automatic functions for coordinated power flow control · automatic functions for coordinated power...

21
Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Automatic functions for coordinated power flow control

Upload: others

Post on 19-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

Automatic functions for coordinated power flow control

Page 2: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

Agenda

• Chapter 1 – ENSURE• Overview & Concept• Test system and scenario setup• Exemplary simulation results• Violation of network restrictions

• Chapter 2 – IDEAL• Motivation• Agent based power flow control• Laboratory setup

Page 3: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

CROSS VOLTAGE LEVEL POWER FLOW CONTROL

Chapter 1 | ENSURE

Page 4: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

Control Center

TransmissionGrid (TG)

Sub-TransmissionGrid (STG)

DistributionGrid (DG)

Sub-Transmission GridControl System (STG-CS)

Flexible Load

! Line Overload

∆Pref

∆Pref

Pmeas

Pmeas

PP

PP

PP

∆Pref

∆Pref

!

50 Hz

f

Pref

Pref

Psched

∆Pref

Psched

∆Pref

Psched

•Shut-down of the conventional power plants

• Increase of volatile and distributed generation

Pmeas

•New strategies for system control are necessary

•Possible approach: Control power flowsbetween several voltage levels

•The STG-CS uses DERs connected to the STG and subordinated DG-CSs as actuators

•The DG-CSs uses DERs connected to the DG as actuators

Distribution GridControl System (DG-CS)

Conventional Power Plant

Measurement

Setpoints (transfer rate in the range of seconds)

Schedules (transferrate e.g 15 min)

FrequencyDeviation

Distributed Energy Resources (DERs)

ENSURE | Overview & Concept

Page 5: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

ENSURE | Test system and scenario setup

PL

• Dynamic simulations in Matlab-Simulink to proof concept

• The System is in initial state at t=0s

• In DG2 the load increases by 10 MW at t=1s

• Case I: DG2 is able to compensate the change of load independently

• Case II: In DG2 is not enough flexibility available to compensate the loadstep independently

Feeder 1 of the CIGRE MV benchmark network

HV-CSSTG-CS

DG-CS 1

DG-CS 3

DG-CS 2

PFlex DG1

PFlex STG

PFlex DG2 + Loadstep

PFlex DG3

13 MW 13 MW

13 MW10 MW

4 MW 4 MW

4 MW

7 MW

Page 6: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

ENSURE | Exemplary simulation results – Case I

PL

Page 7: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

ENSURE | Exemplary simulation results – Case II

PL

Page 8: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

STG-CS

ENSURE | Violation of network restrictions

• The CS is blocked when network restrictions are violated.

• The CS restarts operation when problems are solved.

• How could congestions in future electrical power supply system be solved?

!Line Overload

DG-CS 1

DG-CS 3

DG-CS 2

Page 9: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

Chapter 2 | IDEALAGENT BASED CURATIVE CONGESTIONMANAGEMENT

Page 10: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

IDEAL | Motivation

• Curative congestion management: • Operating lines closer to their capacity limit

• Enabling higher utilization of available transmission capacity

• Use of distributed power flow controllers and flexible infeed from active distribution networks

• Agent based approach:• Distributed control algorithm

• Autonomous determination of countermeasures

• Support of control center staff

• Validation in laboratory setup:• Testing interconnection between control center, communication system and power flow controller

• Implementation using commercially available products and industry standards

Page 11: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

Qflex

PflexQflex

Pflex

Control Center

ControlCenter

Sub-TransmissionGrid (STG)

DistributionGrid (DG)

G

G

Distributed Power Flow Controller

Smart TelecontrolUnit in STG

State InformMessage

State Inform Message & Negotiation of Actions

Measurements& Setpoints

Information Flow & Decision MakingHardware Components

Flexible Load

G Flexible Generator

(n-1): ☑

CFP:+ΔX

Agent

+X-X

DPFC Setpoint

G

G

!

!Line Overload

Smart TelecontrolUnit in DG

Page 12: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

IDEAL | MAS information flow

State Inform Message:- Contains:

- line loading,- Impedance- connected nodes

• Information is exchangedperiodically betweenagents

• Distribution limited to relevant agents

Ø Current system state isknown for relevant area to all agents

Qflex

PflexQflex

Pflex

(n-1): ☑

CFP:+ΔX

+X-X

GG

Information exchange

Monitoring andDecision Making

Decision andControl Action

Page 13: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

IDEAL | MAS decision making

Qflex

PflexQflex

Pflex

(n-1): ☑

CFP:+ΔX

+X-X

G

G

Information exchange

Monitoring andDecision Making

Decision andControl Action

!

