atoll 2.8.3 mw technical reference guide e2

112
v e r s i o n 2.8.3 AT283_TRG_E2 Technical Reference Guide Microwave Links

Upload: kltower

Post on 29-Nov-2014

489 views

Category:

Documents


23 download

TRANSCRIPT

Page 1: Atoll 2.8.3 MW Technical Reference Guide E2

v e r s i o n 2.8.3

AT283_TRG_E2

Technical Reference GuideMicrowave Links

Page 2: Atoll 2.8.3 MW Technical Reference Guide E2

2 Unauthorized reproduction or distribution of this document is prohibited

Atoll User Manual

Page 3: Atoll 2.8.3 MW Technical Reference Guide E2

MW Technical Reference Guide

Contact Information

Atoll 2.8.3 Technical Reference Guide Release AT283_TRG_E2

© Copyright 1997 - 2010 by Forsk

The software described in this document is provided under a licence agreement. The software may only be used/copiedunder the terms and conditions of the licence agreement. No part of this document may be copied, reproduced ordistributed in any form without prior authorisation from Forsk.

The product or brand names mentioned in this document are trademarks or registered trademarks of their respectiveregistering parties.

About the Technical Reference Guide

This document is targeted at readers with a prior knowledge of Atoll, its operation and basic functioning. It is not the UserManual for Atoll, and does not teach how to operate and use Atoll. It is a supplementary document containing detaileddescriptions of models, algorithms and concepts adopted in Atoll. Therefore, it concerns only the appropriate personnel.

The Atoll Technical Reference Guide is divided into three parts with each part comprising similar topics. The first partcontains descriptions of general terms, entities, ideas and concepts in Atoll that are encountered throughout its use. It isfollowed by the second part that consists of descriptions of entities common to all types of networks and the algorithmsthat are technology independent and are available in any network type. Lastly, the guide provides detailed descriptions ofeach basic type of network that can be modelled and studied in Atoll.

Forsk (Head Office) 7 rue des Briquetiers 31700 Blagnac France

[email protected]@forsk.com+33 (0) 562 74 72 10+33 (0) 562 74 72 25+33 (0) 562 74 72 11

WebSales and pricing informationTechnical supportGeneralTechnical supportFax

Forsk (USA Office) 200 South Wacker Drive Suite 3100 Chicago, IL 60606 USA

[email protected][email protected]+1 312 674 4846+1 888 GoAtoll (+1 888 462 8655)+1 312 674 4847

Sales and pricing informationTechnical supportGeneralTechnical supportFax

Forsk (China Office) Suite 302, 3/F, West Tower, Jiadu Commercial Building, No.66 Jianzhong Road, Tianhe Hi-Tech Industrial Zone, Guangzhou, 510665, People’s Republic of China

[email protected]+86 20 8553 8938+86 20 8553 8285

WebInformation and enquiriesTelephoneFax

© Forsk 2010 AT283_TRG_E2 3

Page 4: Atoll 2.8.3 MW Technical Reference Guide E2

MW Technical Reference Guide

4 AT283_TRG_E2 © Forsk 2010

Page 5: Atoll 2.8.3 MW Technical Reference Guide E2

Table of Contents

Table of Contents

1 Coordinate Systems and Units ....................................................... 131.1 Coordinate Systems............................................................................................................................... 13

1.1.1 Description of Coordinate Systems .................................................................................................. 131.1.1.1 Geographic Coordinate System.................................................................................................. 131.1.1.2 Datum ......................................................................................................................................... 131.1.1.3 Meridian ...................................................................................................................................... 131.1.1.4 Ellipsoid ...................................................................................................................................... 131.1.1.5 Projection.................................................................................................................................... 141.1.1.6 Projection Coordinate System .................................................................................................... 14

1.1.2 Coordinate Systems in Atoll ............................................................................................................. 141.1.2.1 Projection Coordinate System .................................................................................................... 141.1.2.2 Display Coordinate System ........................................................................................................ 141.1.2.3 Internal Coordinate Systems ...................................................................................................... 14

1.1.3 File Formats ..................................................................................................................................... 151.1.3.1 Unit Codes .................................................................................................................................. 151.1.3.2 Datum Codes.............................................................................................................................. 161.1.3.3 Projection Method Codes ........................................................................................................... 171.1.3.4 Ellipsoid Codes ........................................................................................................................... 171.1.3.5 Projection Parameter Indices...................................................................................................... 18

1.1.4 Creating a Coordinate System ......................................................................................................... 181.2 Units ....................................................................................................................................................... 18

1.2.1 Power Units ...................................................................................................................................... 181.2.2 Length Units ..................................................................................................................................... 19

2 Geographic and Radio Data ........................................................... 232.1 Geographic Data.................................................................................................................................... 23

2.1.1 Data Type......................................................................................................................................... 232.1.1.1 Digital Terrain Model (DTM) ....................................................................................................... 232.1.1.2 Clutter (Land Use) ...................................................................................................................... 24

2.1.1.2.1 Clutter Classes...................................................................................................................... 242.1.1.2.2 Clutter Heights ...................................................................................................................... 24

2.1.1.3 AtollAtollAtollAtollAtollAtollVector Data....................................................................................... 242.1.1.4 Scanned Images......................................................................................................................... 242.1.1.5 Population................................................................................................................................... 242.1.1.6 Other Geographic Data............................................................................................................... 25

2.1.2 Supported Geographic Data Formats .............................................................................................. 252.2 Radio Data ............................................................................................................................................. 26

2.2.1 Site ................................................................................................................................................... 262.2.2 Antenna ............................................................................................................................................ 262.2.3 AtollAtollMicrowave Link................................................................................................................... 262.2.4 Point to Multipoint Link ..................................................................................................................... 262.2.5 Passive Repeater ............................................................................................................................. 26

3 File Formats .................................................................................... 293.1 BIL Format ............................................................................................................................................. 29

3.1.1 HDR Header File .............................................................................................................................. 293.1.1.1 Description.................................................................................................................................. 293.1.1.2 Samples...................................................................................................................................... 30

3.1.1.2.1 Digital Terrain Model ............................................................................................................. 303.1.1.2.2 Clutter Classes File ............................................................................................................... 303.1.1.2.3 BIL File .................................................................................................................................. 30

3.2 TIF Format start here ............................................................................................................................. 303.2.1 TFW Header File .............................................................................................................................. 313.2.2 Sample ............................................................................................................................................. 32

3.2.2.1 Clutter Classes File..................................................................................................................... 323.3 BMP Format ........................................................................................................................................... 32

3.3.1 BMP File Description........................................................................................................................ 323.3.1.1 BMP File Structure...................................................................................................................... 32

© Forsk 2010 AT283_TRG_E2 5

Page 6: Atoll 2.8.3 MW Technical Reference Guide E2

MW Technical Reference Guide

3.3.1.2 BMP Raster Data Encoding ........................................................................................................333.3.1.2.1 Raster Data Compression Descriptions.................................................................................34

3.3.2 BPW/BMW Header File Description..................................................................................................353.3.3 Sample..............................................................................................................................................35

3.3.3.1 Clutter Classes File .....................................................................................................................353.4 PNG Format............................................................................................................................................35

3.4.1 PGW Header File Description ...........................................................................................................353.5 Generic Raster Header File (.wld) ..........................................................................................................35

3.5.1 WLD File Description ........................................................................................................................363.5.2 Sample..............................................................................................................................................36

3.5.2.1 Clutter Classes File .....................................................................................................................363.6 DXF Format ............................................................................................................................................363.7 SHP Format ............................................................................................................................................363.8 MIF Format .............................................................................................................................................363.9 TAB Format ............................................................................................................................................373.10 ECW Format ...........................................................................................................................................373.11 Erdas Imagine Format ............................................................................................................................373.12 Planet EV/Vertical Mapper Geographic Data Format .............................................................................383.13 ArcView Grid Format ..............................................................................................................................38

3.13.1 ArcView Grid File Description ...........................................................................................................383.13.2 Sample..............................................................................................................................................38

3.14 Other Supported Geographic Data File Formats ....................................................................................393.15 Planet Format .........................................................................................................................................39

3.15.1 DTM File............................................................................................................................................393.15.1.1 Description ..................................................................................................................................393.15.1.2 Sample ........................................................................................................................................39

3.15.2 Clutter Class Files.............................................................................................................................403.15.2.1 Description ..................................................................................................................................403.15.2.2 Sample ........................................................................................................................................40

3.15.3 Vector Files .......................................................................................................................................403.15.3.1 Description ..................................................................................................................................403.15.3.2 Sample ........................................................................................................................................41

3.15.4 Image Files........................................................................................................................................413.15.5 Text Data Files..................................................................................................................................41

3.16 MNU Format ...........................................................................................................................................423.16.1 Description ........................................................................................................................................423.16.2 Sample..............................................................................................................................................42

3.17 XML Table Export/Import Format ...........................................................................................................423.17.1 Index.xml File ....................................................................................................................................433.17.2 XML File ............................................................................................................................................43

3.18 Antenna Pattern Formats........................................................................................................................443.18.1 2D Antenna Diagram Format ............................................................................................................443.18.2 Import Format of Text Files Containing 3D Antenna Patterns ..........................................................46

3.19 Microwave Antennas File Formats .........................................................................................................463.19.1 NSMA Format: WG 16.89.003 Recommendation .............................................................................46

3.19.1.1 File Description............................................................................................................................463.19.1.2 Sample ........................................................................................................................................47

3.19.2 NSMA Format: WG 16.99.050 Recommendation .............................................................................483.19.2.1 File Description............................................................................................................................483.19.2.2 Sample ........................................................................................................................................50

3.20 Microwave Equipment File Formats .......................................................................................................513.20.1 NSMA Format: WG 21.99.051 Recommendation .............................................................................51

3.20.1.1 File Description............................................................................................................................513.20.1.2 Sample ........................................................................................................................................53

4 Calculations .....................................................................................574.1 Geographic Data Estimation...................................................................................................................57

4.1.1 Ground Altitude Determination..........................................................................................................574.1.2 Clutter Determination ........................................................................................................................57

4.1.2.1 Clutter Class................................................................................................................................574.1.2.2 Clutter Height ..............................................................................................................................584.1.2.3 Profile Resolution: Multi-Resolution Management ......................................................................58

4.2 Microwave Propagation Model ...............................................................................................................584.2.1 Path Length.......................................................................................................................................584.2.2 Profile Extraction...............................................................................................................................594.2.3 Propagation Loss ..............................................................................................................................59

4.2.3.1 Free Space Loss .........................................................................................................................59

6 AT283_TRG_E2 © Forsk 2010

Page 7: Atoll 2.8.3 MW Technical Reference Guide E2

Table of Contents

4.2.3.2 Diffraction Loss ........................................................................................................................... 604.2.3.2.1 Refractivity Factor ................................................................................................................. 604.2.3.2.2 Knife-Edge Diffraction ........................................................................................................... 604.2.3.2.3 3 Knife-Edge Deygout Method.............................................................................................. 614.2.3.2.4 Epstein-Peterson Method ..................................................................................................... 624.2.3.2.5 Deygout Method with Correction........................................................................................... 624.2.3.2.6 Millington Method.................................................................................................................. 624.2.3.2.7 Full Deygout Method............................................................................................................. 634.2.3.2.8 ITU 452-11 Recommendation ............................................................................................... 63

4.2.3.3 Atmospheric Loss ....................................................................................................................... 644.2.3.4 Tropospheric Scatter Loss.......................................................................................................... 64

4.2.3.4.1 ITU-R P.617-1....................................................................................................................... 644.2.3.4.2 ITU-R P. 452 ......................................................................................................................... 654.2.3.4.3 Simplified Method ................................................................................................................. 66

4.3 Antenna Attenuation Calculation............................................................................................................ 664.3.1 Calculation of Azimuth and Tilt Angles............................................................................................. 664.3.2 Antenna Pattern 3-D Interpolation.................................................................................................... 684.3.3 Additional Electrical Downtilt Modelling............................................................................................ 68

4.4 Antenna Diameter Calculation ............................................................................................................... 69

5 Microwave Radio Links Networks ................................................... 735.1 Link Budget and Interference Analysis................................................................................................... 73

5.1.1 Input ................................................................................................................................................. 735.1.2 Link Budget Calculation Details........................................................................................................ 74

5.1.2.1 Nominal Power ........................................................................................................................... 745.1.2.2 Coordinated Power ..................................................................................................................... 745.1.2.3 Transmission Attenuation ........................................................................................................... 755.1.2.4 EIRP (Equivalent Isotropic Radiated Power) .............................................................................. 755.1.2.5 Reception Attenuation ................................................................................................................ 755.1.2.6 Received Signal Level ................................................................................................................ 755.1.2.7 Thermal Fade Margin ................................................................................................................. 755.1.2.8 Signal Enhancement Margin....................................................................................................... 75

5.1.3 Interference Calculation Details ....................................................................................................... 755.1.3.1 Single Interference Source ......................................................................................................... 75

5.1.3.1.1 Interference Signal Level ...................................................................................................... 755.1.3.1.2 Carrier to Interference Ratio (C/I).......................................................................................... 755.1.3.1.3 Threshold Degradation ......................................................................................................... 755.1.3.1.4 Effective Thermal Fade Margin............................................................................................. 76

5.1.3.2 Multiple Interference Sources ..................................................................................................... 765.1.3.2.1 Total Interference Signal Level in Clear Air Conditions......................................................... 765.1.3.2.2 Total Interference Signal Level in Rain Conditions ............................................................... 765.1.3.2.3 Total Carrier to Interference Ratio (C/I) in Clear Air Conditions............................................ 765.1.3.2.4 Total Carrier to Interference Ratio (C/I) in Rain Conditions .................................................. 765.1.3.2.5 Total Threshold Degradation in Clear Air Conditions............................................................ 765.1.3.2.6 Total Threshold Degradation in Rain Conditions .................................................................. 765.1.3.2.7 Total Effective Thermal Fade Margin in Clear Air Conditions ............................................... 765.1.3.2.8 Total Effective Thermal Fade Margin in Rain Conditions...................................................... 77

5.2 Performance Analysis ............................................................................................................................ 775.2.1 Input ................................................................................................................................................. 775.2.2 ITU-R P.530 Method ........................................................................................................................ 77

5.2.2.1 Total Outage Probability ............................................................................................................. 775.2.2.1.1 Total Outage Probability in Rain Conditions ......................................................................... 775.2.2.1.2 Total Outage Probability in Clear-Air Conditions................................................................... 775.2.2.1.3 Total Outage Probability due to Equipment Reliability .......................................................... 77

5.2.2.2 Quality Performance ................................................................................................................... 785.2.2.3 Availability Performance ............................................................................................................. 785.2.2.4 Global Annual Performance........................................................................................................ 78

5.3 Propagation in Rain Analysis ................................................................................................................. 785.3.1 Input ................................................................................................................................................. 785.3.2 ITU-R P.530-5 .................................................................................................................................. 78

5.3.2.1 Rain Fade Margin ....................................................................................................................... 785.3.2.1.1 Rain Coefficients ................................................................................................................... 785.3.2.1.2 Rain Attenuation ................................................................................................................... 795.3.2.1.3 Effective Path Length............................................................................................................ 795.3.2.1.4 Rain Fade Margin Exceeded for 0.01% of the Average Year ............................................... 795.3.2.1.5 Rain Fade Margin Exceeded for p% of the Average Year .................................................... 795.3.2.1.6 Rain Fade Margin Exceeded for pw% of the Average Worst Month..................................... 79

5.3.2.2 Total Outage Probability due to Rain for the Average Year........................................................ 79

© Forsk 2010 AT283_TRG_E2 7

Page 8: Atoll 2.8.3 MW Technical Reference Guide E2

MW Technical Reference Guide

5.3.3 ITU-R P.530-8, ITU-R P.530-10, ITU-R P.530-11, and ITU-R P.530-12 ..........................................805.3.3.1 Rain Fade Margin........................................................................................................................80

5.3.3.1.1 Rain Coefficients....................................................................................................................805.3.3.1.2 Rain Attenuation ....................................................................................................................805.3.3.1.3 Effective Path Length.............................................................................................................805.3.3.1.4 Rain Fade Margin Exceeded for 0.01% of the Average Year................................................805.3.3.1.5 Rain Fade Margin Exceeded for p% of the Average Year.....................................................805.3.3.1.6 Rain Fade Margin Exceeded for pw% of the Average Worst Month .....................................80

5.3.3.2 Outage Probability due to Rain for the Average Year .................................................................815.3.3.3 Outage Probability due to XPD Reduction for the Average Year ................................................81

5.3.4 Crane ................................................................................................................................................825.3.4.1 Rain Fade Margin........................................................................................................................82

5.3.4.1.1 Rain Coefficients....................................................................................................................825.3.4.1.2 Rain Attenuation ....................................................................................................................825.3.4.1.3 Rain Fade Margin Exceeded for p% of the Average Year.....................................................82

5.4 Propagation in Clear-Air Analysis ...........................................................................................................825.4.1 Input ..................................................................................................................................................825.4.2 Frequency Non-Selective Fading......................................................................................................84

5.4.2.1 ITU-R P.530-5 .............................................................................................................................845.4.2.1.1 Method for Initial Planning .....................................................................................................845.4.2.1.2 Method for Detailed Planning ................................................................................................86

5.4.2.2 ITU-R P.530-8 .............................................................................................................................895.4.2.2.1 Method for Initial Planning .....................................................................................................89

5.4.2.3 ITU-R P.530-10, ITU-R P.530-11 and ITU-R P.530-12...............................................................915.4.2.3.1 Method for Initial Planning .....................................................................................................915.4.2.3.2 Method for Detailed Planning ................................................................................................92

5.4.2.4 Vigants-Barnett............................................................................................................................935.4.2.4.1 Method for Initial Planning .....................................................................................................935.4.2.4.2 Method for Detailed Planning ................................................................................................94

5.4.2.5 CCIR Report 338 (KQ factor) ......................................................................................................955.4.2.5.1 Method for Detailed Planning ................................................................................................95

5.4.3 Frequency Selective Fading..............................................................................................................965.4.3.1 ITU-R P.530-8, ITU-R P.530-10 and ITU-R P.530-11.................................................................96

5.4.3.1.1 Method With the Equipment Signature ..................................................................................965.4.3.1.2 Method With the Normalized Equipment Signature...............................................................97

5.4.3.2 ITU-R P.530-12 ...........................................................................................................................975.4.3.2.1 Method With the Equipment Signature ..................................................................................975.4.3.2.2 Method With the Normalized Equipment Signature...............................................................97

5.4.4 Signal Enhancement .........................................................................................................................985.4.4.1 ITU-R P.530-5 .............................................................................................................................98

5.4.4.1.1 Thermal Fade Margin Exceeded for 0.01% of the Average Worst Month .............................985.4.4.1.2 Thermal Fade Margin Exceeded for 0.01% of the Average Year ..........................................985.4.4.1.3 Selection Process Between Method for Small Percentage of Time and Method for Various Per-

centage of Time995.4.4.1.4 Method for Small Percentage of Time ...................................................................................995.4.4.1.5 Method for Various Percentage of Time ................................................................................99

5.4.4.2 ITU-R P.530-8, ITU-R P.530-10, ITU-R P.530-11 and ITU-R P.530-12....................................1005.4.4.2.1 Thermal Fade Margin Exceeded for 0.01% of the Average Worst Month ...........................1005.4.4.2.2 Thermal Fade Margin Exceeded for 0.01% of the Average Year ........................................1015.4.4.2.3 Selection Process Between Method for Small Percentage of Time and Method for Various Per-

centage of Time1015.4.4.2.4 Method for Small Percentage of Time .................................................................................1025.4.4.2.5 Method for Various Percentage of Time ..............................................................................102

5.4.5 XPD Reduction................................................................................................................................1035.4.5.1 ITU-R P.530-8, ITU-R P.530-10 and ITU-R P.530-11...............................................................103

5.4.5.1.1 Multipath Parameter ............................................................................................................1035.4.5.1.2 Cross-Polarisation Parameters............................................................................................1035.4.5.1.3 Outage Probability due to XPD Reduction for the Average Worst Month............................104

5.4.6 Diversity ..........................................................................................................................................1045.4.6.1 ITU-R P.530-8, ITU-R P.530-10, ITU-R P.530-11 and ITU-R P.530-12....................................104

5.4.6.1.1 Space Diversity....................................................................................................................1045.4.6.1.2 Frequency Diversity .............................................................................................................1055.4.6.1.3 Space and Frequency Diversity (Two Receivers)................................................................106

5.5 Surface Reflection Analysis ..................................................................................................................1075.5.1 Input ................................................................................................................................................1075.5.2 ITU-R P.530-10, ITU-R P.530-11 and ITU-R P.530-12...................................................................107

5.5.2.1 Surface Reflection Point Location .............................................................................................1075.5.2.2 Difference in Path Length Between Direct and Reflected Signals ............................................108

8 AT283_TRG_E2 © Forsk 2010

Page 9: Atoll 2.8.3 MW Technical Reference Guide E2

Table of Contents

5.5.2.3 Surface Reflection Coefficient .................................................................................................. 1085.5.2.4 Effective Surface Reflection Coefficient.................................................................................... 1085.5.2.5 Thermal Fade Margin Attenuation ............................................................................................ 1095.5.2.6 Attenuation Graphs................................................................................................................... 110

© Forsk 2010 AT283_TRG_E2 9

Page 10: Atoll 2.8.3 MW Technical Reference Guide E2

MW Technical Reference Guide

10 AT283_TRG_E2 © Forsk 2010

Page 11: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 1

Coordinate Systems and Units

Page 12: Atoll 2.8.3 MW Technical Reference Guide E2
Page 13: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 1: Coordinate Systems and Units

1 Coordinate Systems and Units

1.1 Coordinate SystemsA map or a geo-spatial database is a flat representation of data collected from a curved surface. A projection is a meansfor producing all or part of a spheroid on a flat sheet. This projection cannot be done without distortion. Therefore, thecartographer must choose the characteristic (distance, direction, scale, area, or shape) that he wants to be shownaccurately at the expense of the other characteristics, or compromise on several characteristics [1-3]. The projected zonesare referenced using cartographic coordinates (meter, yard, etc.). Two projection methods are widely used:

• The Lambert Conformal-Conic Method: A portion of the earth is mathematically projected on a coneconceptually secant at one or two standard parallels. This projection method is useful for representing countriesor regions that have a predominant east-west expanse.

