑠𝜃

𝑦 = 𝑏 + 𝑟𝑠𝑖𝑛𝜃

Page 64: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

64

Page 65: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

65

21HT Hough Transform Method• Reduces the amount of memory required.• Uses edge direction • Two step process1.) The center of any given circle is the intersection point of all the normal lines from the circle edge. A 2-dimensional array is used to record the "votes" along the normal line of each detected edge point.2.) "To identify the radius of circles, the distance of each point from a candidate center is calculated and a radius histogram is produced."

PROS: This method is low on storage space. Only a 2-d array is used and a 1-d histogram.CONS: If the radius threshold is very low (i.e. The 21HT is being used to detect very small circles) there is a risk of many false peaks occurring in step 1. This can increase the amount of computational work necessary in step 2.

Page 66: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Gaussian Filtering

66

𝐺 𝑥, 𝑦 =1

2𝜋𝜎2𝑒−𝑥2+𝑦2

2𝜎2

Page 67: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

67

OpenCV Results using:• RGB Colorspace• Gaussian Filtering• Canny Edge Detection• Hough Transform

Page 68: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

GPS/Compass Unit Block Diagram

68

Page 69: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

GPS/Compass Unit Flow Chart

69

Page 70: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Software flowchartMain ISR(INT0) ISR(INT1) ISR(PCINT)

IDX > 5Mode

Kill Switch

Decode pulse

widths

Encode Motor

Commands

Output Data

Read Data From

Central Processor

Index = 0

Record time

State

Record time

Record Time

Calculate Pulse Width

Index++

Record Time

70

Page 71: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Analysis Approach

• I started by looking at P.W.M. signals

• Decided on how to measure them

• Compared measured to actual

71

Page 72: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Image Processing-Rectangle Detection

• Purpose of Research and Testing: Determine How to Detect Polygons Contained within an Image

• Research– OpenCV Utilizes Contours For Detection Of Polygons

• Contours: Outline or Enclosed Border of a Shape or Form

• The Contour Detection Algorithm Used By OpenCV:

Topological Structural Analysis of Digitized Binary Images by Border Following by Satoshi Suzuki and Keiichi Abe[]

• MATLAB Testing– Imcontour() Implementation

– Contour Algorithm Testing72

Page 73: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

MATLAB Imcontour()-Original Image

Image obtained from[16]73

Page 74: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

MATLAB Imcontour()-Contour Detection

100 200 300 400 500 600 700 800 900

150

200

250

300

350

400

450

500

550

600

74

Page 75: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

H-Bridges

• Purpose of Research and Testing:

Understand the Benefits and Drawbacks of Using H-Bridges

• Features

– Bi-Directional Motor Control

– Four Transistor Configuration

– Provides Dynamic Breaking Capabilities

– Allows For Current Sensing

75

Page 76: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

H-Bridge Testing

• L298 H-Bridge

– Contains Two Internal H-Bridge Configurations

– Two Enable Signals

– Allows for a 150w motor(50v, 3A Max Rating)

• Fly Back Diode: 1N4004

• Motor

– 12V

– >2A While In Air

76

Page 77: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

L298 H-Bridge Internal Configuration

Image obtained from[17]77

Page 78: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

H-Bridge Free Running Motor Stop

78

Page 79: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

H-Bridge Dynamic Motor Stop

79

Page 80: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

H-Bridge Conclusion

• Benefits:– Simple Configuration

– Easily Controllable

– Provides Bi-Directional Control

• Drawbacks:– Large Power Dissipation

• The Internal BJT Configuration Has Constant Power Dissipation

– Limits Design

80

Page 81: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Choosing A Transistor Type

• There Are Two Primary Transistor Types: MOSFET and BJT

MOSFET BJT

Output Is Controlled By Gate Voltage Output Is Controlled By Base Current

Positive Temperature Coefficients Negative Temperature Coefficients

Power Dissipation Depends On Internal Resistance

Power Dissipation Depends Terminal Voltage Differentials

High Gate Capacitance Low Gate Capacitance

Higher Switching Frequencies Lower Switching Frequencies

81

Page 82: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Choosing A MOSFET

• IPP040N06N – RDS max=4 mΩ

– VDS max=60 V

– ID max= 80 A

– QG max= 44nC

• IPP060N06N – RDS max=6 mΩ

– VDS max=60 V

– ID max= 40 A

– QG max= 32nC

• IRLB8721PbF– RDS max=8.7 mΩ

– VDS max=30 V

– ID max= 44 A

– QG max= 13nC

• IRLB8748PbF * *– RDS max=4.8 mΩ

– VDS max=30 V

– ID max= 44 A

– QG max= 23nC

* * Indicates the current choice for the MOSFET configuration 82

Page 83: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

PWM Driven Transistor Configuration

• Purpose of Research and Testing :

Design a Transistor Switch Configuration Driven by a Microcontroller Generated PWM Controlled by an Analog Input.