!

Detection of line overload

Call for proposalResponsible Agent calls foravailable flexibility:- Flexibility of underlying grids- Available PFC flexibility

Page 14: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

IDEAL | MAS decision making

Qflex

PflexQflex

Pflex

(n-1): ☑

CFP:+ΔX

+X-X

G

G

Information exchange

Monitoring andDecision Making

Decision andControl Action

!

!

Line overload present

Choosing flexibility accordingly:- PFC flexibility before flexible

loads and generation- Highest sensitivity on

overloaded line first- No additional overloads are

created- DC sensitivities calculated

using information from State Inform Messages

Page 15: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

IDEAL | MAS executing control actionOption 1: Propose control action to control center (semi-autonomous)

Qflex

PflexQflex

Pflex

(n-1): ☑

CFP:+ΔX

+X-X

GG

Information exchange

Monitoring andDecision Making

Decision andControl Action

- Send proposal to controlcenter

- Assessment of proposal bycontrol center staff

- Activation of flexibility bycontrol center

Page 16: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

IDEAL | MAS executing control actionOption 2: Autonomous execution of control actions

Qflex

PflexQflex

Pflex

(n-1): ☑

CFP:+ΔX

+X-X

GG

Information exchange

Monitoring andDecision Making

Decision andControl Action

- Activation of control actionby agent

- Send information ofperformed control action to control center

Page 17: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

IDEAL | Simulation setup: New England Test System

• Power Flow Controller installedon line TL0415

• Active Distribution Network at Node 5 and 15

• Line outage on TL0506 causesoverload on TL 0414

• Overload resolved bycountermeasures determinedby MAS

• Use of power flow controllersand flexibilty from activedistribution networks

25

2

1

39

9

8

7

6

5

4

3

18

26

2928

L05

L08

L07

L39

11

10

13

1214

15 19

20

1617

2427

2322

21

GG08

GG10

GG01

GG02

L03L04

L25

L18L26

GG09

L29

L28

GG03

L15

L20 GG05

GG04

GG06

L21

L23 GG07

L16

L12

L27

TL0414PFC

ADN ADNQflex

Pflex

Qflex

Pflex

Page 18: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

IDEAL | Exemplary Simulation resultsOutage of line TL0506 at t=5s

020406080

100120140

0 5 10 15 20

Load

ing

(%)

Time (s)

Loading of line TL0414

-120

-100

-80

-60

-40

-20

0

20

0 5 10 15 20

ΔP

(MW

)

Time (s)

ADN Flexibility

0

20

40

60

80

100

0 5 10 15 20

Load

ing(

%)

Time (s)

Loading of line TL0405

-100

-80

-60

-40

-20

0

20

0 5 10 15 20Se

t Poi

nt(-)

Time (s)

Power Flow Controller

No Control MAS

Page 19: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

IDEAL | Laboratory Setup: Real-time simulation and Power hardware-in-the-loop

19

§ Real-time digital simulator OPAL RT§ eMegasim simulation software§ IEC 104 measurement transmission§ Analog signal output

§ Power amplifiers§ 200 kVA§ AC, DC operation§ Voltage & Current mode§ Internal measurement system (4 µs minimum

delay)

Real-time Simulator 200 kVA Power Amplifiers

Busbar Cabinet SFP Communication SYSLaboratory

Page 20: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

IDEAL | Laboratory Testbed

Control CenterPSI Control

Real-Time Simulator

Power Amplifier

Impedance ControllersSmart Wires Powerline Guardian

Control actions and measurements

Grid Model and MAS

PSI STUs (Agents)

Control actions and measurements

Simulated Elements

Hardware Elements

IEC 60870-5-104 Communication

Non-Standardized Communication Protocol

Conntroller Set Points

Page 21: Automatic functions for coordinated power flow control · Automatic functions for coordinated power flow control. Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019 Agenda •

Prof. Dr.-Ing. Christian Rehtanz | EPCC, 13-15.05.2019

Conclusion and Outlook

Accomplishments:

• Distributed generation can be controlled to follow scheduled power flows at interconnection points

• Multiagent Sytems can be implemented to use power flow controllers and flexible load and generation for corrective congestion management

Next steps:

• Integration of agent based congestion management and control of distributed generation

Ø Increased autonomous grid operation relieves grid operators and enables high shares of renewable energies

• Consider real world and market conditions!