• The Universal Transverse Mercator (UTM) Method: A portion of the earth is mathematically projected on acylinder tangent to a meridian (which is transverse or crosswise to the equator). This projection method is usefulfor mapping large areas that are oriented north-south.

The geographic system is not a projection. It is only a representation of a location on the surface of the earth in geographiccoordinates (degree-minute-second, grade) giving the latitude and longitude in relation to the meridian origin (e.g., Parisfor NTF system and Greenwich for ED50 system). The locations in the geographic system can be converted into otherprojections.

1.1.1 Description of Coordinate SystemsA Geographic coordinate system is a latitude and longitude coordinate system. The latitude and longitude are related toan ellipsoid, a geodetic datum, and a prime meridian. The geodetic datum provides the position and orientation of theellipsoid relative to the earth.

Cartographic coordinate systems are obtained by transforming each (latitude, longitude) value into an (easting, northing)value. A projection coordinate system is obtained by transforming each (latitude, longitude) value into an (easting,northing) value. Projection coordinate systems are geographic coordinate systems that provide longitude and latitude, andthe transformation method characterised by a set of parameters. Different methods may require different sets ofparameters. For example, the parameters required for Transverse Mercator coordinate systems are:

• The longitude of the natural origin (central meridian)• The latitude of the natural origin• The False Easting value• The False Northing value• A scaling factor at the natural origin (central meridian)

Basic definitions are presented below.

1.1.1.1 Geographic Coordinate SystemThe geographic coordinate system is a datum and a meridian. Atoll enables you to choose the most suitable geographiccoordinate system for your geographic data.

1.1.1.2 DatumThe datum consists of the ellipsoid and its position relative to the WGS84 ellipsoid. In addition to the ellipsoid, translation,rotation, and distortion parameters define the datum.

1.1.1.3 MeridianThe standard meridian is Greenwich, but some geographic coordinate systems are based on other meridians. Thesemeridians are defined by the longitude with respect to Greenwich.

1.1.1.4 EllipsoidThe ellipsoid is the pattern used to model the earth. It is defined by its geometric parameters.

References:[1] Snyder, John. P., Map Projections Used by the US Geological Survey, 2nd Edition, United States Government Printing Office, Washington, D.C., 313 pages, 1982.

[2] http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html

[3] http://www.posc.org/Epicentre.2_2/DataModel/ExamplesofUsage/eu_cs34.html

[4] http://www.ign.fr/telechargement/Pi/SERVICES/transfo.pdf (Document in French)

© Forsk 2010 AT283_TRG_E2 13

Page 14: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

1.1.1.5 ProjectionThe projection is the transformation applied to project the ellipsoid of the earth on to a plane. There are different projectionmethods that use specific sets of parameters.

1.1.1.6 Projection Coordinate SystemThe projection coordinate system is the result of the application of a projection to a geographic coordinate system. Itassociates a geographic coordinate system and a projection. Atoll enables you to choose the projection coordinatesystem matching your geographic data.

1.1.2 Coordinate Systems in AtollDepending on the working environment, there can be either two or four coordinate systems used in Atoll. If you areworking with stand-alone documents, i.e., documents not connected to databases, there are two coordinate systems usedin Atoll:

• Projection coordinate system• Display coordinate system

If you are working in a multi-user environment, Atoll uses four coordinate systems:

• Projection coordinate system for the Atoll document• Display coordinate system for the Atoll document• Internal projection coordinate system for the database• Internal display coordinate system for the database

1.1.2.1 Projection Coordinate SystemThe projection coordinate system is the coordinate system of the available raster geographic data files. You should set theprojection coordinate system of your Atoll document so that it corresponds to the coordinate system of the available rastergeographic data. You can set the projection coordinate system of your document in the Options dialog.

All the raster geographic data files that you want to import and use in an Atoll document must have the same coordinatesystem. You cannot work with raster geographic data files with different coordinate systems in the same document.

The projection coordinate system is used to keep the coordinates of sites (radio network data) consistent with thegeographic data.

When you import a raster geographic data file, Atoll reads the geo-referencing information from the file (or from its headerfile, depending on the geographic data file format), i.e., its Northwest pixel, to determine the coordinates of each pixel.Atoll does not use any coordinate system during the import process. However, the geo-referencing information ofgeographic data files are considered to be provided in the projection coordinate system of the document.

1.1.2.2 Display Coordinate SystemThe display coordinate system is the coordinate system used for the display, e.g., in dialogs, in the Map window rulers, inthe status bar, etc. The coordinates of each pixel of geographic data are converted to the display coordinate system fromthe projection coordinate system for display. The display coordinate system is also used for sites (radio network data). Youcan set the display coordinate system of your document in the Options dialog.

If you import sites data, the coordinate system of the sites must correspond to the display coordinate system of your Atolldocument.

If you change the display coordinate system in a document which is not connected to a database, the coordinates of allthe sites are converted to the new display system.

1.1.2.3 Internal Coordinate SystemsThe internal coordinate systems are the projection and the display coordinate systems stored in a database. The projectionand display coordinate systems set by the administrator in the central Atoll project are stored in the database when thedatabase is created, and cannot be modified by users. Only the administrator can modify the internal coordinate systemsmanually by editing the entries in the CoordSys and the Units tables. All Atoll documents opened from a database willhave the internal coordinate systems of the database as their default projection and display coordinate systems.

Note:

• If you import vector geographic data (e.g., measurements, etc.) with different coordinatesystems, it is possible to convert the coordinate systems of these data into the projectioncoordinate system of your Atoll document.

Note:

• If the coordinate systems of all your geographic data files and sites (radio network data) are thesame, you do not have to define the projection and display coordinate systems separately. Bydefault, the two coordinate systems are the same.

14 AT283_TRG_E2 3DF 01955 6980 RKZZA© Forsk 2010

Page 15: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 1: Coordinate Systems and Units

When exporting an Atoll project to a database, the currently chosen display coordinate system becomes the internaldisplay coordinate system for the database, and the currently chosen projection coordinate system becomes the internalprojection coordinate system for the database.

Although Atoll stores both the coordinate systems in the database, i.e., the projection and the display coordinate systems,the only relevant coordinate system for the database is the internal display coordinate system because this coordinatesystem is the one used for the coordinates of sites (radio network data).

Users working on documents connected to a database can modify the coordinate systems in their documents locally, andsave these changes in their documents, but they cannot modify the coordinate systems stored in the database.

If you change the display coordinate system in a document which is not connected to a database, the coordinates of allthe sites are converted to the new display system.

If you change the display coordinate system in a document which is connected to a database, the coordinates of all thesites are converted to the new coordinate system in the Atoll document locally but not in the database because the internalcoordinate systems cannot be changed.

Atoll uses the internal coordinates systems in order to keep the site coordinates consistent in the database which isusually accessed by a large number of users in a multi-user environment.

1.1.3 File FormatsThe Coordsystems folder located in the Atoll installation directory contains all the coordinate systems, both geographicand cartographic, offered in the tool. Coordinate systems are grouped by regions. A catalogue per region and a"Favourites" catalogue are available in Atoll. The Favourites catalogue is initially empty and can be filled by the user byadding coordinate systems to it. Each catalogue is described by an ASCII text file with .cs extension. In a .cs file, eachcoordinate system is described in one line. The line syntax for describing a coordinate system is:

Examples:

You should keep the following points in mind when editing or creating .cs files:

• The identification code enables Atoll to differentiate coordinates systems. In case you create a new coordinatesystem, its code must be an integer value higher than 32767.

• When describing a new datum, you must enter the ellipsoid code and parameters instead of the datum code inbrackets. There can be 3 to 7 parameters defined in the following order: Dx, Dy, Dz, Rx, Ry, Rz, S. The syntax ofthe line in the .cs file will be:

• There can be up to seven projection parameters. These parameters must be ordered according to the parameterindex (see "Projection Parameter Indices" on page 18). Parameter with index 0 is the first one. Projectionparameters are delimited by commas.

• For UTM projections, you must provide positive UTM zone numbers for north UTM zones and negative numbersfor south UTM zones.

• You can add all other information as comments (such as usage or region).

Codes of units, data, projection methods, and ellipsoids, and projection parameter indices are listed in the tables below.

1.1.3.1 Unit Codes

Code = "Name of the system"; Unit Code; Datum Code; Projection Method Code,Projection Parameters; "Comments"

4230 = "ED50"; 101; 230; 1; "Europe - west"

32045 = "NAD27 / Vermont"; 2; 267; 6, -72.5, 42.5, 500000, 0, 0.9999643; "UnitedStates - Vermont"

Code = "Name of the system"; Unit Code; {Ellipsoid Code, Dx, Dy, Dz, Rx, Ry,Rz, S}; Projection Method Code, Projection Parameters; "Comments"

Code Cartographic Units Code Geographic Units

0 Metre 100 Radian

1 Kilometre 101 Degree

2 Foot 102 Grad

3 Link 103 ArcMinute

4 Chain 104 ArcSecond

5 Yard

6 Nautical mile

7 Mile

-1 Unspecified -1 Unspecified

© Forsk 2010 AT283_TRG_E2 15

Page 16: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

1.1.3.2 Datum CodesCode Datum Code Datum

121 Greek Geodetic Reference System 1987 260 Manoca

125 Samboja 261 Merchich

126 Lithuania 1994 262 Massawa

130 Moznet (ITRF94) 263 Minna

131 Indian 1960 265 Monte Mario

201 Adindan 266 M'poraloko

202 Australian Geodetic Datum 1966 267 North American Datum 1927

203 Australian Geodetic Datum 1984 268 NAD Michigan

204 Ain el Abd 1970 269 North American Datum 1983

205 Afgooye 270 Nahrwan 1967

206 Agadez 271 Naparima 1972

207 Lisbon 272 New Zealand Geodetic Datum 1949

208 Aratu 273 NGO 1948

209 Arc 1950 274 Datum 73

210 Arc 1960 275 Nouvelle Triangulation Française

211 Batavia 276 NSWC 9Z-2

212 Barbados 277 OSGB 1936

213 Beduaram 278 OSGB 1970 (SN)

214 Beijing 1954 279 OS (SN) 1980

215 Reseau National Belge 1950 280 Padang 1884

216 Bermuda 1957 281 Palestine 1923

217 Bern 1898 282 Pointe Noire

218 Bogota 283 Geocentric Datum of Australia 1994

219 Bukit Rimpah 284 Pulkovo 1942

221 Campo Inchauspe 285 Qatar

222 Cape 286 Qatar 1948

223 Carthage 287 Qornoq

224 Chua 288 Loma Quintana

225 Corrego Alegre 289 Amersfoort

226 Cote d'Ivoire 290 RT38

227 Deir ez Zor 291 South American Datum 1969

228 Douala 292 Sapper Hill 1943

229 Egypt 1907 293 Schwarzeck

230 European Datum 1950 294 Segora

231 European Datum 1987 295 Serindung

232 Fahud 296 Sudan

233 Gandajika 1970 297 Tananarive 1925

234 Garoua 298 Timbalai 1948

235 Guyane Francaise 299 TM65

236 Hu Tzu Shan 300 TM75

237 Hungarian Datum 1972 301 Tokyo

238 Indonesian Datum 1974 302 Trinidad 1903

239 Indian 1954 303 Trucial Coast 1948

240 Indian 1975 304 Voirol 1875

241 Jamaica 1875 305 Voirol Unifie 1960

242 Jamaica 1969 306 Bern 1938

243 Kalianpur 307 Nord Sahara 1959

244 Kandawala 308 Stockholm 1938

245 Kertau 309 Yacare

247 La Canoa 310 Yoff

248 Provisional South American Datum 1956 311 Zanderij

16 AT283_TRG_E2 3DF 01955 6980 RKZZA© Forsk 2010

Page 17: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 1: Coordinate Systems and Units

1.1.3.3 Projection Method Codes

1.1.3.4 Ellipsoid Codes

249 Lake 312 Militar-Geographische Institut

250 Leigon 313 Reseau National Belge 1972

251 Liberia 1964 314 Deutsche Hauptdreiecksnetz

252 Lome 315 Conakry 1905

253 Luzon 1911 322 WGS 72

254 Hito XVIII 1963 326 WGS 84

255 Herat North 901 Ancienne Triangulation Française

256 Mahe 1971 902 Nord de Guerre

257 Makassar 903NAD 1927 Guatemala/Honduras/Salvador

(Panama Zone)

258 European Reference System 1989

Code Datum Code Datum

Code Projection Method Code Projection Method

0 Undefined 8 Oblique Stereographic

1 No projection > Longitude / Latitude 9 New Zealand Map Grid

2 Lambert Conformal Conical 1SP 10 Hotine Oblique Mercator

3 Lambert Conformal Conical 2SP 11 Laborde Oblique Mercator

4 Mercator 12 Swiss Oblique Cylindrical

5 Cassini-Soldner 13 Oblique Mercator

6 Transverse Mercator 14 UTM Projection

7 Transverse Mercator South Oriented

Code Name Major Axis Minor Axis

1 Airy 1830 6377563.396 6356256.90890985

2 Airy Modified 1849 6377340.189 6356034.44761111

3 Australian National Spheroid 6378160 6356774.71919531

4 Bessel 1841 6377397.155 6356078.96261866

5 Bessel Modified 6377492.018 6356173.50851316

6 Bessel Namibia 6377483.865 6356165.38276679

7 Clarke 1858 6378293.63924683 6356617.98173817

8 Clarke 1866 6378206.4 6356583.8

9 Clarke 1866 Michigan 6378693.7040359 6357069.45104614

10 Clarke 1880 (Benoit) 6378300.79 6356566.43

11 Clarke 1880 (IGN) 6378249.2 6356515

12 Clarke 1880 (RGS) 6378249.145 6356514.86954978

13 Clarke 1880 (Arc) 6378249.145 6356514.96656909

14 Clarke 1880 (SGA 1922) 6378249.2 6356514.99694178

15 Everest 1830 (1937 Adjustment) 6377276.345 6356075.41314024

16 Everest 1830 (1967 Definition) 6377298.556 6356097.5503009

17 Everest 1830 (1975 Definition) 6377301.243 6356100.231

18 Everest 1830 Modified 6377304.063 6356103.03899315

19 GRS 1980 6378137 6356752.31398972

20 Helmert 1906 6378200 6356818.16962789

21 Indonesian National Spheroid 6378160 6356774.50408554

22 International 1924 6378388 6356911.94612795

23 International 1967 6378160 6356774.71919530

24 Krassowsky 1940 6378245 6356863.01877305

25 NWL 9D 6378145 6356759.76948868

26 NWL 10D 6378135 6356750.52001609

27 Plessis 1817 6376523 6355862.93325557

© Forsk 2010 AT283_TRG_E2 17

Page 18: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

1.1.3.5 Projection Parameter Indices

1.1.4 Creating a Coordinate SystemAtoll provides a large catalogue of default coordinate systems. Nevertheless, it is possible to add the description ofgeographic and cartographic coordinate systems. New coordinate systems can be created from scratch or initialised onthe basis of an existing one.

To create a new coordinate system from scratch:

1. Select Tools > Options. The Options dialogue opens.

2. Select the Coordinates tab.

3. Click the browse button (...) on the right of the Projection field.

4. Click the New button. The Coordinate System dialog opens.

5. In the Coordinate System dialogue:

a. Select the coordinate systems catalogue to which you want to add the new coordinate system.

b. In the General properties section: Enter a name for the new coordinate system, select a unit. You can alsoenter any comments about its usage. Atoll assigns the code automatically.

c. In the Category section: Select the type of coordinate system. Enter the longitude and latitude for ageographic coordinate system, or the type of projection and its set of associated parameters for a cartographiccoordinate system (false easting and northing, and the first and second parallels).

d. In the Geo section: Specify the meridian and choose a datum for the coordinate system. The associatedellipsoid is automatically selected. You can also describe a geodetic datum by selecting "..." in the Datum list.In this case, you must provide parameters (Dx, Dy, Dz, Rx, Ry, Rz, and S) needed for the transformation ofthe datum into WGS84, and an ellipsoid.

6. Click OK. The new coordinate system is added to the selected coordinate system catalogue.

To create a new coordinate system based on an existing system, select a coordinate system in the Coordinate Systemsdialog before clicking New in step 4. The new coordinate system is initialised with the values of the selected coordinatesystem.

1.2 Units

1.2.1 Power UnitsDepending on the working environment, there can be either one or two types of units for transmission and receptionpowers. If you are working with stand-alone documents, i.e., documents not connected to databases, there is only one unitused in Atoll:

• Display power units

If you are working in a multi-user environment, Atoll uses two type of units:

• Display power units for the Atoll document• Internal power units for the database

28 Struve 1860 6378297 6356655.84708038

29 War Office 6378300.583 6356752.27021959

30 WGS 84 6378137 6356752.31398972

31 GEM 10C 6378137 6356752.31398972

32 OSU86F 6378136.2 6356751.51667196

33 OSU91A 6378136.3 6356751.61633668

34 Clarke 1880 6378249.13884613 6356514.96026256

35 Sphere 6371000 6371000

Code Name Major Axis Minor Axis

Index Projection Parameter Index Projection Parameter

0 UTM zone number 4 Scale factor at origin

0 Longitude of origin 4 Latitude of 1st parallel

1 Latitude of origin 5 Azimuth of central line

2 False Easting 5 Latitude of 2nd parallel

3 False Northing 6 Angle from rectified to skewed grid

18 AT283_TRG_E2 3DF 01955 6980 RKZZA© Forsk 2010

Page 19: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 1: Coordinate Systems and Units

The display units are used for the display in dialogs and tables, e.g., reception thresholds ( microwave link properties, etc.),and received signal levels (measurements, point analysis, etc.). You can set the display units for your document in theOptions dialog.

The internal units are the power units stored in a database. The power units set by the administrator in the central Atollproject are stored in the database when the database is created, and cannot be modified by users. Only the administratorcan modify the internal units manually by editing the entries in the Units tables. All Atoll documents opened from adatabase will have the internal units of the database as their default power units.

Users working on documents connected to a database can modify the units in their documents locally, and save thesechanges in their documents, but they cannot modify the units stored in the database.

1.2.2 Length UnitsThere are two types of units for distances, heights, and offsets:

• Display length units• Internal length units

The display length units are used to display distances, heights, and offsets in dialogs, tables, and the status bar. You canset the display units for your document in the Options dialog.

The internal unit for lengths is metre for all Atoll documents whether they are connected to databases or not. The internalunit is not stored in the databases. The internal unit cannot be changed.

© Forsk 2010 AT283_TRG_E2 19

Page 20: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

20 AT283_TRG_E2 3DF 01955 6980 RKZZA© Forsk 2010

Page 21: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 2

Geographic and Radio Data

Page 22: Atoll 2.8.3 MW Technical Reference Guide E2
Page 23: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 2: Geographic and Radio Data

2 Geographic and Radio Data

2.1 Geographic Data

2.1.1 Data TypeAtoll manages several geographic data types; DTM (Digital Terrain Model), clutter (Land-Use), scanned images, vectordata, population, and any other generic data.

2.1.1.1 Digital Terrain Model (DTM)The DTM (Digital Terrain Model or height) files describe the ground elevation above the sea level. DTM files supported byAtoll are 16 bits/pixel relief maps in .tif, .bil, Planet© and Erdas Imagine formats and 8 bits/pixel relief maps in .tif, .bil,Erdas Imagine and .bmp formats. DTM maps are taken into account in path loss calculations by Atoll propagation models.

DTM file provides altitude value (z stated in metre) on evenly spaced points. Abscissa and ordinate axes are respectivelyoriented in right and downwards directions. Space between points is defined by pixel size (P stated in metre). Pixel sizemust be the same in both directions. First point given in the file corresponds to the centre of the upper-left pixel of the map.This point refers to the northwest point geo-referenced by Atoll. Four points (hence, four altitude values) are necessaryto describe a “bin”; these points are bin vertices.

Therefore, a n*n bin DTM file requires (n)2 points (altitude values).

Figure 2.1Digital Terrain Model

Figure 2.2Schematic view of a DTM file

Notes:

• Altitude values differ within a bin. Method used to calculate altitudes is described in thePath loss calculations: Altitude determination part. Concerning DTM map display, Atolltakes altitude of the southwest point of each bin to determine its colour.

• In most documents, Digital Elevation Model (DEM) and Digital Terrain Model (DTM) aredifferentiated and do not have the same meaning. By definition, DEM refers to altitudeabove sea level including, both, ground and clutter while DTM just corresponds to theground height above sea level. In Atoll, the DEM term may be used instead of DTM term.

© Forsk 2010 AT283_TRG_E2 23

Page 24: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

2.1.1.2 Clutter (Land Use)You may import two types of clutter files in ATL documents. These files indicate either the clutter class or the clutter heighton each bin of the map.

2.1.1.2.1 Clutter ClassesAtoll supports 8 bits/pixel (255 classes) raster maps in .tif, .bil, .bmp, Erdas Imagine formats or 16 bits/pixel raster mapsin Planet© format. This kind of clutter file describes the land cover (dense urban, buildings, residential, forest, open,villages, …). A grid map represents ground and each bin of the map is characterised by a code corresponding to a maintype of cover (a clutter class). Atoll automatically lists all the clutter classes of the map. It is possible to specify an averageclutter height for each clutter class manually during the map description step. Clutter maps are taken into account in pathloss calculations by Atoll propagation models.

Clutter file provides a clutter code per bin. Bin size is defined by pixel size (P stated in metre). Pixel size must be the samein both directions. Abscissa and ordinate axes are respectively oriented in right and downwards directions. First point givenin the file corresponds to the centre of the upper-left pixel of the image. This point refers to the northwest point geo-referenced by Atoll.

Therefore, a n*n bin Clutter file requires (n)2 code values.