83

Page 84: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Block Diagram For System

MCU Load

Power

Joystick PWM On/OffTransistor

Configuration

84

Page 85: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Design And Testing

• IRF520

– VDS Max = 100V

– RDS(ON) Max = 0.27 Ω

– Max Gate Charge = 16 nC

• Atmega168 Microcontroller• Minimum Pin Output Voltage = 4.2V

• Maximum Pin Output Current = 40mA

• 2N2222A• Hfe(Gain) = 75

• Max VCE(Sat) = 1.6V

• Max VBE(Sat) = 2.6V

Output Characteristics of the IRF520 obtained from[18]

85

Page 86: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Observations of the Gate Input for the IRF520

Gate input with Rc equal to 1.2KΩ Gate input with Rc equal to 10KΩ Gate input with Rc equal to 100KΩ

86

Page 87: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

A4960 Specs

• Absolute Ratings

– Max Load Supply Voltage: 50 V

– Max Logic Supply Voltage: 6 V

– Max Sink Current: 150 mA

– Max Gate Output Turn on/off: 20 ns

– Max System Clock Period: 57 ns (17.5 MHz)

– Minimum Input Pulse Filter Time: 500 us (2 KHz)

87

Page 88: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Three Phase Back EMF Output

Image obtained from [15]88

Page 89: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

IRF520 Circuit Configuration

Circuit 1:Motor Drive IRF520 Configuration

Circuit 2:IRF520 Test Configuration

89

Page 90: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

Circuit Design for the Transistor Switch Configuration

90

Page 91: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

References

[1] AUVSI Foundation. (2014). RoboBoat – Foundation [Online]. Available: http://www.auvsifoundation.org/foundation/competitions/roboboat/

[2] Amazon. (2014). HP Deluxe Webcam [Online]. Available: http://www.amazon.com/HP-KQ246AA-8-0-Deluxe-Webcam/dp/B001D8AGA2

[3] Comtrade Computers. (2014). CPU Intel i3 [Online]. Available: http://www.comtrade-ks.com/product.php?product_id=7591/

[4] Wikimedia. (2014). OpenCV logo with text [Online]. Available: http://commons.wikimedia.org/wiki/File:OpenCV_Logo_with_text_svg_version.svg

[5]RC Radical. (2012) Fubata T6EX 2,4 GHZ [Online] Available: http://www.rcradical.com/en/futaba/925-futaba-t6ex-24ghz.html

[6]rctecnic. (2012) Receptor Futaba R617FS 7 canales 2.4GHz FASST [Online] Available: http://www.rctecnic.com/receptores/2905-receptor-futaba-r617fs-7-canales-24ghz-fasst.html

[7]Berkley. (2014) ME102 Lab 4: RC Servo [Online] Available: http://www.me.berkeley.edu/ME102B/lab4.html

[8]JcoPro. (2014) Ubuntu logo [Online] Available: http://www.jcopro.net/2011/12/19/crashed-hdd-disk-ubuntu-to-the-rescue-day3-first-impressions/ubuntu-logo1/

[9]Honmann Designs.(2014) DB9 Female to Male Serial Cable [Online] Available: http://www.homanndesigns.com/store/index.php?main_page=product_info&cPath=11&products_id=26

91

Page 92: Autonomous Robotic Boat Platform - Bradley Universitycegt201.bradley.edu/.../Deliverables/Progress_Presentation_Final.pdf · 1.) The center of any given circle is the intersection

References cont.

[10] Blue Robotics. (2014). T100 Thruster [Online]. Available: http://www.bluerobotics.com/store/thrusters/t100-thruster/

[11] Global Spec. (2011). Synchronous Motor Grounding [Online]. Available: http://cr4.globalspec.com/thread/67306

[12] Embedded. (2008). Designing a MCU-driver permanent magnet BLDC motor controller: Part 1 [Online]. Available: http://www.embedded.com/print/4007628

[13] Analog Dialogue. (2008). High Current Sensing [Online]. Available: http://www.analog.com/library/analogdialogue/archives/42-01/high_side_current_sensing.html

[14] Allegro MicroSystems. (2014). A4933: Automotive 3-Phase MOSFET Driver [Online]. Available: http://www.allegromicro.com/en/Products/Motor-Driver-And-Interface-ICs/Brushless-DC-Motor-Drivers/A4933.aspx

[15] St. Cyprain’s Greek Orthodox Primary Academy. (2014). 29.9.14 [Online]. Available:

http://www.stcypriansprimaryacademy.co.uk/29-9-14/

[16] SparkFun Electronics. (2014). Dual Full-Bridge Driver [Online]. Available: https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf

[17] Vishay. (2011). IRF520 Power MOSFET [Online]. Available: http://www.vishay.com/docs/91017/91017.pdf

92