2.1.1.2.2 Clutter HeightsFiles supported by Atoll for clutter heights are 8 or 16 bits/pixel raster maps in .tif, .bil and Erdas Imagine formats. The fileprovides clutter height value on evenly spaced points. Abscissa and ordinate axes are respectively oriented in right anddownwards directions. Space between points is defined by pixel size (P in metre). Pixel size must be the same in bothdirections. First point given in the file corresponds to the centre of the upper-left pixel of the map. This point refers to thenorthwest point geo-referenced by Atoll.

These maps are taken into account in path loss calculations by Atoll propagation models.

2.1.1.3 AtollAtollAtollAtollAtollAtollVector DataThese data represent either polygons (regions, etc.), lines (roads, coastlines, etc.) or points (towns, etc.). Atoll supportsvector data files in .dxf®, Planet©, .shp, .mif and .agd formats. These maps are only used for display and provideinformation about the geographic environment.

2.1.1.4 Scanned ImagesThese geographic data include the road maps and the satellite images. They are only used for display and provideinformation about the geographic environment. Atoll supports scanned image files in .tif (1, 4, 8, 24-bits/pixel), .bil (1, 4,8, 24-bits/pixel), Planet© (1, 4, 8, 24-bits/pixel), .bmp (1-24-bits/pixel), Erdas Imagine (1, 4, 8, 24-bits/pixel) and .ecw (24-bits/pixel) formats.

2.1.1.5 PopulationAtoll deals with vector population files (polygons, lines or points) in .mif, .shp and .agd formats or 8, 16, 32 bits/pixel rasterpopulation files in .tif, .bil, .bmp and Erdas Imagine formats. Population map describes the population distribution. Theyare considered in clutter statistics.

Figure 2.3Clutter Classes

Note:

• The clutter code is the same inside a bin.

Note:

• Atoll considers the clutter height of the nearest point in calculations (see Path losscalculations: Clutter determination part). For map display, Atoll takes clutter height of thesouthwest point of each bin to determine its colour.

24 AT283_TRG_E2 © Forsk 2010

Page 25: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 2: Geographic and Radio Data

2.1.1.6 Other Geographic DataIt is possible to import generic geographic data types, other than those listed above, (Customer density, revenue density,etc.) in Atoll. These data can be either vector files in .mif, .shp and .agd formats or 8, 16, 32 bits/pixel raster files in .tif,.bil, .bmp and Erdas Imagine formats. These maps are taken into account in clutter statistics.

The ArcView Grid format (.txt) is an ASCII format dedicated to define raster maps. It may be used to export any raster mapsuch as DTM, images, Clutter Classes and/or Heights, Population, and Generic data maps. The contents of an ArcViewGrid file are in ASCII and consist of a header, describing the content, followed by the content in the form of cell values.

2.1.2 Supported Geographic Data FormatsAtoll offers Import/Export filters for the most commonly used geographic data formats. The different filters are:

Thus, to sum up, you can import:

• DTM files in .tif (16-bits, 8-bits), .bil (16-bits, 8-bits), Planet© (16-bits), Erdas Imagine (16-bits, 8-bits), VerticalMapper (.grd, .grc) and .bmp (8-bits) formats.

• Clutter heights files in .tif (16-bits, 8-bits), .bil (16-bits, 8-bits), Erdas Imagine (16-bits, 8-bits), Vertical Mapper (.grd,.grc) and .bmp (8-bits) formats.

• Clutter classes in .tif (8-bits), .bil (8-bits), .bmp (8-bit), Erdas Imagine (8-bits) and Vertical Mapper (.grd, .grc) andPlanet© format (16-bits) are also supported.

• Vector data files in .dxf®, Planet©, .shp, .mif and .agd formats.• Scanned image files in .tif (1, 4, 8, 24-bits), .bil (1, 4, 8, 24-bits), Planet© (1, 4, 8, 24-bits), .bmp (1-24-bits), Erdas

Imagine (1, 4, 8, 24-bits), Vertical Mapper (.grd, .grc) and .ecw (Enhanced Compressed Wavelet) (24 bits) formats.• Population files in .mif, .shp, .agd, .tif (8, 16, 32-bits), .bil (8, 16, 32-bits), .bmp (8, 32-bits), Vertical Mapper (.grd,

.grc) and Erdas Imagine (8, 16, 32-bits) formats.• Other generic data types in .mif, .shp, .agd, .tif (8, 16, 32-bits), .bil (8, 16, 32-bits), .bmp (8, 32-bits), Vertical

Mapper (.grd, .grc) and Erdas Imagine (8, 16, 32-bits) formats.

Notes:

• The minimum resolution supported by Atoll is 1m for any raster maps, excepted forscanned images, for which it is unlimited.

• DTM and clutter map resolution must be an integer.

• All the raster maps you want to import in an ATL document must be represented in thesame projection system.

File formatImport/Export

Can contain Georeferenced

.bil BothDTM, Clutter classes and heights, Image,

Population, Other dataYes via .hdr files

.tif BothDTM, Clutter classes and heights, Image,

Population, Other dataYes via associated .tfw files if

they exist

Planet© Both DTM, Clutter classes, Image, Vector data Yes via index files

.bmp BothDTM, Clutter heights, Clutter classes, Image,

Population, Other dataYes via .bpw (or .bmw) files

.dxf® Import Only Vector data Yes

.shp Both Vector data, Population, Other data Yes

.mif/.mid Both Vector data, Population, Other data Yes

Erdas Imagine Import OnlyDTM, Clutter classes and heights, Image,

Population, Other dataYes

ArcView Grid Export OnlyDTM, Clutter classes and heights, Image,

Population, Other dataYes automatically embedded in

the data file

.agd Both Vector data, Population, Other dataYes automatically embedded in

the data file

Vertical Mapper (.grd, .grc)

BothDTM, Clutter classes and heights, Image,

Population, Other dataYes automatically embedded in

the data file

.ecw Import Only Images Yes via ers file (not mandatory)

Note:

• The .wld files may be used as georeferencement file for any type of binary raster file.

• Tiled .tif format is not supported.

Note:

• It is possible to import Packbit, FAX-CCITT3 and LZW compressed .tif files. However, incase of DTM and clutter, we recommend not to use compressed files in order to avoid poorperformances. If uncompressed files are too big, it is better to split them.

© Forsk 2010 AT283_TRG_E2 25

Page 26: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

2.2 Radio DataAtoll manages several radio data types; sites, transmitters, antennas, stations and hexagonal designs. Data definition inAtoll is detailed hereafter.

2.2.1 SiteA site is a geographical point where one or several transmitters (multi-sectored site or station) equipped with antennas arelocated.

2.2.2 AntennaAn antenna is a device used for transmitting or receiving electromagnetic waves.

2.2.3 AtollAtollMicrowave LinkA microwave link is a communication link at microwave frequencies used for transmitting video, audio, and data betweentwo locations which can be from a few feet to several miles apart. A link may be uni or bidirectional with transmitter and areceiver at each extermity. Transmitters and receivers are connected to antennas through coaxial cables or metallicwaveguides.

2.2.4 Point to Multipoint LinkMicrowave radio links can be used in point-to-multipoint configurations where a number of remote stations are served bya single base station. Point-to-multipoint systems are not symmetric like point-to-point systems, and, therefore, bothdirections, downstream, i.e., from the base station to the remote stations, and upstream, must be considered separately.

2.2.5 Passive RepeaterA passive repeater is a device that receives a signal from a transmitter and retransmits it to a receiver. The term passivemeans that the hardware has no power source of its own. Active repeaters, on the other hand, amplify the received signal.Reflectors are examples of passive repeaters.

26 AT283_TRG_E2 © Forsk 2010

Page 27: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3

File Formats

Page 28: Atoll 2.8.3 MW Technical Reference Guide E2
Page 29: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

3 File Formats

3.1 BIL FormatBand Interleaved by Line is a method of organizing image data for multi-band images. It is a schema for storing the actualpixel values of an image in a file. The pixel data is typically preceded by a file header that contains auxiliary data about theimage, such as the number of rows and columns in the image, a colour map, etc. .bil data stores pixel information bandby band for each line, or row, of the image. Although .bil is a data organization schema, it is treated as an image format.An image description (number of rows and columns, number of bands, number of bits per pixel, byte order, etc.) has to beprovided to be able to display the .bil file. This information is included in the header .hdr file associated with the .bil file. A.hdr file has the same name as the .bil file it refers to, and should be located in the same directory as the source file. The.hdr structure is simple; it is an ASCII text file containing eleven lines. You can open a .hdr file using any ASCII text editor.

Atoll supports the following objects in .bil format:

• Digital Terrain Model (8 or 16 bits)• Clutter heights (8 or 16 bits)• Clutter classes maps (8 bits)• Raster images (1, 4, 8, 24 bits)• Population maps (8, 16, 32 bits)• Other generic geographic data (8, 16, 32 bits)

3.1.1 HDR Header File

3.1.1.1 DescriptionThe header file is a text file that describes how data are organised in the .bil file. The header file is made of rows, eachrow having the following format:

where ‘keyword’ corresponds to an attribute type, and ‘value’ defines the attribute value.

Keywords required by Atoll are described below. Other keywords are ignored.

Four additional keywords may be optionally managed.

which can be :

in some cases, this keyword can be replace by datatype defined as follows:

keywordvalue

nrowsNumber of rows in the image.

ncolsNumber of columns in the image.

nbandsNumber of spectral bands in the image, (1 for DTM data and 8 bit pictures).

nbitsNumber of bits per pixel per band; 8 or 16 for DTMs or Clutter heights(altitude in metres), 8 for clutter classes file (cluttercode), 16 for path loss matrices (path loss in dB, fieldvalue in dBm, dBµV and DBµV/m).

byteorderByte order in which image pixel values are stored. Accepted values areM (Motorola byte order) or I (Intel byte order).

layoutMust be ‘bil’.

skipbytesByte to be skipped in the image file in order to reach the beginningof the image data. Default value is 0.

ulxmapx coordinate of the centre of the upper-left pixel.

ulymapy coordinate of the centre of the upper-left pixel.

xdim x size in metre of a pixel.

ydim y size in metre of a pixel.

pixeltypeType of data read (in addition to the length)

UNSIGNDINT Undefined 8, 16, 24 or 32 bits

SIGNEDINT Integer 16 or 32 bits

FLOAT Real 32 or 64 bits

datatypeType of data read (in addition to the length)

© Forsk 2010 AT283_TRG_E2 29

Page 30: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

It can be:

The other optional keywords are :valueoffset, valuescale and nodatavalue.

By default, integer data types are chosen with respect to the pixel length (nbits).

So, we have

3.1.1.2 SamplesHere, the data is 20m.

3.1.1.2.1 Digital Terrain Model

3.1.1.2.2 Clutter Classes File

3.1.1.2.3 BIL File.bil files are usually binary files without header. Data are stored starting from the Northwest corner of the area. Theskipbytes value defined in the header file allows to skip records if the data do not start at the beginning of the file.

3.2 TIF Format start hereTagged Image File Format graphics filter supports all image types (monochrome, greyscale, palette colour, and RGB fullcolour images) and Packbit, LZW or fax group 3-4 compressions. .tif files are not systematically geo-referenced. You haveto enter spatial references of the image manually during the import procedure (x and y-axis map coordinates of the centreof the upper-left pixel, pixel size); an associated file with .tfw extension will be simultaneously created with the same name

Un Undefined n bits (8, 16, 24 or 32 bits)

In Integer n bits (16 or 32 bits)

Rn Real n bits (32 or 64 bits)

RGB24 Integer 3 colour components on 24 bits

valueoffsetReal value to be added to the read value (Vread)

valuescaleScaling factor to be applied to the read value

nodatavalueValue corresponding to “NO DATA”

V Vread valuescale valueoffset+=

nrows1500

ncols1500

nbands1

nbits8 or 16

byteorderM

layoutbil

skipbytes0

ulxmap975000

ulymap1891000

xdim 20.00

ydim 20.00

nrows1500

ncols1500

nbands1

nbits8

byteorderM

layoutbil

skipbytes0

ulxmap975000

ulymap1891000

xdim 20.00

ydim 20.00

30 AT283_TRG_E2 © Forsk 2010

Page 31: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

and in the same directory as the .tif file it refers to. Atoll will then use the .tfw file during the import procedure for anautomatic geo-referencing.

You can modify the colour palette convention used by Atoll when exporting .tif files. This can be helpful when working on.tif files exported by Atoll in other tools. In the default palette, the first colour indexes represent the useful information andthe remaining colour indexes represent the background. It is possible to export .tif files with a palette which defines thebackground colour at the colour index 0, and then the colour indexes necessary to represent useful information. Add thefollowing lines in the Atoll.ini file to set up the new palette convention:

Please refer to the Administrator Manual for more details about the Atoll.ini file.

Atoll supports the following objects in .tif format:

• Digital Terrain Model (8 or 16 bits)• Clutter heights (8 or 16 bits)• Clutter classes maps (8 bits)• Raster images (1, 4, 8, 24 bits)• Population maps (8, 16, 32 bits)• Other generic geographic data (8, 16, 32 bits)

.tfw file contains the spatial reference data of an associated .tif file. The .tfw file structure is simple; it is an ASCII text filethat contains six lines. You can open a .tfw file using any ASCII text editor.

3.2.1 TFW Header FileThe .tfw files contain spatial reference data for the associated .tif file. The header file is a text file that describes how dataare organised in the .tif file. You can open a .tfw file using any ASCII text editor. The header file consists of six lines, witheach line having the following description:

Note:

• Atoll also supports .tif files using the Packbit, FAX-CCITT3 and LZW compression modes.

[TiffExport]

PaletteConvention=Gis

Notes:

• Using compressed geo data formats (compressed .tif, Erdas Imagine, or .ecw) can causeperformance loss due to real-time decompression. However, you can recover this loss inperformance by:

- Either, hiding the status bar, which provides geographic data information in real time, byunchecking the Status Bar item in the View menu.- Or, not displaying some of the information, such as altitude, clutter class and clutterheight, in the status bar. This can be done through the Atoll.ini file, by adding the followinglines:

[StatusBar]DisplayZ=0DisplayClutterClass=0DisplayClutterHeight=0

• You can also save the produced map in an uncompressed format.

• Please refer to the Administrator Manual for more details about the Atoll.ini file.

Line Description

1 x dimension of a pixel in map units

2 amount of translation

3 amount of rotation

4 negative of the y dimension of a pixel in map units

5 x-axis map coordinate of the centre of the upper-left pixel

6 y-axis map coordinate of the centre of the upper-left pixel

Note:

• Atoll does not use the lines 2 and 3 when importing a .tif format geographic file.

© Forsk 2010 AT283_TRG_E2 31

Page 32: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

3.2.2 Sample

3.2.2.1 Clutter Classes File

3.3 BMP FormatThis is the MS-Windows standard format. It holds black & white, 16-, 256- and True-colour images. The palletized 16-colour and 256-colour images may be compressed via run length encoding (though compressed .bmp files are quite rare).The image data itself can either contain pointers to entries in a colour table or literal RGB values. .bmp files are notsystematically geo-referenced. You have to enter spatial references of the image manually during the import procedure (xand y-axis map coordinates of the centre of the upper-left pixel, pixel size). When exporting (saving) a .bmp file, anassociated file with .bpw extension is created with the same name and in the same directory as the .bmp file it refers to.Atoll stores the georeferencing information in this file for future imports of the .bmp so that the .bpw file can be used duringthe import procedure for automatic geo-referencing. Atoll also supports .bmw extension for the .bmp related world files.

Atoll supports the following objects in .bmp format:

• Digital Terrain Model (8 bits)• Clutter Heights (8 bits)• Clutter classes maps (8 bits)• Raster images (1, 4, 8, 24 bits)• Population maps (8, 32 bits)• Other generic geographic data (8, 32 bits)

3.3.1 BMP File DescriptionA .bmp file contains of the following data structures:

• BITMAPFILEHEADER bmfh Contains someinformation about the bitmap file (about the file, not about the bitmapitself).

• BITMAPINFOHEADER bmih Contains informationabout the bitmap (such as size, colours, etc.).

• RGBQUAD aColors[] Contains a colour table.• BYTE aBitmapBits[] Image data (whose

format is specified by the bmih structure).

3.3.1.1 BMP File StructureThe following tables give exact information about the data structures. The Start-value is the position of the byte in the fileat which the explained data element of the structure starts, the Size-value contains the number of bytes used by this dataelement, the Name column contains both generic name and the name assigned to this data element by the Microsoft APIdocumentation, and the Description column gives a short explanation of the purpose of this data element.

• BITMAPFILEHEADER (Header - 14 bytes):

• BITMAPINFOHEADER (InfoHeader - 40 bytes):

100.00

0.00

0.00

-100.00

60000.00

2679900.00

Start SizeName

DescriptionGeneric MS API

1 2 Signature bfType Must always be set to 'BM' to declare that this is a .bmp-file.

3 4 FileSize bfSize Specifies the size of the file in bytes.

7 2 Reserved1 bfReserved1 Unused. Must be set to zero.

9 2 Reserved2 bfReserved2 Unused. Must be set to zero.

11 4 DataOffset bfOffBitsSpecifies the offset from the beginning of the file to the bitmap (raster)

data.

Start SizeName

DescriptionGeneric MS API

32 AT283_TRG_E2 © Forsk 2010

Page 33: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

• RGBQUAD array (ColorTable):

• Pixel data:

The interpretation of the pixel data depends on the BITMAPINFOHEADER structure. It is important to know that the rowsof a .bmp are stored upside down meaning that the uppermost row which appears on the screen is actually the lowermostrow stored in the bitmap. Another important thing is that the number of bytes in one row must always be adjusted byappending zero bytes to fit into the border of a multiple of four (16-bit or 32-bit rows).

3.3.1.2 BMP Raster Data EncodingDepending on the image BitCount and on the Compression flag there are 6 different encoding schemes. In all of them,

• Pixels are stored bottom-up, left-to-right.• Pixel lines are padded with zeros to end on a 32-bit boundary.

15 4 Size biSizeSpecifies the size of the BITMAPINFOHEADER structure, in

bytes (= 40 bytes).

19 4 Width biWidth Specifies the width of the image, in pixels.

23 4 Height biHeight Specifies the height of the image, in pixels.

27 2 Planes biPlanesSpecifies the number of planes of the target device, must be

set to zero or 1.

29 2 BitCount biBitCount

Specifies the number of bits per pixel.1 = monochrome pallete. # of colours = 1

4 = 4-bit palletized. # of colours = 168 = 8-bit palletized. # of colours = 256

16 = 16-bit palletized. # of colours = 6553624 = 24-bit palletized. # of colours = 16M

31 4 Compression biCompression

Specifies the type of compression, usually set to zero.0 = BI_RGB no compression

1 = BI_RLE8 8-bit RLE encoding2 = BI_RLE4 4-bit RLE encoding

35 4 ImageSize biSizeImageSpecifies the size of the image data, in bytes. If there is no

compression, it is valid to set this element to zero.

39 4 XpixelsPerM biXPelsPerMeter Specifies the the horizontal pixels per meter.

43 4 YpixelsPerM biYPelsPerMeter Specifies the the vertical pixels per meter.

47 4 ColoursUsed biClrUsedSpecifies the number of colours actually used in the bitmap. If

set to zero the number of colours is calculated using the biBitCount element.

51 4 ColoursImportant biClrImportantSpecifies the number of colour that are 'important' for the

bitmap. If set to zero, all colours are considered important.

Note:

• biBitCount actually specifies the colour resolution of the bitmap. It also decides if there is acolour table in the file and how it looks like.- In 1-bit mode the colour table has to contain 2 entries (usually white and black). If a bit inthe image data is clear, it points to the first palette entry. If the bit is set, it points to thesecond.- In 4-bit mode the colour table must contain 16 colours. Every byte in the image datarepresents two pixels. The byte is split into the higher 4 bits and the lower 4 bits and eachvalue of them points to a palette entry.- In 8-bit mode every byte represents a pixel. The value points to an entry in the colourtable which contains 256 entries.- In 24-bit mode three bytes represent one pixel. The first byte represents the red part, thesecond the green and the third the blue part. There is no need for a palette because everypixel contains a literal RGB-value, so the palette is omitted.

Start SizeName

DescriptionGeneric MS API

1 1 Blue rgbBlue Specifies the blue part of the colour.

2 1 Green rgbGreen Specifies the green part of the colour.

3 1 Red rgbRed Specifies the red part of the colour.

4 1 Reserved rgbReserved Must always be set to zero.

Note:

• In a colour table (RGBQUAD), the specification for a colour starts with the blue byte, whilein a palette a colour always starts with the red byte.

© Forsk 2010 AT283_TRG_E2 33

Page 34: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

• For uncompressed formats every line will have the same number of bytes.• Colour indices are zero based, meaning a pixel colour of 0 represents the first colour table entry, a pixel colour of

255 (if there are that many) represents the 256th entry. For images with more than 256 colours there is no colourtable.

3.3.1.2.1 Raster Data Compression Descriptions• 4-bit / 16 colour images

• 8-bit / 256 colour images

Encoding typeBitCoun

tCompressio

nRemarks

1-bitB&W images

1 0

Every byte holds 8 pixels, its highest order bit representing the leftmost pixel of these 8. There are 2 colour table entries. Some readers assume that 0 is black and 1 is white. If you are storing

black and white pictures you should stick to this, with any other 2 colours this is not an issue. Remember padding with zeros up to a

32-bit boundary.

4-bit16 colour images

4 0

Every byte holds 2 pixels, its high order 4 bits representing the left of those. There are 16 colour table entries. These colours do not have to be the 16 MS-Windows standard colours. Padding each line with zeros up to a 32-bit boundary will result in up to 28 zeros = 7 'wasted

pixels'.

8-bit256 colour images

8 0Every byte holds 1 pixel. There are 256 colour table entries.

Padding each line with zeros up to a 32-bit boundary will result in up to 3 bytes of zeros = 3 'wasted pixels'.

16-bitHigh colour images

16 0Every 2 bytes hold 1 pixel. There are no colour table entries.

Padding each line with zeros up to a 16-bit boundary will result in up to 2 zero bytes.

24-bitTrue colour images

24 0

Every 4 bytes hold 1 pixel. The first holds its red, the second its green, and the third its blue intensity. The fourth byte is reserved and should be zero. There are no colour table entries. No zero

padding necessary.

4-bit16 colour images

4 2

Pixel data is stored in 2-byte chunks. The first byte specifies the number of consecutive pixels with the same pair of colour. The

second byte defines two colour indices. The resulting pixel pattern will have interleaved high-order 4-bits and low order 4 bits

(ABABA...). If the first byte is zero, the second defines an escape code. The End-of-Bitmap is zero padded to end on a 32-bit

boundary. Due to the 16bit-ness of this structure this will always be either two zero bytes or none.

8-bit256 colour images

8 1

The pixel data is stored in 2-byte chunks. The first byte specifies the number of consecutive pixels with the same colour. The second byte

defines their colour indices. If the first byte is zero, the second defines an escape code. The End-of-Bitmap is zero padded to end on a 32-bit boundary. Due to the 16bit-ness of this structure this will

always be either two zero bytes or none.

n (Byte 1) c (Byte 2) Description

>0 anyn pixels to be drawn. The 1st, 3rd, 5th, ... pixels' colour is in c's high-order 4 bits, the

even pixels' colour is in c's low-order 4 bits. If both colour indices are the same, it results in just n pixels of colour c.

0 0 End-of-line

0 1 End-of-Bitmap

0 2Delta. The following 2 bytes define an unsigned offset in x and y direction (y being up).

The skipped pixels should get a colour zero.

0 >=3The following c bytes will be read as single pixel colours just as in uncompressed files. Up to 12 bits of zeros follow, to put the file/memory pointer on a 16-bit boundary again.

n (Byte 1) c (Byte 2) Description

>0 any n pixels of colour number c

0 0 End-of-line

0 1 End-of-Bitmap

0 2Delta. The following 2 bytes define an unsigned offset in x and y direction (y being up).

The skipped pixels should get a colour zero.

34 AT283_TRG_E2 © Forsk 2010

Page 35: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

3.3.2 BPW/BMW Header File DescriptionThe header file is a text file that describes how data are organised in the .bmp file. The header file is made of rows, eachrow having the following description:

Atoll supports .bpw and .bmw header file extensions for Import, but exports headers with .bpw file extensions.

3.3.3 Sample

3.3.3.1 Clutter Classes File

3.4 PNG FormatPortable Network Graphics (PNG) is a bitmapped image format that employs lossless data compression. PNG supportspalette-based (palettes of 24-bit RGB or 32-bit RGBA colors), greyscale, RGB, or RGBA images. PNG was designed fortransferring images on the Internet, not professional graphics, and so does not support other color spaces (such asCMYK). PNG files nearly always use file extension .PNG or .png.

When exporting (saving) a .png file, an associated file with .pgw extension is created with the same name and in the samedirectory as the .png file it refers to. Atoll stores the georeferencing information in this file for future imports of the .png sothat the .pgw file can be used during the import procedure for automatic geo-referencing.

For more information on the PNG file format, see www.w3.org/TR/PNG/.

3.4.1 PGW Header File DescriptionA PNG World file (.pgw file extension) is a plain text file used by geographic information systems (GIS) to providegeoreferencing information for raster map images in .png format. The world file parameters are:

3.5 Generic Raster Header File (.wld).wld is a new Atoll specific header format that can be used for any raster data file for georeferencing. At the time of importof any raster data file, Atoll can use the corresponding .wld file to read the georeferencing information related to the rasterdata file. The .wld file contains the spatial reference data of any associated raster data file. The .wld file structure is simple;it is an ASCII text file containing six lines. You can open a .wld file using any ASCII text editor.

0 >=3The following c bytes will be read as single pixel colours just as in uncompressed files. A zero follows, if c is odd, putting the file/memory pointer on a 16-bit boundary again.

Line Description

1 x dimension of a pixel in map units

2 amount of translation

3 amount of rotation

4 negative of the y dimension of a pixel in map units

5 x-axis map coordinate of the centre of the upper-left pixel

6 y-axis map coordinate of the centre of the upper-left pixel

100.00

0.00

0.00

-100.00

60000.00

2679900.00

Line Description

1 x dimension of a pixel in map units

2 amount of translation

3 amount of rotation

4 negative of the y dimension of a pixel in map units

5 x-axis map coordinate of the centre of the upper-left pixel

6 y-axis map coordinate of the centre of the upper-left pixel

© Forsk 2010 AT283_TRG_E2 35

Page 36: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

3.5.1 WLD File DescriptionThe .wld file is a text file that describes how data are organised in the associated raster data file. The header file is madeof rows, each row having the following description:

3.5.2 Sample

3.5.2.1 Clutter Classes File

3.6 DXF FormatAtoll is capable of importing and working with AutoCAD® drawings in the Drawing Interchange Format (DXF). .dxf filescan have ASCII or binary formats. But only the ASCII .dxf files can be used in Atoll.

.dxf files are composed of pairs of codes and associated values. The codes, known as group codes, indicate the type ofvalue that follows. .dxf files are organized into sections of records containing the group codes and their values. Each groupcode and value is a separate line.

Each section starts with a group code 0 followed by the string, SECTION. This is followed by a group code 2 and a stringindicating the name of the section (for example, HEADER). Each section ends with a 0 followed by the string ENDSEC.

3.7 SHP FormatESRI (Environmental Systems Research Institute, Inc.) ArcView® GIS Shapefiles have a simple, non-topological formatfor storing geometric locations and attribute information of geographic features. A shapefile is one of the spatial dataformats that you can work with in ArcExplorer. .shp data files usually have associated .shx and .dbf files.

Among these three files:

• The .shp file stores the feature geometry• The .shx file stores the index of the feature geometry.• The .dbf (dBASE) file stores the attribute information of features. When a shapefile is added as a theme to a view,

this file is displayed as a feature table.

You can define mappings between the coordinate system used for the ESRI vector files, defined in the corresponding .prjfiles, and Atoll. In this way, when you import a vector file, Atoll can detect the correct coordinate system automatically.For more information about defining the mapping between coordinate systems, please refer to the Administrator Manual.

3.8 MIF FormatMapInfo Interchange Format (.mif) allows various types of data to be attached to a variety of graphical items. These ASCIIfiles are editable, easy to generate, and work on all platforms supported by MapInfo. Vector objects with a .mif extensionmay be imported in Atoll.

Two files, a .mif and a .mid, contain MapInfo data. Graphics reside in the .mif file while the text contents are stored in the.mid file. The text data is delimited with one row per record, and Carriage Return, Carriage Return plus Line Feed, or LineFeed between lines. The .mif file has two sections, the file header and the data section. The .mid file is optional. Whenthere is no .mid file, all fields are blank.

You can find more information at http://www.mapinfo.com.

Line Description

1 x dimension of a pixel in map units

2 amount of translation

3 amount of rotation

4 negative of the y dimension of a pixel in map units

5 x-axis map coordinate of the centre of the upper-left pixel

6 y-axis map coordinate of the centre of the upper-left pixel

100.00

0.00

0.00

-100.00

60000.00

2679900.00

36 AT283_TRG_E2 © Forsk 2010

Page 37: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

You can define mappings between the coordinate system used for the MapInfo vector files, defined in the corresponding.mif files, and Atoll. In this way, when you import a vector file, Atoll can detect the correct coordinate system automatically.For more information about defining the mapping between coordinate systems, please refer to the Administrator Manual.

3.9 TAB FormatTAB files (MapInfo Tables) are the native format of MapInfo. They actually consist of a number of files with extensionssuch as .TAB, .DAT and .MAP. All of these files need to be present and kept together for the table to work. These aredefined as follows:

• .TAB: table structure in ASCII format• .DAT: table data storage in binary format• .MAP: storage of map objects in binary format• .ID: index to the MapInfo graphical objects (.MAP) file• .IND: index to the MapInfo tabular (DAT) file

You can find more information at http://www.mapinfo.com.

You can define mappings between the coordinate system used for the MapInfo vector files, defined in the corresponding.mif files, and Atoll. In this way, when you import a vector file, Atoll can detect the correct coordinate system automatically.For more information about defining the mapping between coordinate systems, please refer to the Administrator Manual.

TAB files are also supported as georeference information files for raster files (.bmp and .tif). The .TAB file The fields inbold are described below:

3.10 ECW FormatThe Enhanced Compressed Wavelet file format is supported in Atoll. .ecw files are geo-referenced image files, which canbe imported in Atoll. This is an Open Standard wavelet compression technology, developed by Earth Resource Mapping,which can compress images with up to a 100-to-1 compression ratio. Each compressed image file contains a headercarrying the following information about the image:

• The image size expressed as the number of cells across and down• The number of bands (RGB images have three bands)• The image compression rate• The cell measurement units (meters, degrees or feet)• The size of each cell in measurement units• Coordinate space information (Projection, Datum etc.)

3.11 Erdas Imagine FormatAtoll supports Erdas Imagine data files in order to import DTM (8 or 16 bit/pixel), clutter (8 bit/pixel), and image (1-24 bit/pixel) files with the .img format. These files use the Erdas Imagine Hierarchical File Format (HFA) structure. For any typeof file, if there are pyramids (storage of different resolution layers), they are used to enhance performance whendecreasing the resolution of the display. Some aspects of working with Erdas Imagine format in Atoll are:

• Atoll supports uncompressed as well as compressed (or partially compressed) DTM .img files.• You can create a .mnu file to improve the clutter class map loading.• The colour-to-code association (raster maps) may be automatically imported from the .img file.• These files are automatically geo-referenced, i.e., they do not require any additional file for geo-reference.

For image files, the number of supported bands is either 1 (colour palette is defined separately) or 3 (no colour palette butdirect RGB information for each pixel). In case of 3 bands, only 8 bit per pixel format is supported. Therefore, 8-bit images,containing RGB information (three bands are provided: the first band is for Blue, the second one is for Green and the thirdfor Red), can be considered as 24 bit per pixel files. 32 bit per pixel files are not supported.

Field Description

File "raster.bmp" Name of the raster file (e.g., raster.bmp)

ulxmap x coordinate of the centre of the upper-left pixel in metres

ulymap y coordinate of the centre of the upper-left pixel in metres

llxmap x coordinate of the centre of the lower-left pixel in metres

llymap y coordinate of the centre of the lower-left pixel in metres

lrxmap x coordinate of the centre of the lower-right pixel in metres

lrymap y coordinate of the centre of the lower-right pixel in metres

urxmap x coordinate of the centre of the upper-right pixel in metres

urymap y coordinate of the centre of the upper-right pixel in metres

nrows Number of rows in the image

ncols Number of columns in the image

© Forsk 2010 AT283_TRG_E2 37

Page 38: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

3.12 Planet EV/Vertical Mapper Geographic Data FormatVertical Mapper offers two types of grids:

• Numerical continuous grids, which contain numerical information (such as DTM), and are stored in files with the.grd extension.

• Classified grids, which contain alphanumeric (characters) information, and are stored in files with the .grcextension.

Atoll is capable of supporting the Vertical Mapper Classified Grid (GRC) and Vertical Mapper Continuous Grid (GRD) fileformats in order to import and export:

• GRD: DTM, image, population, and other data types.• GRC: DTM, clutter classes, clutter heights, image, population, and other data types.

This is the geographic data format used by Planet EV. So, it is possible to directly import geographic data from Planet EVto Atoll using this format.

3.13 ArcView Grid FormatThe ArcView Grid format (.txt) is an ASCII format dedicated to defining raster maps. It may be used to export any rastermap such as DTM, images, clutter classes and/or heights, population, and other data maps. The contents of an ArcViewGrid file are in ASCII and consist of a header, describing the content, followed by the content in the form of cell values.

3.13.1 ArcView Grid File DescriptionThe format of this file is as follows:

3.13.2 Sample

Notes:

• Using compressed geo data formats (compressed .tif, Erdas Imagine, or .ecw) can causeperformance loss due to real-time decompression. However, you can recover this loss inperformance by:

- Either, hiding the status bar, which provides geographic data information in real time, byunchecking the Status Bar item in the View menu.- Or, not displaying some of the information, such as altitude, clutter class and clutterheight, in the status bar. This can be done through the Atoll.ini file, by adding the followinglines:

[StatusBar]DisplayZ=0DisplayClutterClass=0DisplayClutterHeight=0

• You can also save the produced map in an uncompressed format.

• Please refer to the Administrator Manual for more details about the Atoll.ini file.

ncols XXXNumber of columns of the grid (XXX columns).

nrows XXXNumber of rows of the grid (XXX rows).

xllcenter XXX ORxllcorner XXXSignificant value relative to the bin centre or corner.

yllcenter ORyllcorner XXXSignificant value relative to the bin centre or corner.

cellsize XXXGrid resolution.

nodata_value XXXOptional value corresponding to no data (no information).

//Row 1Top of the raster. Description of the first row. Syntax: ncols number ofvalues separated by spaces.

:

:

//Row NBottom of the raster.

ncols 303

nrows 321

38 AT283_TRG_E2 © Forsk 2010

Page 39: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

3.14 Other Supported Geographic Data File FormatsOther than the .bil, .tif, Planet, .dxf, .shp, .mif, .img, and .ecw formats, Atoll supports 3 other formats.

The .ist and .dis formats are ASCII files used for Digital Terrain Model only. .ist images come from Istar, whereas .disimages come from IGN (Institut Géographique National). The .ist format works in exactly the same way as the .bil format,except for DTM images. For DTM images, the .ist format uses a decimetric coding for altitudes, whereas .bil images useonly a metric coding.

3.15 Planet FormatThe Planet geographic data are described by a set of files grouped in a Planet directory. The directory structure dependson the geographic data type.

Atoll supports the following objects in Planet format:

• Digital Terrain Model (8 and 16 bits)• Clutter class maps (16 bits)• Raster images (1, 4, 8 and 24 bits)• Vector data• Text data

3.15.1 DTM File

3.15.1.1 DescriptionThe DTM directory consists of three files; the height file and two other files detailed below:

• The index file structure is simple; it is an ASCII text file that holds position information about the file. It containsfive columns. You can open an index file using any ASCII text editor. The format of the index file is as follows:

• The projection file provides information about the projection system used. This file is optional. It is an ASCII textfile with four lines maximum.

3.15.1.2 SampleIndex file associated with height file (DTM data):

xllcorner 585300.000000

yllcorner 5615700.000000

cellsize 100.000000

nodata_value 0

...

Field Acceptable values Description

File name Text Name of file referenced by the index file

East min Float x-axis map coordinate of the centre of the upper-left pixel in meters

East max Float x-axis map coordinate of the centre of the upper-right pixel in meters

North min Float y-axis map coordinate of the centre of the lower-left pixel in meters

North max Float y-axis map coordinate of the centre of the upper-left pixel in meters

Square size Float Dimension of a pixel in meters

Line Description

Spheroid

Zone

Projection

Central meridianLatitude and longitude of projection central meridian and equivalent x and y coordinates in meters

(optional)

Note:

• In the associated binary file, the value -9999 corresponds to ‘No data’ which is supportedby Atoll.

© Forsk 2010 AT283_TRG_E2 39

Page 40: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

Projection file associated with height file (DTM data):

3.15.2 Clutter Class Files

3.15.2.1 DescriptionThe Clutter directory consists of three files; the clutter file and two other files detailed below:

• The menu file, an ASCII text file, defines the feature codes for each type of clutter. It consists of as many lines(with the following format) as there are clutter codes in the clutter data files. This file is optional.

• The index file gives clutter spatial references. The structure of clutter index file is the same as the structure of DTMindex file.

3.15.2.2 SampleMenu file associated with the clutter file:

3.15.3 Vector Files

3.15.3.1 DescriptionVector data comprises terrain features such as coastlines, roads, etc. Each of these features is stored in a separate vectorfile. Four types of files are used, the vector file, where x and y coordinates of vector paths are stored, and three other filesdetailed below:

sydney1 303900 343900 6227900 6267900 50

Australian-1965

56

UTM

0 153 500000 10000000

Field Type Description

Clutter-code Integer (>1) Identification code for clutter class

Feature-name Text (up to 32 characters in length)Name associated with the clutter-code. (It may contain

spaces)

Note:

• In the associated binary file, the value -9999 corresponds to ‘No data’ which is supportedby Atoll.

1 open

2 sea

3 inlandwater

4 residential

5 meanurban

6 denseurban

7 buildings

8 village

9 industrial

10 openinurban

11 forest

12 parks

13 denseurbanhigh

14 blockbuildings

15 denseblockbuild

16 rural

17 mixedsuburban

40 AT283_TRG_E2 © Forsk 2010

Page 41: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

• The menu file, an ASCII text file, lists the vector types stored in the database. The menu file is composed of oneor more records with the following structure:

The fields are separated by space character.

• The index file, an ASCII text file, lists the vector files and associates each vector file with one vector type, andoptionally with one attribute file. The index file consists of one or more records with the following structure:

The fields are separated by spaces.

• The attribute file stores the height and description properties of vector paths. This file is optional.

3.15.3.2 SampleIndex file associated with the vector files

3.15.4 Image FilesThe image directory consists of two files, the image file with .tif extension and an index file with the same structure as theDTM index file structure.

3.15.5 Text Data FilesThe text data directory consists of:

• The text data files are ASCII text files with the following format:

Each file contains a line of text followed by easting and northing of that text, etc.

• The index file, an ASCII text file, stores the position of each text file. It consists of one or more records with thefollowing structure:

Field Type Description

Vector type code Integer > 0 Identification code for the vector type

Vector type name Text (up to 32 characters in length) Name of the vector type

Field Type Description

Vector file name Text (up to 32 characters in length) Name of the vector file

Attribute file name Text (up to 32 characters in length)Name of attribute file associated with the vector file

(optional)

Dimensions Real

vector file eastmin: minimum x-axis coordinate of all vector path points in the vector file

vector file eastmax: maximum x-axis coordinate of all vector path points in the vector file

vector file northmin: minimum y-axis coordinate of all vector path points in the vector file

vector file northmax: maximum y-axis coordinate of all vector path points

Vector type name Text (up to 32 characters in length)Name of the vector type with which the vector file is

associated. This one must match exactly a vector type name field in the menu file.

sydney1.airport313440 333021 6239426 6244784 airport

sydney1.riverlake303900 342704 6227900 6267900 riverlake

sydney1.coastline322837 343900 6227900 6267900 coastline

sydney1.railways303900 336113 6227900 6267900 railways

sydney1.highways303900 325155 6240936 6267900 highways

sydney1.majstreets303900 342770 6227900 6267900 majstreets

sydney1.majorroads303900 342615 6227900 6267900 majorroads

Airport

637111.188 3094774.00

Airport

628642.688 3081806.25

Field Type Description

© Forsk 2010 AT283_TRG_E2 41

Page 42: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

The fields are separated by spaces.

• The menu file, an ASCII text file, contains the text features. This file is optional.

3.16 MNU Format

3.16.1 DescriptionA .mnu file is useful when importing clutter classes files in .tif, .bil and .img formats. It gives the correspondence betweenthe clutter code and the class name. It is a text file with the same name as the clutter file with .mnu extension. It must bestored at the same location as the clutter file. It has the same structure as the menu file used in the Planet format.

Separator used can either be a space character or a tab.

3.16.2 SampleA .mnu file associated to a clutter classes file:

3.17 XML Table Export/Import FormatAll the data tables in an Atoll document can be exported to XML files.

Atoll creates the following files when exporting data tables to XML files:

• One index.xml file which contains the mapping between the data tables in Atoll and the corresponding XML filecreated by the export.

• One XML file per data table which contains the data table format (schema) and the data.

The XML import does not modify the active document table and field definitions. Therefore, the Networks andCustomFields tables, although exported, are not imported.

The following sections describe the structures of these two types of XML files created at export.

File name Text (up to 32 characters in length) File name of the text data file

East Min RealMinimum x-axis coordinate of all points listed in the text

data file

East Max RealMaximum x-axis coordinate of all points listed in the text

data file

North Min RealMinimum y-axis coordinate of all points listed in the text

data file

North Max RealMaximum y-axis coordinate of all points listed in the text

data file

Text feature Text (up to 32 characters in length) This field is omitted in case no menu file is available.

railwayp.txt -260079 693937 2709348 3528665 Railway_Station

airport.txt -307727 771663 2547275 3554675 Airport

ferryport.txt 303922 493521 2667405 3241297 Ferryport

1 Airport

2 Ferryport

3 Railway_Station

Field Type Description

Class code Integer > 0 Identification code for the clutter class

Class name Text (up to 50 characters in length) Name of the clutter class. It may contain spaces.

0 none

1 open

2 sea

3 inland_water

4 residential

5 meanurban

42 AT283_TRG_E2 © Forsk 2010

Page 43: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

3.17.1 Index.xml FileThe index.xml file stores the system (GSM, UMTS, etc.) and the technology (TDMA, CDMA, etc.) of the document, andthe version of Atoll used for exporting the data tables to XML files. It also contains the mapping between the data tablesin the Atoll document and the XML file corresponding to each data table.

The root tag <Atoll_XML_Config...> of the index.xml file contains the following attributes:

The index file also contains a list of mapping between the tables exported from Atoll and the XML files corresponding toeach table. This list is sorted in the order the Atoll tables are to be imported.

The list is composed of <XML_Table.../> tags with the following attributes:

A sample extract of the index.xml is given below:

Note that no closing tag </XML_Table> is required.

3.17.2 XML FileAtoll creates an XML file per exported data table. This XML file has two sections, one for storing the description of thetable structure, and the second for the data itself. The XML file uses the standard XML rowset schema (schema includedin the XML file between <s:Schema id=’RowsetSchema’> and </s:Schema> tags).

Rowset Schema

The XML root tag for XML files using the rowset schema is the following:

The schema definition follows the root tag and is enclosed between the following tags:

In the rowset schema, after the schema description, the data are enclosed between <rs:data> and </rs:data>.

Between these tags, each record is handled by a <z:row … /> tag having its attributes set to the record field values sincein the rowset schema, values are handled by attributes. Note that no closing tag </z:row> is required.

A sample extract of a Sites.xml file containing the Sites table with only one site is given below:

Attribute Description

Atoll_File_System Corresponds to the SYSTEM_ field of the Networks table of the exported document

Atoll_File_TechnologyCorresponds to the TECHNOLOGY field of the Networks table of the exported

document

Atoll_File_Version Corresponds to the Atoll version

Attribute Description

XML_File Corresponds to the exported XML file name (e.g., "Sites.xml")

Atoll_Table Corresponds to the exported Atoll table name (e.g., "Sites")

<Atoll_XML_Config Atoll_File_System="UMTS" Atoll_File_Technology="CDMA" Atoll_File_Version="2.x.x build xxxx">

<XML_Table XML_File="CustomFields.xml" Atoll_Table="CustomFields" />

<XML_Table XML_File="CoordSys.xml" Atoll_Table="CoordSys" />

...

</Atoll_XML_Config>

<xml xmlns:s='uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882'

xmlns:dt='uuid:C2F41010-65B3-11d1-A29F-00AA00C14882'

xmlns:rs='urn:schemas-microsoft-com:rowset'

xmlns:z='#RowsetSchema'>

<s:Schema id=’RowsetSchema’>

<!-Schema is defined here, using <s:ElementType> and <s:AttributeType> tags ->

</s:Schema>

<xml xmlns:s='uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882'

xmlns:dt='uuid:C2F41010-65B3-11d1-A29F-00AA00C14882'

xmlns:rs='urn:schemas-microsoft-com:rowset'

xmlns:z='#RowsetSchema'>

<s:Schema id='RowsetSchema'>

© Forsk 2010 AT283_TRG_E2 43

Page 44: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

3.18 Antenna Pattern FormatsThis section describes the format of the PATTERN field of the MW Antennas table. This field stores the antenna diagramsin a 2D (angle vs. attenuation) format. This is the format of the contents of the PATTERN field of the MW Antennas tablewhen it is copied from, pasted to, imported to (from txt, csv, or xls files), and exported from (in txt or csv files) the MWAntennas table.

Antenna patterns can also be imported in Planet 2D-format antenna files and 3D antenna files. The file format required for3D antenna file import is described in "Import Format of Text Files Containing 3D Antenna Patterns" on page 46.

3.18.1 2D Antenna Diagram FormatThe format of 2D antenna patterns can be understood from Figure 3.1 on page 45.

<s:ElementType name='row' content='eltOnly' rs:updatable='true'>

<s:AttributeType name='NAME' rs:number='1' rs:maydefer='true'rs:writeunknown='true' rs:basetable='Sites' rs:basecolumn='NAME'rs:keycolumn='true'>

<s:datatype dt:type='string' dt:maxLength='50'/>

</s:AttributeType>

<s:AttributeType name='LONGITUDE' rs:number='2' rs:maydefer='true'rs:writeunknown='true' rs:basetable='Sites' rs:basecolumn='LONGITUDE'>

<s:datatype dt:type='float' dt:maxLength='8' rs:precision='15'rs:fixedlength='true'/>

</s:AttributeType>

<s:AttributeType name='LATITUDE' rs:number='3' rs:maydefer='true'rs:writeunknown='true' rs:basetable='Sites' rs:basecolumn='LATITUDE'>

<s:datatype dt:type='float' dt:maxLength='8' rs:precision='15'rs:fixedlength='true'/>

</s:AttributeType>

<s:AttributeType name='ALTITUDE' rs:number='4' rs:nullable='true'rs:maydefer='true' rs:writeunknown='true' rs:basetable='Sites'rs:basecolumn='ALTITUDE'>

<s:datatype dt:type='r4' dt:maxLength='4' rs:precision='7'rs:fixedlength='true'/>

</s:AttributeType>

<s:AttributeType name='COMMENT_' rs:number='5' rs:nullable='true'rs:maydefer='true' rs:writeunknown='true' rs:basetable='Sites'rs:basecolumn='COMMENT_'>

<s:datatype dt:type='string' dt:maxLength='255'/>

</s:AttributeType>

<s:extends type='rs:rowbase'/>

</s:ElementType>

</s:Schema>

<rs:data>

<rs:insert>

<z:row NAME='Site0' LONGITUDE='8301' LATITUDE='-9756'/>

</rs:insert>

</rs:data>

</xml>

44 AT283_TRG_E2 © Forsk 2010

Page 45: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

The contents of the PATTERN field are formatted as follows:

• Pattern Descriptor 1: Space-separated list of parameters.- First entry: The number of co-polar diagrams. For example, 4.- Second and third entries: First co-polar diagram type = 0 1, for H-V diagram.- Fourth entry: The elevation angle of the azimuth diagram.- Fifth entry: The number of angle-attenuation pairs in the first co-polar diagram. For example, 360.

• Co-polar H-V Diagram: Co-polar H-V diagram (the second and third entries in the preceding descriptor are 0 1).The format is space-separated angle attenuation pairs. For example, 0 0 1 0.5....

• Pattern Descriptor 2: Space-separated list of parameters.- First and second entries: Second co-polar diagram type = 0 0, for H-H diagram.- Third entry: The azimuth angle of the elevation diagram.- Fourth entry: The number of angle-attenuation pairs in the second co-polar diagram. For example, 360.

• Co-polar H-H Diagram: Co-polar H-H diagram (the first and second entries in the preceding descriptor are 0 0).The format is space-separated angle attenuation pairs. For example, 0 0 1 0.5....

• Pattern Descriptor 3: Space-separated list of parameters.- First and second entries: Third co-polar diagram type = 1 1, for V-V diagram.- Third entry: The elevation angle of the azimuth diagram.- Fourth entry: The number of angle-attenuation pairs in the third co-polar diagram. For example, 360.

• Co-polar V-V Diagram: Co-polar V-V diagram (the first and second entries in the preceding descriptor are 1 1).The format is space-separated angle attenuation pairs. For example, 0 0 1 0.5....

• Pattern Descriptor 4: Space-separated list of parameters.- First and second entries: Fourth co-polar diagram type = 1 0, for V-H diagram.- Third entry: The azimuth angle of the elevation diagram.- Fourth entry: The number of angle-attenuation pairs in the fourth co-polar diagram. For example, 360.

• Co-polar V-H Diagram: Co-polar V-H diagram (the first and second entries in the preceding descriptor are 1 0).The format is space-separated angle attenuation pairs. For example, 0 0 1 0.5....

• Pattern Descriptor 5: Space-separated list of parameters.- First entry: The number of cross-polar diagrams. For example, 4.- Second and third entries: First cross-polar diagram type = 0 1, for H-V diagram.- Fourth entry: The elevation angle of the azimuth diagram.- Fifth entry: The number of angle-attenuation pairs in the first cross-polar diagram. For example, 360.

• Cross-polar H-V Diagram: Cross-polar H-V diagram (the second and third entries in the preceding descriptor are0 1). The format is space-separated angle attenuation pairs. For example, 0 0 1 0.5....

• Pattern Descriptor 6: Space-separated list of parameters.- First and second entries: Second cross-polar diagram type = 0 0, for H-H diagram.- Third entry: The azimuth angle of the elevation diagram.- Fourth entry: The number of angle-attenuation pairs in the second cross-polar diagram. For example, 360.

• Cross-polar H-H Diagram: Cross-polar H-H diagram (the first and second entries in the preceding descriptor are0 0). The format is space-separated angle attenuation pairs. For example, 0 0 1 0.5....

• Pattern Descriptor 7: Space-separated list of parameters.

Figure 3.12D Antenna Pattern Format

Pattern Co-polar H-V Diagram Co-polar H-H DiagramDiscriptor 1

PatternDiscriptor 2

Pattern Co-polar V-V Diagram Co-polar V-H DiagramDiscriptor 3

PatternDiscriptor 4

Pattern Cross-polar H-V Diagram Cross-polar H-H DiagramDiscriptor 5

PatternDiscriptor 6

Pattern Cross-polar V-V Diagram Cross-polar V-H DiagramDiscriptor 7

PatternDiscriptor 8

4 0 1 0 360 0 0 1 0.5 ... 0 0 0 360 0 0 1 0.5 ...

1 1 0 360 0 0 1 0.5 ... 1 0 0 360 0 0 1 0.5 ...

4 0 1 0 360 0 0 1 0.5 ... 0 0 0 360 0 0 1 0.5 ...

1 1 0 360 0 0 1 0.5 ... 1 0 0 360 0 0 1 0.5 ...

© Forsk 2010 AT283_TRG_E2 45

Page 46: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

- First and second entries: Third cross-polar diagram type = 1 1, for V-V diagram.- Third entry: The elevation angle of the azimuth diagram.- Fourth entry: The number of angle-attenuation pairs in the third cross-polar diagram. For example, 360.

• Cross-polar V-V Diagram: Cross-polar V-V diagram (the first and second entries in the preceding descriptor are1 1). The format is space-separated angle attenuation pairs. For example, 0 0 1 0.5....

• Pattern Descriptor 8: Space-separated list of parameters.- First and second entries: Fourth cross-polar diagram type = 1 0, for V-H diagram.- Third entry: The azimuth angle of the elevation diagram.- Fourth entry: The number of angle-attenuation pairs in the fourth cross-polar diagram. For example, 360.

• Cross-polar V-H Diagram: Cross-polar V-H diagram (the first and second entries in the preceding descriptor are1 0). The format is space-separated angle attenuation pairs. For example, 0 0 1 0.5....

3.18.2 Import Format of Text Files Containing 3D Antenna PatternsText files containing 3D antenna patterns that may be imported in Atoll must have the following format:

• Header: The text file may contain a header with additional information. When you import the antenna pattern youcan indicate the row number in the file where the header ends and the antenna pattern begins.

• Antenna Pattern: Each row contains three values to describe the 3D antenna pattern. The columns containingthe values can be in any order:- Azimuth: Allowed range of values is from 0° to 360°. The smallest increment allowed is 1°.- Tilt: Allowed range of values is from -90° to 90° or from 0° to 180°. The smallest increment allowed is 1°.- Attenuation: The attenuation in dB.

3.19 Microwave Antennas File FormatsYou can import microwave antennas in from files in Planet microwave antenna and standard NSMA (National SpectrumManagers Association) formats, which are described in the WG16.89.003 and WG16.99.050 recommendations. TheNSMA formats are described below.

3.19.1 NSMA Format: WG 16.89.003 Recommendation

3.19.1.1 File DescriptionThe file is an ASCII text file with the following structure:

FieldLength (Char)

Description

Antenna Manufacturer 30 Name under which the data was filed with the FCC

Antenna Model number 30 Full model number as used when the data was filed with the FCC

Comment 30 Field for comments on the current revision

FCC ID number 16 ID number issued by the Common Carrier Branch of the FCC

Reverse pattern ID number 16 This lists the reverse pattern FCC ID number

Date of data 16 Date referenced on the published pattern

Manufacturer ID Number 16 Reference number assigned by the antenna manufacturer.

Frequency range 16This is to identify the full frequency range for which this pattern is valid and agrees with the range as specified in the printed pattern. The frequency is

in Megahertz.

Mid-band gain 16 Gain of the antenna at mid-band (dBi)

Half-power beam width 16This is the included angle centered on the main beam of the antenna and

defines the angle where the antenna response falls -3 dB

46 AT283_TRG_E2 © Forsk 2010

Page 47: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

3.19.1.2 Sample

Polarization+Space

+Data count+Space

7

7

The data is preceded by an indication of the polarization the data. The commonly accepted polarization designators for linear polarization are to

be used:HH: Horizontal polarized port response to a horizontally polarized signal in

the horizontal direction.HV: Horizontal polarized port response to a vertically polarized signal in the

horizontal direction. VV: Vertical polarized port response to a vertically polarized signal in the

horizontal direction VH: Vertical polarized port response to a horizontally polarized signal in

the horizontal direction ELHH: Horizontal polarized port response to a horizontally polarized signal

in the vertical direction ELHV: Horizontal polarized port response to a vertically polarized signal in

the vertical direction ELVV: Vertical polarized port response to a vertically polarized signal in

the vertical direction ELVH: Vertical polarized port response to a horizontally polarized signal in

the vertical directionThe data count will be the number of data points to follow.

All eight responses should be included. If different polarizations have identical responses, they are to be duplicated in order that a full set of data

be listed.

Angle+Space

+Antenna Response+Space

7

7

Full compliment of data will show the antenna response in the horizontal direction for a 'horizontal cut' and in the vertical direction for a 'vertical cut'. The data is presented in two columns. The angle of observation is listed

first followed by the antenna response. For the horizontal direction, the angle of observation starts from -180

degrees (defined as the left side of the antenna) and decrease in angle to the main beam , 0 degrees, and then increase to +180 degrees. The full

data will cover the 360 degrees of the antenna.For the vertical direction, the angle of observation starts from -5 (-90) degrees (defined as the antenna response below the main beam) and

decrease in angle to the main beam, 0 degrees, and then increase to +5 (+90) degrees. The full data will cover the 10 (180) degrees centered about

the main beam.The antenna response is listed as dB down from the main lobe response

and is shown as negative.

MARK ANTENNA PRODUCTS Inc.

MHP-100A120D

(none)

M15028

M15027

11-25-85

NONE

10700-11700 MHZ

48.4 dB

0.6 Deg

HH 39

-180 -88

-160 -88

-150 -90

-97 -90

-66 -70

...

160 -88

180 -88

HV 33

-180 -89

-170 -89

© Forsk 2010 AT283_TRG_E2 47

Page 48: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

3.19.2 NSMA Format: WG 16.99.050 Recommendation

3.19.2.1 File DescriptionThe file is an ASCII text file with the following structure:

...

180 -89

VV 39

-180 -88

-160 -88

...

150 -90

160 -88

180 -88

VH 33

-180 -89

-170 -89

-160 -90

...

180 -89

ELHH 7

-4 -36

-1.7 -30

...

4 -36

ELHV 11

-4.5 -63.4

...

4.5 -63.4

ELVV 7

-4 -36

...

4 -36

ELVH 11

-4.5 -63.4

...

4.5 -63.4

FieldLength (Char)

Abbreviated Name

Description

Revision Number 42 REVNUM Version of this standard to which the pattern conforms

Revision Date 16 REVDAT Date of the current revision of the standard

Comment1 80 COMNT1 Field for comments on the current revision

Comment2 80 COMNT2 Field for comments on the current revision

Antenna Manufacturer 42 ANTMAN Name of the antenna manufacturer

Model Number 42 MODNUM Full model number as used when the data was taken

Pattern ID Number 42 PATNUM NSMA ID number

Pattern File Number 13 FILNUM

Used when more than one file is associated with a specific antenna model number.

This field will contain the particular file number and the total number of files associated with that model number.

An example of such a case would be a dual band antenna with two pattern files associated with it.

48 AT283_TRG_E2 © Forsk 2010

Page 49: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

Feed Orientation 13 FEDORNOrientation of the feed hook when looking from the back of

the antenna in the direction of the mechanical boresite

Description1 80 DESCR1 Used to describe the antenna and its characteristics

Description2 80 DESCR2 Used to describe the antenna and its characteristics

Description3 80 DESCR3 Used to describe the antenna and its characteristics

Description4 80 DESCR4 Used to describe the antenna and its characteristics

Description5 80 DESCR5 Used to describe the antenna and its characteristics

Date of data 16 DTDATA Date the pattern data was taken

Low Frequency (MHz) 21 LOWFRQ

Lower frequency of the operating bandwidth of the antenna (MHertz). If the antenna can be operated in two

distinct frequency bands, then the performance of the antenna in each band shall be described in separate files.

High Frequency (MHz) 21 HGHFRQ

Upper frequency of the operating bandwidth of the antenna (MHertz). If the antenna can be operated in two

distinct frequency bands, then the performance of the antenna in each band shall be described in separate files

Gain Units 15 GUNITS Gain unit

Low-band gain 12 LWGAINGain of the antenna at the low frequency of the frequency

band. The gain is in units described in GUNITS

Mid-band gain 16 MDGAINGain of the antenna at the mid frequency of the frequency band and may include a full bandwidth tolerance. The gain

is in units described in GUNITS

High-band gain 12 HGGAINGain of the antenna at high frequency of the frequency

band. The gain is in units described in GUNITS

Mid-band Az Bmwdth 16 AZWIDT

Nominal total width of the main beam at the -3 dB points in the azimuth plane. This is a mid-band measurement

expressed in degrees and may include a full bandwidth tolerance

Mid-band El Bmwdth 16 ELWIDT

Nominal total width of the main beam at the -3 dB points in the elevation plane. This is a mid-band measurement

expressed in degrees and may include a full bandwidth tolerance

Connector Type 80 CONTYP Description of the antenna connector type

VSWR 13 ATVSWRWorst case limit of the antennas VSWR over the operating

bandwidth

Front-to-back Ratio(dB) 10 FRTOBA

Worst case power level in dB between the main lobe peak and the peak of the antenna’s back lobe. The back lobe peak does not necessarily point 180 degrees behind the

main lobe.

Electrical Downtilt (deg) 16 ELTILT

Amount that the main beam peak of the antenna (electrical boresite) is dowtilted below the mechanical boresite of the antenna. This is a midband measurement and may include a tolerance. This measurement is expressed in degrees.

Radiation Center (m) 13 RADCTRHeight of the center of the radiating aperture above the

mechanical bottom of the antenna (m). It is not necessarily the phase center of the antenna.

Port-to-Port Iso (dB) 12 POTOPO

Measurement made on dual polarization antennas. It is the maximum amount of power over the antennas operating bandwidth that is coupled between ports. It is the power

ratio (dB) between a reference signal injected into one port and the amount of coupled power returned back out of the

other port.

Max Input Power (W) 17 MAXPOWMaximum amount of average RF input power which can

be applied to each of the antennas input ports in the antennas operating frequency range (Watts).

Antenna Length (m) 14 ANTLENMechanical length of the antenna (m). This does not

include the antenna mount. For a circularly symmetric parabolic antenna this would be the diameter.

Antenna Width (m) 14 ANTWIDMechanical width of the antenna (m). This does not

include the antenna mount. For a circularly symmetric parabolic antenna this would be the diameter.

Antenna Depth (m) 14 ANTDEPMechanical depth antenna (m). This does not include the

antenna mount.

© Forsk 2010 AT283_TRG_E2 49

Page 50: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

3.19.2.2 Sample

Antenna Weight (kg) 16 ANTWGTweight of the antenna in kg. This includes the antenna

mount.

Future Field 80 FIELD1

Future Field 80 FIELD2

Future Field 80 FIELD3

Future Field 80 FIELD4

Future Field 80 FIELD5

Pattern Type 16 PATTYP Pattern type, either “typical” or “envelope”.

# Freq this file 10 NOFREQThe number of pattern frequencies which comprise the full

data set.

Pattern Freq (Mhz) 21 PATFRE Frequency of the pattern data for a typical pattern (MHz).

# Pattern cuts 11 NUMCUT Number of pattern cuts which comprise the full data set.

Pattern Cut 11 PATCUT Geometry of a particular pattern cut.

Polarization 15 POLARI

Particular polarization of a pattern cut. The first polarization is the polarization of the antenna-under-test

and the second the polarization of the illuminating source. The two polarizations are separated by a /.

# Data Points 13 NUPOINThe number of data points in a particular pattern cut data

set.

First & Last Angle 25 FSTLST

The first and last angle (in degrees) of the antenna pattern data.

Pattern data shall be expressed monotonically, with respect to angle. Azimuths shall be stated as either –180

to +180 or 0 to 360 degrees.

X-axis Orientation 53 XORIENA verbal description of the physical orientation of the x-axis

on the antenna.

Y-axis Orientation 53 YORIENA verbal description of the physical orientation of the y-axis

on the antenna.

Z-axis Orientation 53 ZORIENA verbal description of the physical orientation of the z-axis

on the antenna.

Pattern cut data 28/point

The data is presented in three columns. The angle of observation is listed first followed by the antenna

magnitude response and phase response. In most cases the phase response will not be included in the data set. “S”

designates the sign of the number.The antenna power magnitude is listed in the units

specified in the antenna units field (GUNITS).The angle and phase data are expressed in units of

degrees.

End of file 11 ENDFILThis field designates the end of the file with the characters

EOF

REVNUM:,NSMA WG16.99.050

REVDAT:,19990520

ANTMAN:,RADIO WAVES INC

MODNUM:,HP4-64

DESCR1:,4 FT LOW SIDELOBE ANTENNA

PATNUM:,9005

DTDATA:,20030807

LOWFRQ:,6425

HGHFRQ:,7125

GUNITS:,DBI/DBR

LWGAIN:,35.5

MDGAIN:,35.9

HGGAIN:,36.3

AZWIDT:,2.8

ELWIDT:,2.8

50 AT283_TRG_E2 © Forsk 2010

Page 51: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

3.20 Microwave Equipment File Formats enables you to import microwave equipment that are in standard NSMA (National Spectrum Managers Association)format defined by the recommendation WG 21.99.051 or in Pathloss format (version 4.0). The NSMA format is describedbelow.

3.20.1 NSMA Format: WG 21.99.051 Recommendation

3.20.1.1 File DescriptionThe file is an ASCII text file with the extension NSM. It consists of rows; each data item is placed on a separate row startedwith the specific name of the item. The name and data items are separated with commas (,). Each text field is enclosed indouble quotes (“). Numeric values are not enclosed with quotes and must not contain any embedded commas.

The file has the following structure:

ELTILT:,0

ANTLEN:,1.2,

PATTYP:,ENVELOPE,

NOFREQ:,NA,

PATFRE:,NA,

NUMCUT:,4,

PATCUT:,AZ,

POLARI:,H/H,

NUPOIN:,29,

FSTLST:,-180,180

-180,-60,

-100,-60,

-51,-42.3,

...

PATCUT:,AZ,

POLARI:,H/V,

NUPOIN:,11,

FSTLST:,-180,180

-180,-60,

-22,-60,

...

PATCUT:,AZ,

POLARI:,V/V,

NUPOIN:,33,

FSTLST:,-180,180

-180,-60,

...

PATCUT:,AZ,

POLARI:,V/H,

NUPOIN:,11,

FSTLST:,-180,180

-180,-60,

...

ENDFIL:,EOF,

Row Description

"$HDR", File type, "$"File header. The file type indicates the data contained, the format andthe version of the format. For version 1.0 of the Equipment format, thisvalue must be “EQUIP1.0”.

© Forsk 2010 AT283_TRG_E2 51

Page 52: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

"EQUIP_MFG", Equipment manufacturer Manufacturer with no abbreviations

"MFG_MODEL", Model number Manufacturer model number

"REV_NUM", Document revision number Document revision number - Not used by Atoll

"REV_DATE", Document revision date Document revision date - Date format: yyyy-mm-dd - Not used by Atoll

"RADIO_ID", Radio ID number Radio identification - Not used by Atoll

"FCC_CODE", FCC code FCC code - Not used by Atoll

"EQ_DATE", Equipment data dateDate equipment data was recorded by manufacturer - Date format:mm-dd-yyyy - Not used by Atoll

"EMISSION", Emission designator Code designating the bandwidth and modulation type

"MAX_LOADING", Number of circuits Number of voice circuits

"DATA_RATE", Data rate Payload data rate in Mbits/s

"RADIO_CAP", Number of lines, Signal standard

Radio capacity - The Number of Lines is the number of installed DS1’s,DS3’s, etc. The Signal Standard is a text field for the type of interface(e.g., DS3)

"MODULATION", Modulation type Type of modulation

"DEVIATION", Deviation Frequency deviation in kHz (analog radio only) - Not used by Atoll

"FREQ_RANGE", Low frequency, High frequency

Frequency range in MHz over which this radio model works

"POWER_OPTION", Power #1, Power #2, etc.,

Transmit power options in dBm (when discrete power levels areavailable)

"POWER_RANGE", Transmit power low, Transmit power high

Transmit power range in dBm with adjustable power levels

"STABILITY", Carrier stabilityTolerance of transmitter output frequency expressed as a percent ofcarrier frequency - Not used by Atoll

"ATPC_POWER", Power reduction ATPC power reduction in dB

"ATPC_STEP", Step sizeATPC step size in dB when power increases to compensate forreduction in receive level- Not used by Atoll

"ATPC_TRIG", Receiver level Receiver level in dBm at which ATPC first activates - Not used by Atoll

"THRESH_DIG", Threshold for 10-6 BER,

Threshold for 10-3 BER

Receiver threshold in dBm at the specified thresholds (digital radioonly)

"THRESH_ANA", Threshold for 30dB analog signal-to-noise level, Threshold for 37dB

analog signal-to-noise level

Receiver threshold in dBm at the specified thresholds (analog radioonly) - Not used by Atoll

"BRANCHING", Configuration, Transmitter loss, Main receiver loss, Protect receiver loss

System configuration and branching losses in dBConfiguration may be:NP = not protected; MHSB = monitored hotstandby; MHSD = monitored hot space diversity; FD = frequencydiversity diversity; 1:M = multiline

"MAX_RSL", Overflow threshold for 10-6 BER,

Overflow threshold for 10-3 BERMaximum receive level in dBm (overflow threshold)

"DFM", DFM for 10-6 BER, DFM for 10-3 BER Dispersive fade margin (dB) at the specified BER (digital radio only) -Not used by Atoll

"TX_SPECTRUM", Number of points Number of points used to define the transmitter mask graph

"CURVE_POINT", Frequency shift in MHz, Response in dBm/4Hz

Data points of the transmitter mask graph

"TX_FILTER", Not used by Atoll

"FCC_BANDWIDTH", FCC bandwidthFCC channel bandwidth in MHz used to calculate the FCC spectrummask - Not used by Atoll

"99%_BANDWIDTH", 99%power bandwidthBandwidth occupied by the transmitter in MHz (including 99% of thetransmitted power)

"3DB_BANDWIDTH", 3dB bandwidthBandwidth occupied by the transmitter in MHz (between the 3dBpoints) - Not used by Atoll

"T/T_FREQ_SEP", Same Antenna&Polarization, Same Antenna &

Different Polarization, Different Antenna & Polarization

Minimum required frequency separation between two transmitters inMHz - Not used by Atoll

"T/R_FREQ_SEP", Same Antenna&Polarization, Same Antenna &

Different Polarization, Different Antenna & Polarization

Minimum required frequency separation between the closesttransmitter and receiver in MHz - Not used by Atoll

52 AT283_TRG_E2 © Forsk 2010

Page 53: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 3: File Formats

3.20.1.2 Sample

"T/R_FIXED", T/R spacing #1, T/R spacing #2, etc.,

Some radios only allow fixed transmit-receive frequency separations. Ifapplicable, show all allowable frequency separations in MHz - Notused by Atoll

"T/I_LIKE", Number of pointsNumber of points used to define the Threshold-to-Interference (T/I)graph. The interfering transmitter and victim receiver are the sametype of radio, using the same modulation and data rate.

"CURVE_POINT", Frequency shift in MHz, Response in dB

Data points of the T/I graph

"T/I_CW", Number of points

Number of points used to define the Threshold-to-Interference (T/I)graph. The interfering transmitter is a CW tone and the victim receiveris a digital radio. This T/I curve is used to model FM transmittersinterfering into digital receivers - Not used by Atoll

"CURVE_POINT", Frequency shift in MHz, Response in dB

Data points of the T/I graph - Not used by Atoll

"T/I_OTHER", RADIO_ID, Interferor Bandwidth, Number of points

Other capacity radio into specified radioRADIO_ID refers to the Radio Identification of the interferingtransmitter.Interferor Bandwidth shall correspond to the FCC or ITU emissionbandwidth of the interferor, specified as a real number in MHz.

"CURVE_POINT", Frequency shift in MHz, Response in dB

Data points of the T/I graph

"BB_FREQ", Low frequency, High frequencyBaseband frequency range in kHz (analog radio only) - Not used byAtoll

"RX_RF_FILTER", Number of points Number of points used to define the receiver mask graph

"CURVE_POINT", Frequency shift in MHz, Response in dB

Data points of the receiver mask graph

"RX_IF_FILTER", Number of points Not used by Atoll

"CURVE_POINT", Frequency shift in MHz, Response in dB

Not used by Atoll

"IF_FILTER_EXT", Switch-on point, Number of points

Not used by Atoll

"CURVE_POINT", Frequency shift in MHz, Response in dB

Not used by Atoll

"RX_BB_FILTER", Number of points Not used by Atoll

"CURVE_POINT", Frequency shift in MHz, Response in dB

Not used by Atoll

"COM_COUNT", Number of comments Number of comments

"COMMENT", Description #1 Comment

"COMMENT", Description #2 Comment

"COMMENT", Description #n Comment

"$TLR", File type, "$"File trailer. The file type indicates the data contained, the format andthe version of the format. For version 1.0 of the Equipment format, thisvalue must be “EQUIP1.0”.

"$HDR", "EQUIP1.0", "$"

"EQUIP_MFG", "Alcatel USA"

"MFG_MODEL", "MDR-6706-8"

"REV_NUM", "Version 1.0"

"REV_DATE", "03-01-1999"

"RADIO_ID", "JF6-9406"

"FCC_CODE",

"EQ_DATE", "02-24-1999"

"EMISSION", "2M50D7W"

"MAX_LOADING", 192

"DATA_RATE", 12.4

"RADIO_CAP", 8, "DS1"

"MODULATION", "128 TCM"

© Forsk 2010 AT283_TRG_E2 53

Page 54: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

"DEVIATION",

"FREQ_RANGE", 5850, 7125

"POWER_OPTION", 15, 29, 31

"POWER_RANGE"

"STABILITY", 0.001

"ATPC_POWER", 10

"ATPC_STEP", 1

"ATPC_TRIG", -65

"THRESH_DIG", -79, -81

"THRESH_ANA"

"BRANCHING", "Non-Protected", 0, 0

"BRANCHING", "Monitored Hot-Standby", 0, 0.5, 10

"MAX_RSL", -10, -8

"DFM", 68, 70

"TX_SPECTRUM", 25

"CURVE_POINT", -3.12, -85.65

...

"CURVE_POINT", 3.12, -85.51

"TX_FILTER", 0

"FCC_BANDWIDTH", 2.5

"99%_BANDWIDTH", 2.48

"3DB_BANDWIDTH", 2.08

"T/T_FREQ_SEP", 49, 2.5, 28

"T/R_FREQ_SEP", 132, 105, 33

"T/R_FIXED"

"T/I_LIKE", 171

"CURVE_POINT", -125.000, -130.7

...

"CURVE_POINT", 125.000, -133.0

"T/I_CW", 171

"CURVE_POINT", -125.000, -152.9

...

"CURVE_POINT", 125.000, -143.0

"T/I_OTHER", "", 0, 0

"BB_FREQ"

"RX_RF_FILTER", 68

"CURVE_POINT", -125, -113.7

...

"CURVE_POINT", 125, -110.5

"RX_IF_FILTER", 0

"IF_FILTER_EXT", 0

"RX_BB_FILTER", 0

"COM_COUNT", 1

"COMMENT", "T/I Data for 6.425-7.125 GHz band"

"$TLR", "EQUIP1.0", "$"

54 AT283_TRG_E2 © Forsk 2010

Page 55: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 4

Calculations

Page 56: Atoll 2.8.3 MW Technical Reference Guide E2
Page 57: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 4: Calculations

4 Calculations

4.1 Geographic Data Estimation

4.1.1 Ground Altitude DeterminationAtoll determines reception and transmission site altitude from Digital Terrain Model map. The method used to evaluatesite altitude is based on a bilinear interpolation. It is described below.

Let us suppose a site S located inside a bin. Atoll knows the altitudes of four bin vertices, S’1, S’’1, S’2 and S’’2, from theDTM file (Centre of each DTM pixel).

1st step: Atoll draws a vertical line through S. This line respectively intersects (S’1,S’’1) and (S’2, S’’2) lines at S1 and S2.

2nd step: Atoll determines the S1 and S2 altitudes using a linear interpolation method.

3rd step: Atoll performs a second linear interpolation to evaluate the S altitude.

4.1.2 Clutter DeterminationSome propagation models need clutter class and clutter height as information at receiver or along a transmitter-receiverprofile.

4.1.2.1 Clutter ClassAtoll uses clutter classes file to determine the clutter class.

Figure 4.1Ground Altitude Determination - 1

Figure 4.2Ground Altitude Determination - 2

Figure 4.3Ground Altitude Determination - 3

Figure 4.4Ground Altitude Determination - 4

© Forsk 2010 AT283_TRG_E2 57

Page 58: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

4.1.2.2 Clutter HeightTo evaluate the clutter height, Atoll uses clutter heights file if available in the .atl document; clutter height of a site is theheight of the nearest point in the file.

Example: Let us suppose a site S. In the clutter heights file, Atoll reads clutter heights of four points around the site, S’1,S’’1, S’2 and S’’2. Here, the nearest point to S is S”2; therefore Atoll takes the S”2 clutter height as clutter height of S.

If you do not have any clutter height file, Atoll takes clutter height information in clutter classes file. In this case, clutterheight is an average height related to a clutter class.

4.1.2.3 Profile Resolution: Multi-Resolution ManagementGeographic profile resolution depends on resolution of geographic data used by the propagation model (DTM and/orclutter).

Example 1: Microwave Links propagation model is used for calculations. A DTM map with a 40 m resolution anda clutter heights map with a 20 m resolution are available.

Both DTM and clutter maps are considered when using the Microwave Links propagation model . Therefore, here,the profile resolution will be 20 m. It means that Atoll will extract geographic information, ground altitude andclutter height, every 20 m. To get ground altitude every 20m, Atoll uses the bilinear interpolation method describedin "Ground Altitude Determination" on page 57. Clutter heights are read from the clutter heights map. Atoll takesthe clutter height of the nearest point every 20m (see Path loss calculations: Clutter determination).

Example 2: Microwave Links propagation model is used for calculations. A DTM map with a 40 m resolution anda clutter classes map with a 20 m resolution are available. No clutter height file has been imported in .atl document.

Both DTM and clutter maps are considered when using the Microwave Links propagation model . Therefore, here,the profile resolution will be 20 m. It means that Atoll will extract geographic information, ground altitude andclutter height, every 20 m. To get ground altitude every 20 m, Atoll uses the bilinear interpolation methoddescribed in "Ground Altitude Determination" on page 57. Atoll uses the clutter classes map to determine clutterheight. Every 20 m, it determines clutter class and takes associated average height.

4.2 Microwave Propagation ModelThe microwave propagation model is used to compute the total loss along the propagation path. The path is defined bythe positions of the transmitter site and the receiver site, their antenna heights, and the terrain profile between them.

4.2.1 Path LengthThe total length is calculated along the great-circle as follows:

is the total height (DTM + antenna height) of each extremity.

Figure 4.5Clutter Height

Notes:

• The selected profile resolution does not depend on the geographic layer order. In the lastexample, whatever the DTM file order you choose, profile resolution will always be 25m.On the other hand, the geographic layer order will influence the usage of data to establishthe profile.

dkm nang2

4.108

2-------------------------------------- zkm1 zkm2– 2+

=

zkmi

nang 2 2latitude1 cos latitude2 cos+ =

58 AT283_TRG_E2 © Forsk 2010

Page 59: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 4: Calculations

where

and , , .

4.2.2 Profile ExtractionThe profile is extracted from DTM and clutter files. The points along the profile are regularly spaced at , which is:

Where,

is the path length along the great circle.

n is the number of points of the profile. n is given by : .

Step is the min. resolution of the files (see "Profile Resolution: Multi-Resolution Management" on page 58).

4.2.3 Propagation LossThe microwave propagation model considers the following losses:

• Free space loss,• Diffraction loss,• Atmospheric loss,• Tropospheric scatter loss,

4.2.3.1 Free Space Loss calculates (in dB).

with,

K1: constant offset (dB).

K2: multiplicative factor for log(d)

d: distance between the receiver and the transmitter sites (km)

K3: multiplicative factor for log(f)

f: frequency of transmission (MHz)

The default values for K1, K2 and K3 coefficients are respectively set to 32.4, 20 and 20. Therefore, is equal to

free space loss ( ).

Rmin

2

Rmax Rmoy---------------------------------

Rmin

Rmax------------- lati sin

lati cos------------------------

atan cos

lati cos------------------------------------------------------------------------------

3

latitude1 latitude2–=

Rmax

Rmoy-------------

Rmin

Rmax------------- lati sin

lati cos------------------------

atan cos

lati cos------------------------------------------------------------------------------

3

longitude1 longitude2–=

latilatitude1 latitude2+

2---------------------------------------------------------=

Rmin 6356.912 km= Rmoy 6366.2 km= Rmax 6378.388 km=

Note:

• Clutter heights at the transmitter and the receiver are always equal to 0.

Total Lengthn 1–

--------------------------------------=

Total Length

n longTotal Length

Step 1+ -------------------------------------- =

Note:

• In case of a link (AB) with one or two repeaters (P and Q), calculates free space loss foreach section of the link (AP, PQ and QB) and then, considers the sum.

Lmodel1

Lmodel1 K1 K2 d log K3 f log+ +=

Lmodel1

Lb0

Lb0 32.4 20 f log 20 d log+ +=

© Forsk 2010 AT283_TRG_E2 59

Page 60: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

4.2.3.2 Diffraction LossGeneral method for one or more obstacles (knife-edge diffraction) is used to evaluate diffraction losses ( ) (dB) over the

transmitter-receiver profile. Six construction methods are implemented in :

• Deygout• Epstein Peterson• Deygout with correction (ITU 526-5)• Millington• ITU 452-11• Full Deygout (introduced in 2.5.1)

All of the construction methods are based on the same physical principle but differ in the way they consider one or severalobstacles.

According to the selected option in the Parameters tab of the model’s properties dialog, i.e., Use Clutter Heights = Yes orNo, you can consider the following along the transmitter-receiver profile:

• Ground altitude and clutter height (Consider heights in diffraction option),In this case, uses clutter height information from clutter heights files if available in the .atl document. Otherwise,it considers average clutter height specified for each clutter class in the clutter classes file description.

• Or, only ground altitude.

4.2.3.2.1 Refractivity FactorAll methods except the Millington method use the refractivity coefficient k as a user input. The refractive index in thetroposphere drops gradually with the altitude and the resulting refraction causes the radio horizon to appear 1.33 timesfurther than the geographic horizon. The refractivity coefficient can be defined in the Link analysis window or in theAnalysis tab of the Microwave Radio Links folder’s properties dialog.

4.2.3.2.2 Knife-Edge Diffraction

The procedure checks whether a knife-edge obstructs the first Fresnel zone constructed between the transmitter and thereceiver. The diffraction loss, J(), depends on the obstruction parameter (), which corresponds to the ratio of theobstruction height (h) and the radius of the Fresnel zone (R).

where,

n is the Fresnel zone index,

c0 is the speed of light (2.99792 x108 ms-1),

f is the frequency in Hz

d1 is the distance from the transmitter to obstacle in m,

d2 is the distance from obstacle to receiver in m.

We have:

where,

h is the obstruction height (height from the obstacle top to the Tx-Rx axis).

Ld

Figure 4.6Knife-Edge Diffraction

Rc0 n d1 d2 f d1 d2+

----------------------------------=

hr---=

r R

2-------=

60 AT283_TRG_E2 © Forsk 2010

Page 61: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 4: Calculations

Hence,

For 1 knife-edge method, if ,

Else,

4.2.3.2.3 3 Knife-Edge Deygout MethodThe Deygout construction, limited to a maximum of three edges, is applied to the entire profile from transmitter to receiver.This method is used to evaluate path loss incurred by multiple knife-edges. Deygout method is based on a hierarchicalknife-edge sorting used to distinguish the main edges, which induce the largest losses, and secondary edges, which havea lesser effect. The edge hierarchy depends on the obstruction parameter () value.

1 Obstacle

A straight line between transmitter and receiver is drawn and the height of the obstacle above the Tx-Rx axis, hi, is

calculated. The obstruction position, di, is also recorded. i are evaluated from these data. The point with the highest value is termed the principal edge, p, and the corresponding loss is J(p).

Therefore, we have

3 Obstacles

Then, the main edge (point p) is considered as a secondary transmitter or receiver. Therefore, the profile is divided in twoparts: one half profile, between the transmitter and the knife-edge section, another half, constituted by the knife-edge-receiver section.

The same procedure is repeated on each half profile to determine the edge with the higher . The two obstacles found,(points t and r), are called ‘secondary edges’. Losses induced by the secondary edges, J(t) and J(r), are then calculated.

Once the edge hierarchy is determined, the total loss is evaluated by adding all the intermediary losses obtained.

Note:

• In case of multiple-knife edge method, the minimum required to estimate diffraction loss

is -0.78.

0.7– J 6.9 20 0.1– 2 1+ 0.1– + log+=

J 0=

Figure 4.7Deygout Construction – 1 Obstacle

Figure 4.8Deygout Construction – 3 Obstacles

DiffractionLoss J P =

© Forsk 2010 AT283_TRG_E2 61

Page 62: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

Therefore, if

we have

Otherwise, If ,

4.2.3.2.4 Epstein-Peterson MethodThe Epstein-Peterson construction is limited to a maximum of three edges. First, Deygout construction is applied todetermine the three main edges over the whole profile as described above. Then, the main edge height, hp, is recalculated

according to the Epstein-Peterson construction. hp is the height above a straight line connecting t and r points. The main

edge position dp is recorded and p and J(p) are evaluated from these data.

Therefore, we have

4.2.3.2.5 Deygout Method with CorrectionThe Deygout method with correction (ITU 526-5) is based on the Deygout construction (3 obstacles) plus an empiricalcorrection, C.

Therefore, If ,

we have

Otherwise

4.2.3.2.6 Millington MethodThe Millington construction, limited to a single edge, is applied over the entire profile. Two horizon lines are drawn at thetransmitter and at the receiver. A straight line between the transmitter and the receiver is defined and the height of theintersection point between the two horizon lines above the Tx-Rx axis, hh, is calculated. The position dh is recorded and

then, from these values, h and J(h) are evaluated using the same previous formulas.

Therefore, we have

P 0

DiffractionLoss J P J t J r + +=

P 0.7– DiffractionLoss J P =

Figure 4.9Epstein-Peterson Construction

DiffractionLoss J P J t J r + +=

P 0

DiffractionLoss J P J t J r C+ + +=

DiffractionLoss J P C+=

Figure 4.10Millington Construction

DiffractionLoss J h =

62 AT283_TRG_E2 © Forsk 2010

Page 63: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 4: Calculations

4.2.3.2.7 Full Deygout MethodAccording to the profile and antenna heights, diffraction can be classified as:

• Line of sight: full Fresnel ellipsoid clearance• Trans-horizon: optical path is obstructed• Sub-diffraction: line-of sight with no full Fresnel ellipsoid clearance.

Standard Deygout Algorithm searches the main obstacle which obstructs the optical path. Whenever such an obstacleexists, two other obstacles are searched:

• Between Tx and this main obstacle• Between this main obstacle and Rx

The 3 losses are added. Only the main peak is drawn on the profile and the loss is the sum of the 3 peaks. If the mainobstacle does not obstruct the optical path but just penetrates the Fresnel Ellipsoid, the 2 secondary obstacles are nottaken into account.

Full Deygout algorithm always adds the secondary obstacles losses. Sub-diffraction case is more precisely computed withthis method compared to Standard Deygout algorithm.

So, in the full Deygout method, for any "sufficient" , .

Remember that for each case above (standard and full Deygout methods), penetrating the Fresnel Ellipsoid means thatthe distance between the earth (DTM + clutter height) and the optical path is less than 60% of the Fresnel ellipsoid radiusat this point.

4.2.3.2.8 ITU 452-11 RecommendationThe ITU-R P.452 recommendations are used to evaluate the microwave interference between links. Various losses whichdo not affect the useful signal are taken into account and described in "Link Budget and Interference Analysis" on page 73.

Diffraction loss calculation between an interfering transmitter and a victim receiver is slightly different from the othermethods described above. The excess diffraction loss Ld is computed by the standard Deygout method combined with alog-normal distribution of loss between 50% and 0 as follows:

Where,

is Deygout diffraction loss computed with k = 1.4

is Deygout diffraction loss computed with k = 3

is an interpolation factor based on an approximation of a log-normal distribution, , computed as described in

Appendix 4 of the ITU452-11 Recommendation:

Point of incidence of anomalous propagation, , for the centre of the path is determined using,

where,

: path centre latitude (degrees).

The parameter depends on the degree to which the path is above land (inland or coastal) and water. It is given by,

where

And, ,

where:

: longest continuous land (inland coastal) section of the great-circle path (km)

: longest continuous inland section of the great-circle path (km).

and

P 0.7 p– DiffractionLoss J P J t J r + +=

Ld Ld_50 Fi Ld_50 Ld_0– –=

Ld_50

Ld_0

Fi l x

Fil p 100 l 0 100 --------------------------=

0 %

010

0.015 – 1.67+ 14 % for 70¬×

4.1714 % for 70¬×

=

1

1 10

dtm–

16 6.6–------------------------

100.496 0.354+ –

5+

0.2

= 1 1

1 e4.12 10

4– dlm2.41 –

–=

dtm

dlm

410

0.935– 0.0176 + Log1 % for 70¬×

100.3Log1 % for 70¬×

=

© Forsk 2010 AT283_TRG_E2 63

Page 64: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

Currently, uses the total length of the path for both and .

4.2.3.3 Atmospheric LossAtmospheric loss, , is calculated as follows:

Where:

is the length of the link (km)

is a specific attenuation due to dry air

This formula is an approximate estimation of gaseous attenuation given by Rec ITU-R P.676-3 when , at sea

level at a temperature of 15°C. In this formula, is in GHz.

is a specific attenuation due to vapour.

This formula is an approximate estimation of gaseous attenuation given by Rec ITU-R P.676-3 for , at sea

level at a temperature of 15°C. In this formula, is in GHz.

is the water-vapour density set by the user in the geoclimatic properties of the link being analysed.

4.2.3.4 Tropospheric Scatter LossFive methods can be used to calculate tropospheric scatter loss ( ):

• ITU-R P.617-1 (50%)• ITU-R P.617-1 (90%)• ITU-R P.617-1 (99.9%)• ITU-R P.452 (50%)• Simplified Method

4.2.3.4.1 ITU-R P.617-1

(dB) is calculated as follows:

Where

is a meteorologic parameter depending on climate

is the frequency (MHz)

is the distance between the transmitter and the receiver sites (Km)

is the path angular distance (mrad)

is a meteorologic parameter depending on climate

(Km)

(Km)

is the earth radius (6370 Km)

: the factor k (4/3)

is the decoupling loss (dB)

dtm dlm

La

La 0 w + d=

d

0

07.27

f2

0.351+------------------------- 7.5

f 57– 2 2.44+----------------------------------------+ f

2 3–10=

f 57GHz

f

w

w f2 4–10

3.272–10 1.67+

3–10 7.74–10 f

0.5 3.79

f 22.235– 2 9.81+---------------------------------------------------+ +

+11.73

f 183.31– 2 11.85+------------------------------------------------------- 4.01

f 325.153– 2 10.44+----------------------------------------------------------+

=

f 350GHz

f

g m3

Lbs

Lbs

Lbs M 30 f 10 d 30 LN L+ c GTx– GRx– Y q –+log+log+log+=

M

f

d

LN 20 5 H+ 4.34 h +log=

H 103–

d 4

---------------------------=

h 106–

k a 2 8

-------------------------------------=

a

k

Lc

64 AT283_TRG_E2 © Forsk 2010

Page 65: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 4: Calculations

is the transmitter antenna gain (dB)

is the receiver antenna gain (dB)

is the conversion factor for non excess percents different from 50% (dB)

is the percentage of time for which particular values of tropospheric scatter loss are not exceeded.

Where ds is the effective distance in Km,

4.2.3.4.2 ITU-R P. 452

(dB) is calculated as follows:

Where

is loss depending on the frequency:

is the frequency in Mhz

is the distance between the transmitter and the receiver sites (Km)

is the angular distance between the ray from the transmitter to its horizon and the ray from the receiver to its horizon

(mrad)

is the average refractivity extrapolated to sea level (N-Units)

ClimateM

(dB)

( )Y(50) Y(90) Y(99.99)

0- Polar Dry 33.2 0.27 0

1- Polar Moderate 29.73 0.27 0

2- Cold Dry 33.2 0.27 0

3- Cold Moderate 29.73 0.27 0

4- Temperate Maritime 26 0.27 0

5- Temperate Continental Dry 33.2 0.27 0

6- Temperate Continental Moderate 33.2 0.27 0

7- Temperate Continental Wet 33.2 0.27 0 Graph 3

8- Subtropical Wet 19.3 0.32 0 Graph 2

9- Subtropical Arid 38.5 0.27 0 Graph 3

10- Tropical Moderate 19.3 0.32 0 Graph 2

11- Tropical 39.6 0.33 0 Graph 1

ds Graph 1 Graph 2 Graph 3

<100 0 0 0

100 -8 -11 -12.5

200 -7 -13 -10

300 -5.3 -11.5 -7.8

400 -4.5 -9 -6

500 -4 -8.7 -4.5

600 -3.9 -8.5 -4

700 -3.6 -8.5 -4

800 -3.5 -8.5 -4

>=900 -3.4 -8.5 -4

Lc GTx GRx Lant–+=

GTx

GRx

Y q

q

Km1–

2.2– 8.1 2.3 104–

f – e 0.137h–– 2.9 Y 90

2.2– 8.1 2.3 104–

f – e 0.137h–– 2.9 Y 90

2.2– 8.1 2.3 104–

f – e 0.137h–– 2.9 Y 90

2.2– 8.1 2.3 104–

f – e 0.137h–– 2.9 Y 90

9.5– 3e0.137h–

– 2.9 Y 90

2.2– 8.1 2.3 104–

f – e 0.137h–– 2.9 Y 90

2.2– 8.1 2.3 104–

f – e 0.137h–– 2.9 Y 90

2.9 Y 90

2.9 Y 90

2.9 Y 90

2.9 Y 90

2.9 Y 90

ds a k 1000

------------------=

Lbs

Lbs 190 Lf 20 dlog 0.573 0.15N0– Lc La+ + + + +=

Lf

Lf 25 flog 2.5 f 2log 2–=

f

d

N0

© Forsk 2010 AT283_TRG_E2 65

Page 66: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

is the decoupling loss (dB)

is the transmitter antenna gain (dB)

is the receiver antenna gain (dB)

is the total attenuation (Tx and Rx) which takes into account the direction of the two antennas, the polarization of the

transmitter and the polarization of the receiver (dB).

is the gaseous absorption loss (dB)

For further information on calculating , see "Atmospheric Loss" on page 64.

4.2.3.4.3 Simplified Method

(dB) is calculated as follows:

Where

is the frequency in Mhz

is the distance between the transmitter and the receiver sites (Km)

is the angular distance between the ray from the transmitter to its horizon and the ray from the receiver to its horizon

(radian).

If ,

If ,

If ,

is the average refractivity extrapolated to sea level (N-Units)

is the transmitter site height (Km)

is the receiver site height (Km)

4.3 Antenna Attenuation CalculationThe modelling method used to evaluate transmitter antenna attenuation, , is described below. Atoll calculates the

accurate azimuth and tilt angles and then, performs a 3-D interpolation of horizontal and vertical patterns to determine theattenuation of antenna.

Furthermore, you will find explanations about the remote electrical downtilt modelling.

4.3.1 Calculation of Azimuth and Tilt AnglesFrom the direction of the transmitter antenna and the receiver position relative to the transmitter, Atoll determines thereceiver position relative to the direction of the transmitter antenna (i.e. the direction of the transmitter-receiver path in thetransmitter antenna coordinate system).

aTx and eTx are respectively the transmitter (Tx) antenna azimuth and tilt in the coordinate system .

aRx and eRx are respectively the azimuth and tilt of the receiver (Rx) in the coordinate system .

d is the distance between the transmitter (Tx) and the receiver (Rx).

Lc

Lc GTx GRx Lant–+=

GTx

GRx

Lant

La

La

Lbs

Lbs 30 flog 20– dlog F d Ns +=

f

d

F d Ns F d 0.1 Ns 301– e

d–40

----------

–=

0.01 d 10 F d 135.82 0.33 d 30 d log++=

10 d 70 F d 129.5 0.212 d 37.5 d log++=

70 d F d 119.2 0.157 d 45 d log++=

Ns12---N0 e

0.1057hT–e

0.1057hR–+ =

N0

hT

hR

LantTx

S0 x y z

S0 x y z

66 AT283_TRG_E2 © Forsk 2010

Page 67: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 4: Calculations

In the coordinate system , the receiver coordinates are:

(1)

Let az and el respectively be the azimuth and tilt of the receiver in the transmitter antenna coordinate system

. These angles describe the direction of the transmitter-receiver path in the transmitter antenna coordinate

system. Therefore, the receiver coordinates in are:

(2)

According to the figure above, we have the following relations:

(3)

and

(4)

Therefore, the relation between the system and the transmitter antenna system is:

(5)

We get,

(6)

Then, substituting the receiver coordinates in the system S0 from Eq. (1) and the receiver coordinates in the system STx

from Eq. (2) in Eq. (6) leads to a system where two solutions are possible:

1st solution: If , then and

Figure 4.11Azimuth and Tilt Computation

S0 x y z

xRx

yRx

zRx

eRx cos aRx sin d

eRx cos aRx cos d

eRx sin– d

=

STx x'' y'' z''

STx x'' y'' z''

x''Rx

y''Rx

z''Rx

el cos az sin d el cos az cos d

el sin– d

=

x'

y'

z'

aTx cos aTx sin– 0

aTx sin aTx cos 0

0 0 1

x

y

z

=

x''

y''

z''

1 0 0

0 eTx cos eTx sin–

0 eTx sin eTx cos

x'

y'

z'

=

S0 x y z STx x'' y'' z''

x''

y''

z''

1 0 0

0 eTx cos eTx sin–

0 eTx sin eTx cos

aTx cos aTx sin– 0

aTx sin aTx cos 0

0 0 1

x

y

z

=

x''

y''

z''

aTx cos aTx sin– 0

eTx cos aTx sin eTx cos aTx cos eTx sin–

eTx sin aTx sin eTx sin aTx cos eTx cos

x

y

z

=

aRx aTx= az 0= el eRx eTx–=

© Forsk 2010 AT283_TRG_E2 67

Page 68: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

2nd solution: If , then

and

If , then

4.3.2 Antenna Pattern 3-D InterpolationThe direction of the transmitter-receiver path in the transmitter antenna coordinate system is given by angle values, az andel. Atoll considers these values in order to determine transmitter antenna attenuations in the horizontal and verticalpatterns. It reads the attenuation H(az) in the horizontal pattern for the calculated azimuth angle az and the attenuation

V(el) in the vertical pattern for the calculated tilt angle el. Then, it calculates the antenna total attenuation, .

4.3.3 Additional Electrical Downtilt ModellingThe additional electrical downtilt, AEDT, also referred to as remote electrical downtilt or REDT, introduces a conicaltransformation of the 3-D antenna pattern in the vertical axis. In order to take it into account, the vertical pattern istransformed as follows:

when

when

Where, the angle values are in degrees.

The vertical pattern transformation is represented below. The left picture shows the initial vertical pattern when there is noelectrical downtilt and the right one shows the vertical pattern transformation due to an electrical downtilt of 10°.

Then, Atoll proceeds as explained in the previous section. It determines the antenna attenuation in the transformedvertical pattern for the calculated tilt angle (V(el)) and applies the 3-D interpolation formula in order to calculate the antenna

total attenuation, .

aRx aTx

az1

eTx cos

aRx aTx– tan--------------------------------------

eTx sin eRx tanaRx aTx– sin

--------------------------------------------------+

------------------------------------------------------------------------------------------------atan=

el az sineTx sin–

aRx aTx– tan--------------------------------------

eTx cos eRx tanaRx aTx– sin

----------------------------------------------------+ atan=

az sin aRx aTx– sin 0 az az 180+=

Notes:

• Atoll assumes that the horizontal and vertical patterns are two cross-sections of the 3-Dpattern. In other words, the description of the antenna pattern must satisfy the following:

H(0)=V(0) and H()=V()

In case of an electrical tilt, , the horizontal pattern is a conical section with a degreeselevation off the horizontal plane. Here, horizontal and vertical patterns must satisfy thefollowing:

H(0)=V() and H()=V(-)

If the constraints listed above are satisfied, this implies that:

1. Interpolated horizontal and vertical patterns respectively fit in with the entered horizontaland vertical patterns, even in case of electrical tilt,

2. The contribution of both the vertical pattern back and front parts are taken into account.

Otherwise, only the second point is guaranteed.

• The above interpolation is performed in dBs.

• Angle values in formulas are stated in degrees.

• The above interpolation is not used in case the transmitter antenna has a 3-D antennapattern.

LantTx az el

LantTx az el H az 180 az–180

------------------------- H 0 V el – az180---------- H 180 V 180 el– – +–=

V x V x AEDT– = x 90– 90[ , ]

V x V x AEDT+ = x 90 270[ , ]

LantTx az el

68 AT283_TRG_E2 © Forsk 2010

Page 69: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 4: Calculations

4.4 Antenna Diameter Calculation automatically calculates the antenna diameter from the antenna gain and the average operating frequency. The antennadiameter is calculated using the following equation for a radiation efficiency of 55 %:

, which gives:

Where,

is the antenna diameter (in m),

is the antenna gain (in dBi),

is the average frequency (in MHz). It is calculated as follows:

is the minimum frequency of the frequency band (in MHz),

is the maximum frequency of the frequency band (in MHz).

,

Figure 4.12Vertical Pattern Transformation due to Electrical Downtilt

Gant 20 LogDantenna 20 f 42.2–+=

Dantenna 10

Gant

20------------ 2.11 Logf–+

=

Dantenna

Gant

f

f fminfmax fmin–

2--------------------------+=

fmin

fmax

© Forsk 2010 AT283_TRG_E2 69

Page 70: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

70 AT283_TRG_E2 © Forsk 2010

Page 71: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5

Microwave Radio Links Networks

Page 72: Atoll 2.8.3 MW Technical Reference Guide E2
Page 73: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

5 Microwave Radio Links NetworksIn Atoll, any link Li can be studied from either:

• Site A to Site B

or

• Site B to Site A

Each direction of link can have its own parameters.

5.1 Link Budget and Interference Analysis

5.1.1 InputName Value Unit Description

Equipment parameter dBmTransmitter output power at the

transmitter antenna port on link Li

Link parameter dBTransmitter output power reduction

used to calculate the transmitter nominal power on link Li

Link parameter dBTransmitter nominal power reduction

used to calculate the transmitter coordinated power on link Li

Equipment parameter dBmReceiver sensitivity level for a BER

(Bit Error Rate)

Equipment parameter dBmReceiver overflow level for a BER (Bit

Error Rate)

Antenna parameter dBi Transmitter antenna gain on link Li

Antenna parameter dBi Receiver antenna gain on link Li

Calculated dB Propagation loss on link Li

Calculated dBReceiver antenna discrimination loss due to elevation and tilt misalignment

on link Li

Equipment parameter dB Transmitter filter loss on link Li

Equipment parameter dB Receiver filter loss on link Li

Equipment parameter dB Transmitter circulator loss on link Li

Equipment parameter dB Receiver circulator loss on link Li

Link parameter dB Transmitter attenuator loss on link Li

Link parameter dB Receiver attenuator loss on link Li

Link parameter dB Transmitter connector loss on link Li

Link parameter dB Receiver connector loss on link Li

Link parameter dB Other transmitter losses on link Li

Link parameter dB Other receiver losses on link Li

Link parameter dB Transmitter shielding loss on link Li

Link parameter dB Receiver shielding loss on link Li

Link parameter dBTransmitter feeder (cable or waveguide) loss on link Li

Link parameter dBReceiver feeder (cable or waveguide)loss on link Li

Global parameter km2 Reference correlation area

Pmax Li

P_Tuning Li

P_Atpc Li

S Li BER,

O Li BER,

GTx Li

GRx Li

L_Model Li

L_Ant Li

L_FilterTx Li

L_FilterRx Li

L_CirculatorTx Li

L_CirculatorRx Li

L_AttenuatorTx Li

L_AttenuatorRx Li

L_ConnectorTx Li

L_ConnectorRx Li

L_OtherTx Li

L_OtherRx Li

L_ShieldingTx Li

L_ShieldingRx Li

L_FeederTx Li

L_FeederRx Li

© Forsk 2010 AT283_TRG_E2 73

Page 74: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

5.1.2 Link Budget Calculation DetailsThis part comprises all the calculation results that could be found on the report tab of the Microwave Analysis tool.

5.1.2.1 Nominal PowerThe power at which the transmitter is operating during normal propagation conditions on a link Li is expressed in dBm.

The nominal power is used for calculation when the option "Power control on the useful signal" is not checked

in the General tab of the Microwave Radio Links Properties.

5.1.2.2 Coordinated PowerThe power at which the transmitter is operating when Automatic Transmit Power Control (ATPC) is enabled on a link Li is

expressed in dBm.

The coordinated power is used for calculation when the option "Power control on the useful signal" is checked

in the General tab of the Microwave Radio Links Properties.

The coordinated power is also used for interference calculation when the option "Power control" is set to "Depends on

correlation" in the Interference tab of the Microwave Radio Links Properties. In that case, the value of will

depend on :

If then .

If then .

5.1.2.3 Transmission AttenuationThe loss due to the use of feeders and related equipment by the transmitter on a link Li is expressed in dB.

km2Correlation area between link Li and

link Lj

NoneCorrelation area ratio between link Li

and link Lj

Calculated dBInterference reduction factor on link Li

from link Lj

joule/K Boltzmann’s constant

Link parameter Celsius Operating temperature in link Li

Link parameter HzTransmitter channel bandwidth on link

Li

Equipment parameter dB Transmitter noise figure on link Li

dBm/Hz Thermal noise power level on link Li

Global parameter dBMaximum acceptable threshold

degradation

Li Lj

Li Lj Li Lj

--------------------

IRF Li Lj

k 1.38 1023–

T Li

BTx Li

NFTx Li

N0 Li 10 Log k 10 Log 273 T Li + 10 Log B si 30+ + +

TDmax

Pnom Li Pmax Li P_Tuning Li –=

EIRP Li

Pcoord Li Pnom Li P_Atpc Li –=

EIRP Li

Patpc si

Li Lj

Li Lj 1 P_Atpc Li 0=

Li Lj 1 P_Atpc Li Patpc si =

74 AT283_TRG_E2 © Forsk 2010

Page 75: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

5.1.2.4 EIRP (Equivalent Isotropic Radiated Power)The power actually radiated by the transmitter’s antenna on a link Li is expressed in dBm.

5.1.2.5 Reception AttenuationThe loss due to the use of feeders and related equipment by the receiver on a link Li is expressed in dB.

5.1.2.6 Received Signal LevelThe signal strength at the receiver input on a link Li is expressed in dBm.

5.1.2.7 Thermal Fade MarginThe thermal fade margin used to compensate the fades, caused by the thermal noise, that results in an increase of theBER on a link Li is expressed in dB.

5.1.2.8 Signal Enhancement MarginThe signal enhancement margin used to compensate the enhancements, caused by the reinforcement of multipathsignals, that results in an increase of the BER on a link Li is expressed in dB.

5.1.3 Interference Calculation DetailsThis part comprises all the calculation results that could be found while performing Interference analysis.

5.1.3.1 Single Interference SourceThis part considers the interference received from a single link.

5.1.3.1.1 Interference Signal LevelThe signal strength at the receiver input on a link Li from a link Lj is expressed in dBm.

5.1.3.1.2 Carrier to Interference Ratio (C/I)The received signal level relative to an interference signal level from a link Lj on a link Li is expressed in dB.

5.1.3.1.3 Threshold DegradationThe destructive interference effect on the receiver sensitivity on a link Li from a link Lj is expressed in dB.

The interference signal level is considered to be disturbing the receiver and then unacceptable when .

L_AttTx Li L_FeederTx Li L_ConnectorTx Li L_FilterTx Li L_CirculatorTx Li L_AttenuatorTx Li L_ShieldingTx Li L_OtherTx Li si

+ + + ++ +

=

EIRP Li Pnom Li

or

Pcoord Li GTx Li L_AttTx Li –+=

L_AttRx Li L_FeederRx Li L_ConnectorRx Li L_FilterRx Li L_CirculatorRx Li L_AttenuatorRx Li L_ShieldingRx Li L_OtherRx Li si

+ + + ++ +

=

RSL Li EIRP Li L_Model Li – GTx Li GRx Li L_AttRx Li – L_Ant Li –+ +=

TFM Li BER, RSL Li S– Li BER, =

SEM Li BER, O Li BER, RSL– Li BER, =

I Li Lj, EIRP Lj Lmodel Lj – GTx Lj GRx Li L_AttRx Li – L_Ant Li – IRF Li Lj –+ +=

CI---- Li Lj, RSL Li 10 10

N0 Li

10-----------------

10

I Li Lj,

10------------------

+

log–=

TD Li 1010

N0 Li

10-----------------

10

I Li Lj,

10------------------

+

10

N0 Li

10-----------------

-----------------------------------------------

log=

TD Li TD max

© Forsk 2010 AT283_TRG_E2 75

Page 76: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

5.1.3.1.4 Effective Thermal Fade MarginThe effective thermal fade margin on a link Li used to compensate the fades, caused by the thermal noise and the

interference signal level from a link Lj, that result in an increase in the BER is expressed in dB.

5.1.3.2 Multiple Interference SourcesThis part considers the interference received from many links.

5.1.3.2.1 Total Interference Signal Level in Clear Air ConditionsThe total signal strength at the receiver input on a link Li from n different links Lj is expressed in dBm.

5.1.3.2.2 Total Interference Signal Level in Rain ConditionsThe total signal strength at the receiver input on a link Li from n different links Lj is expressed in dBm.

5.1.3.2.3 Total Carrier to Interference Ratio (C/I) in Clear Air ConditionsThe received signal level relative to an interference signal level from multiple links Lj on a link Li is expressed in dB.

5.1.3.2.4 Total Carrier to Interference Ratio (C/I) in Rain ConditionsThe received signal level relative to an interference signal level from multiple links Lj on a link Li is expressed in dB.

5.1.3.2.5 Total Threshold Degradation in Clear Air ConditionsThe destructive interference effect on the receiver sensitivity on a link Li from multiple links Lj is expressed in dB.

5.1.3.2.6 Total Threshold Degradation in Rain ConditionsThe destructive interference effect on the receiver sensitivity on a link Li from multiple link Lj is expressed in dB.

5.1.3.2.7 Total Effective Thermal Fade Margin in Clear Air ConditionsThe effective thermal fade margin on a link Li used to compensate the fades, caused by the thermal noise and the

interference signal level from multiple links Lj, that results in an increase of the BER is expressed in dB.

e TFM Li BER RSL Li S– Li BER, TD Li –=

ICA Li Lj, tot EIRP Lj

j 1=

n

Lmodel Lj

j 1=

n

– G Lj

j 1=

n

G Li

i 1=

n

L_AttRx Li

i 1=

n

– L_Ant Li

j 1=

n

– IRF Li Lj

j 1=

n

–+ +=

IR Li Lj, tot EIRP Lj

j 1=

n

Lmodel Lj

j 1=

n

– G Lj

j 1=

n

G Li

i 1=

n

L_AttRx Li

i 1=

n

– L_Ant Li

j 1=

n

– IRF Li Lj

10 Li Lj

j 1=

n

log+

j 1=

n

–+ +=

CI----

CALi

totRSL Li 10 10

N0 Li

10-----------------

10

ICA Li Lj, tot

10--------------------------------

+

log–=

CI----

RLi

totRSL Li 10 10

N0 Li

10-----------------

10

IR Li Lj, tot

10----------------------------

+

log–=

TDCA Li tot 1010

N0 Li

10-----------------

10

ICA Li Lj, tot

10--------------------------------

+

10

N0 Li

10-----------------

---------------------------------------------------------

log=

TDR Li tot 1010

N0 Li

10-----------------

10

IR Li Lj, tot

10----------------------------

+

10

N0 Li

10-----------------

-------------------------------------------------------

log=

eTFMCA Li BER, tot RSL Li S– Li BER, TDCA Li tot–=

76 AT283_TRG_E2 © Forsk 2010

Page 77: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

5.1.3.2.8 Total Effective Thermal Fade Margin in Rain ConditionsThe effective thermal fade margin on a link Li used to compensate the fades, caused by the thermal noise and the

interference signal level from multiple links Lj, that results in an increase of the BER is expressed in dB.

5.2 Performance Analysis

5.2.1 Input

5.2.2 ITU-R P.530 Method

5.2.2.1 Total Outage Probability

5.2.2.1.1 Total Outage Probability in Rain ConditionsThe following formula is used:

5.2.2.1.2 Total Outage Probability in Clear-Air Conditions

Without Diversity

The following formula is used:

With Diversity

The following formula is used:

5.2.2.1.3 Total Outage Probability due to Equipment Reliability

With Hot Stand-By

The following formula is used:

Without Hot Stand-By

The following formula is used:

eTFMR Li BER, tot RSL Li S– Li BER, TDR Li tot–=

Name Value Unit Description

Equipment parameter hTransmitter mean time between

failures on link Li

Equipment parameter hReceiver mean time between failures

on link Li

Equipment parameter msTransmitter hot stand-by commutaion

delay on link Li

Equipment parameter msReceiver hot stand-by commutaion

delay on link Li

Link parameter h Mean time to repair on link Li

MTBFTx Li

MTBFRx Li

HSBTx Li

HSBRx Li

MTTR Li

Pt Max PRain PXPR =

Pt Ps Pns Pse PXP+ + +=

Pt Pds

34---

Pdns

34---

+

43---

Pse+ PXP+=

PEq_failure 1MTBFTx Li

MTBFTx Li HSBTx Li +--------------------------------------------------------------------

MTBFRx Li MTBFRx Li HSBRx Li +---------------------------------------------------------------------–=

PEq_failure 1

MTBFTx Li MTBFRx Li +

2-------------------------------------------------------------------------

MTBFTx Li MTBFRx Li +

2------------------------------------------------------------------------- MTTR Li +

-----------------------------------------------------------------------------------------------------------–=

© Forsk 2010 AT283_TRG_E2 77

Page 78: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

5.2.2.2 Quality PerformanceQuality analysis is used to assess whether the total outage probability in clear-air conditions is greater than a requiredoutage probability or not. The required outage probability is derived from ITU-T G.821, ITU-T G.826 recommendations. Itcan also be user-defined.

5.2.2.3 Availability PerformanceQuality analysis is used to assess whether the total outage probability in rain conditions is greater than a required outageprobability or not. The required outage probability is derived from ITU-T G.821, ITU-T G.826 recommendations. It can alsobe user-defined.

5.2.2.4 Global Annual PerformanceThe global annual performance annual is an aggregated indicator that takes into account the quality performance and theavailability performance of a link Li in both directions.

Quality performances for each direction are considered being independent to each other, so the corresponding outageprobabilities are added. Availability performance are considered being correlated, then the worst outage probability isused. Finally, quality performance and availability are considered being independent to each other, so the correspondingoutage probabiilties are added.

5.3 Propagation in Rain Analysis

5.3.1 Input

5.3.2 ITU-R P.530-5

5.3.2.1 Rain Fade Margin

5.3.2.1.1 Rain Coefficients

and are extracted from the ITU-R P.838 recommendation using logarithmic and linear

regression. Atoll supports ITU-R P.838-1 and ITU-R P.838-3. The used method can be set in the Global parameters.

5.3.2.1.2 Rain AttenuationThe rain attenuation for a specific frequency, rainfall rate and polarisation on link Li is expressed in dB/km.

Name Value Unit Description

Link parameter mm/hRainfall rate exceeded for 0.01% of

the average year on link Li

Calculated mm/h

Crane’s rainfall rate exceeded for p% of the average year on link Li. When

then a probability is

used instead of p to determine the

rainfall rate where

Calculated NoneRain attenuation coefficient based on

the used polarisation on link Li

Calculated NoneRain attenuation coefficient based on

the used polarisation on link Li

Calculated km Path length of link Li

Equipment parameter dBTransmitter carrier-to-interference ratio for a reference BER on link Li

Equipment parameter dBTransmitter cross-polarisation improvement factor on link Li

Link parameter GHz Transmitter frequency on link Li

R0.01 Li

Rp Li d Li 22.5 p

p p22.5d Li -------------=

kTx Li pol,

Tx Li pol,

d Li

CI----

0_TxLi

XPIFTx Li

fTx Li

kTx Li pol, Tx Li pol,

Li kTx Li pol, R0.01 Li Tx Li pol,

=

78 AT283_TRG_E2 © Forsk 2010

Page 79: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

5.3.2.1.3 Effective Path LengthThe effective path length that takes into account the nonuniformity of the rainfall along the path on link Li is expressed in

km.

with

5.3.2.1.4 Rain Fade Margin Exceeded for 0.01% of the Average YearThe rain attenuation, excceeded for 0.01% of the average year, for a transmitter on link Li is expressed in dB/km.

5.3.2.1.5 Rain Fade Margin Exceeded for p% of the Average YearThe rain attenuation, excceeded for p% of the average year, for a transmitter on link Li is expressed in dB/km.

with

5.3.2.1.6 Rain Fade Margin Exceeded for pw% of the Average Worst Month

When the Average Worst Month pw% is Known

It is necessary to convert pw% of the average worst month into p% of the average year because the rain attenuation

formula only provides the rain fading margin on an average year basis.

The corresponding average year statistics p for an average worst month statistics pw can be derived from the ITU-R P.841-

3 recommendation.

We have (%) where

Atoll uses and then we have: .

Finally the rain attenuation formula can be applied with the calculated average year probability p. The rain fade marginexceeded for p% of the average year will be exceeded for the corresponding pw of the average worst month.

When the Average Year p% is Known

It is necessary to convert p% of the average year of into pw% of the the average worst month.

We have (%) where , where

Atoll uses and . The rain fade margin exceeded for p% of the average year will be exceeded for the

corresponding pw of the average worst month.

5.3.2.2 Total Outage Probability due to Rain for the Average YearThe following formula is used:

Where is the percentage of time for the average year where is exceeded found by solving the following

equation:

deff Li d Li 1

1d Li

35 e0.015 R0.01 Li –

--------------------------------------------------------+

------------------------------------------------------------------= R0.01 Li Min R0.01 Li 100 =

RFM0.01 Li Li deff Li =

RFMp Li RFM0.01 Li 0.12 p0.546 0.043 Log p + –= 0.001 p 1

ppw

Q p -------------= Q p Q1

11 –------------

pw

1 –------------ –

=

0.13= Q1 2.85= p 0.3 pw1.15=

pw Q p p= Q p

12 for pQ1

12-------

1---

%

Q1 p– for

Q1

12-------

1---

p 3%

Q1 3– for 3% p 30%

Q1 3– p

30------

Log Q1 3–

Log 0.3 ---------------------------------------

for p 30%

= 1 Q p 12

0.13= Q1 2.85=

PRainp

100----------=

p RFMp Li

RFMp Li RFM0.01 Li 0.12 p0.546 0.043 Log p + –=

© Forsk 2010 AT283_TRG_E2 79

Page 80: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

5.3.3 ITU-R P.530-8, ITU-R P.530-10, ITU-R P.530-11, and ITU-R P.530-12

5.3.3.1 Rain Fade Margin

5.3.3.1.1 Rain Coefficients

and are extracted from the ITU-R P.838 recommendation using logarithmic and linear

regression. Atoll supports ITU-R P.838-1 and ITU-R P.838-3. The used method can be set in the Global parameters.

5.3.3.1.2 Rain AttenuationThe rain attenuation for a specific frequency, rainfall rate and polarisation on link Li is expressed in dB/km.

5.3.3.1.3 Effective Path LengthThe effective path length that takes into account the nonuniformity of the rainfall along the path on link Li is expressed in

km.

where

5.3.3.1.4 Rain Fade Margin Exceeded for 0.01% of the Average YearThe rain attenuation, excceeded for 0.01% of the average year, for a transmitter on link Li is expressed in dB/km.

5.3.3.1.5 Rain Fade Margin Exceeded for p% of the Average YearThe rain attenuation, excceeded for p% of the average year, for a transmitter on link Li is expressed in dB/km.

For Links Located in Latitudes Equals to or Greater than 30° (North or South)

with

For Links Located in Latitudes Below 30° (North or South)

with

5.3.3.1.6 Rain Fade Margin Exceeded for pw% of the Average Worst Month

When the Average Worst Month pw% is Known

It is necessary to convert pw% of the average worst month into p% of the average year because the rain attenuation

formula only provide the rain fading margin on an average year basis.

The corresponding average year statistics p for an average worst month statistics pw can be derived from the ITU-R P.841-

3 recommendation.

The conversion formula is (%) where

Atoll uses and then we have: .

Finally the rain attenuation formula can be applied with the calculated average year probability p. The rain fade marginexceeded for p% of the average year will be exceeded for the corresponding pw of the average worst month.

When the Average Year p% is Known

It is necessary to convert p% of the average year of into pw% of the the average worst month.

kTx Li pol, Tx Li pol,

Li kTx Li pol, R0.01 Li Tx Li pol,

=

deff Li d Li 1

1d Li

35 e0.015 R0.01 Li –

--------------------------------------------------------+

------------------------------------------------------------------= R0.01 Li Min R0.01 Li 100 =

RFM0.01 Li Li deff Li =

RFMp Li RFM0.01 Li 0.12 p0.546 0.043 Log p + –= 0.001 p 1

RFMp Li RFM0.01 Li 0.07 p0.855 0.139 Log p + –= 0.001 p 1

ppw

Q p -------------= Q p Q1

11 –------------

pw

1 –------------ –

=

0.13= Q1 2.85= p 0.3 pw1.15=

80 AT283_TRG_E2 © Forsk 2010

Page 81: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

We have (%) where , where

Atoll uses and . The rain fade margin exceeded for p% of the average year will be exceeded for the

corresponding pw of the average worst month.

5.3.3.2 Outage Probability due to Rain for the Average YearThe following formula is used:

Where is the percentage of time for the average year when is exceeded found by solving the following

equation:

for links located in latitudes equals to or greater than 30° (North

or South)

or

for links located in latitudes below 30° (North or South)

5.3.3.3 Outage Probability due to XPD Reduction for the Average YearThe following formula is used:

Where

Where

with ,

Where the equivalent path attenuation is expressed in dB:

Where

and

5.3.4 Crane

5.3.4.1 Rain Fade Margin

5.3.4.1.1 Rain Coefficients

and are extracted from the ITU-R P.838 recommendation using logarithmic and linear

regression. Atoll supports ITU-R P.838-1 and ITU-R P.838-3. The used method can be set in the Global parameters.

pw Q p p= Q p

12 for pQ1

12-------

1---

%

Q1 p– for

Q1

12-------

1---

p 3%

Q1 3– for 3% p 30%

Q1 3– p

30------

Log Q1 3–

Log 0.3 ---------------------------------------

for p 30%

= 1 Q p 12

0.13= Q1 2.85=

PRainp

100----------=

p RFMp Li

RFMp Li RFM0.01 Li 0.12 p0.546 0.043 Log p + –=

RFMp Li RFM0.01 Li 0.07 p0.855 0.139 Log p + –=

PXPR 10n 2–

=

n 12.7– 161.23 4 m–+2

-----------------------------------------------------------------=

m 23.26 LogAp

0.12 RFM0.01 Li -------------------------------------------------- = m 40

Ap

Ap10

UCI----

0_TxLi – XPIFTx Li +

V-------------------------------------------------------------------------------

with XPIC

10

UCI----

0_TxLi –

V------------------------------------------

without XPIC

=

U 15 30 Log fTx Li += V 12.8 fTx Li 0.19 for 8 fTx Li 20

22.6 for 20 fTx Li 35

=

kTx Li pol, Tx Li pol,

© Forsk 2010 AT283_TRG_E2 81

Page 82: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

5.3.4.1.2 Rain AttenuationThe rain attenuation for a specific frequency, rainfall rate and polarisation on link Li is expressed in dB/km.

5.3.4.1.3 Rain Fade Margin Exceeded for p% of the Average YearThe rain attenuation, excceeded for p% of the average year, for a transmitter on link Li is expressed in dB/km.

Where

where

where

5.4 Propagation in Clear-Air Analysis

5.4.1 Input

Li kTx Li pol, Rp Li Tx Li pol,

=

RFMp si si e

y Rp Li 1–

y---------------------------------------

for 0 d Li Rp Li

si ey Rp Li

1–y

---------------------------------------e

z d Li e

z Rp Li –

z-------------------------------------------------------- e

Tx Li pol, B Rp Li +

for Rp Li d Li 22.5

=

Rp Li 3.8 0.6 Ln Rp Li –=

B Rp Li 0.83 0.17 Ln Rp Li –=

z Tx Li pol, Tx Li pol, c Rp Li = c Rp Li 0.026 0.03 Ln Rp Li –=

y Tx Li pol, Tx Li pol, u Rp Li = u Rp Li B Rp Li Rp Li -------------------------- c Rp Li +=

Name Value Unit Description

Link Parameter %

Percentage of time during which the refractivity gradient in the lowest

100 m of the atmosphere is less than or equal to -100 N-units/km on link Li

Link Parameter mThe lowest antenna above the sea

level on link Li

Calculated m Latitude of the mid-point on link Li

Calculated m Longitude of the mid-point on link Li

Calculated m Transmitter antenna height on link Li

Calculated m Receiver antenna height on link Li

Calculated mTransmitter antenna height above the

average profile on link Li

Calculated mReceiver antenna height above the

average profile on link Li

Calculated km Path length of link Li

Link Parameter GHz Transmitter frequency on link Li

Calculated N-unit/kmPoint refractivity gradient in the lowest 65 m of the atmosphere not exceeded

for 1% of an average year on link Li

Calculated mStandard deviation of terrain heights within a 110 km x 110 km area with a

30s resolution of link Li

Link Parameter none Climate factor on link Li

Link Parameter or Calculated none Terrain factor on link Li

Calculated m Terrain roughness on link Li

PL Li

Hmin Li

Lat Li

Lon Li

hTx Li

hRx Li

hTx_Avg Li

hRx_Avg Li

d Li

fTx Li

dN1 Li

Sa Li

FClimate Li

FTerrain Li

Rg Li

82 AT283_TRG_E2 © Forsk 2010

Page 83: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

5.4.2 Frequency Non-Selective Fading

5.4.2.1 ITU-R P.530-55.4.2.1.1 Method for Initial Planning

Geoclimatic Parameters

• Geoclimatic Factor

The geoclimatic factor is calculated base on the location of the studied link:

Microwave Radio Links Properties (Models tab) none Frequency exponent

Microwave Radio Links Properties (Models tab) none Distance exponent

Equipment parameter GHzTransmitter signature width in

minimum-phase multipath case on link Li

Equipment parameter GHzTransmitter signature width in non-

minimum-phase multipath case on link Li

Equipment parameter GHzTransmitter signature depth in

minimum-phase multipath case on link Li

Equipment parameter GHzTransmitter signature depth in non-

minimum-phase multipath case on link Li

Microwave Radio Links Properties (Models tab) nsReference delay used to obtain the

signature in minimum-phase multipath case

Microwave Radio Links Properties (Models tab) nsReference delay used to obtain the signature in non-minimum-phase

multipath case

Equipment parameter NoneTransmitter normalized signature

parameter on link Li

Equipment parameter NoneTransmitter normalized signature

parameter on link Li

Equipment parameter NoneTransmitter normalized signature

parameter on link Li

Equipment parameter None Transmitter capacity on link Li

Equipment parameter NoneTransmitter modulation states on link

Li

Equipment parameter bit/s Transmitter gross rate on link Li

Equipment parameter bit/s Trasnmitter payload rate on link Li

Calculated dB

Read from the antenna cross-polar pattern at 0°. The smallest values

between the transmitter’s one and the receiver’s one is used.

Calculated dBTransmitter carrier-to-interference ratio for a reference BER on link Li

Equipment parameter dBTransmitter cross-polarisation improvement factor on link Li

Calculated m Transmitter wavelenghts on link Li

Link Parameter mReceiver vertical antenna separation

on link Li

Link Parameter mTransmitter frequency separation on

link Li

Antenna parameter dBi Transmitter antenna gain on link Li

Antenna parameter dBi Receiver antenna gain on link Li

B338

C338

WM_Tx Li

WNM_Tx Li

BM_Tx Li

BNM_Tx Li

r_M

r_NM

Kn_Tx Li

Kn_M_Tx Li

Kn_NM_Tx Li

CapacityTx Li

MTx Li

GRateTx Li

PRateTx Li

XPDg

CI----

0_TxLi

XPIFTx Li

Tx Li

SepRx Li

Sep_FreqTx Li

GTx Li

GRx Li

© Forsk 2010 AT283_TRG_E2 83

Page 84: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

Where

And

The month that has the highest value of should be chosen from the four seasonally representative months

of February, May, August and November from maps given in ITU-R P.453 recommendation. An exception to this

is that only maps for May and August should be used for latitudes greater than .

• Path Inclination

The magnitude of the path inclination is expressed in milliradians:

• Multipath Fading Occurrence Factor

The multipath fading occurrence factor for the average worst month is expressed in percentage of time:

Selection Process Between Method for Small Percentage of time and Method for VariousPercentage of Time

1. Calculate the Percentage of Time pw_25dB for the Average Worst Month where 25 dB Fading Depth is Exceeded

2. Calculate the Percentage of Time pw_35dB for the Average Worst Month where 35 dB Fading Depth is Exceeded

3. Calculate the Criterion for Selection of Percentage of Time pw_25dB

Where

4. Calculate the Criterion for Selection of Percentage of Time pw_35dB

K

106.5 CLat– CLon– –

PL Li 1.5 for overland links if Hmin Li 700m

107.1 CLat– CLon– –

PL Li 1.5 for overland links if Hmin Li 700m

105.9 CLat– CLon– –

PL Li 1.5 for medium-sized over-water links if strait or gulf

105.5 CLat– CLon– –

PL Li 1.5 for large over-water links if sea

=

CLat

0 for 53oS Lat Li 53

oN

5.3–Lat Li

10-------------------+ for 53

oN or 53

oS Lat Li 60

oN or 60

oS

0.7 for Lat Li 60oN or 60

oS

=

CLon

0.3 for 30oW Lon Li 50

oE

0.3– for 150oW Lon Li 30

oW

0 for others

=

PL Li

60oN or 60

oS

phRx Li hTx Li –

d Li -----------------------------------------------=

Po 100 K d Li 3.6 fTx Li 0.89 1 p+ 1.4–=

pw_25dB Po 10

2510------ –

=

pw_35dB Po 10

3510------ –

=

qt_25dBqa_25dB 2–

1 0.3+ 10

2510------ –

100.016 25 –

---------------------------------------------------------------------------------------- 4.3 10

2510------ –

25800----------+

–=

qa_25dB 20 Log Ln

100 pw_25dB–

100------------------------------------ –

25-------------------------------------------------------------------------------------=

84 AT283_TRG_E2 © Forsk 2010

Page 85: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

Where

5. Then the following decision tree is used:

If then and 25 dB is the selection criterion.

If then Atoll uses the method for small percentage of time

If then Atoll uses the method for various percentage of time

or

If then and 35 dB is the selection criterion.

If then Atoll uses the method for small percentage of time

If then Atoll uses the method for various percentage of time

Method for Small Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded:

Method for Various Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded:

Where

Percentage of Time p for the Average Year Where is Exceeded

The following formula is used:

Where the geoclimatic conversion factor expressed in dB is:

With .

Outage Probability due to Frequency Non-Selective Fading for the Average Worst Month

The following formula is used:

qt_35dBqa_35dB 2–

1 0.3+ 10

3510------ –

100.016 35 –

---------------------------------------------------------------------------------------- 4.3 10

3510------ –

35800----------+

–=

qa_35dB 20 Log Ln

100 pw_35dB–

100------------------------------------ –

35-------------------------------------------------------------------------------------=

qt_35dB 0 qt qt_25dB=

TFM Li BER, 25 dB

TFM Li BER, 25 dB

qt_35dB 0 qt qt_35dB=

TFM Li BER, 35 dB

TFM Li BER, 35 dB

TFM Li BER,

pw Po 10

TFM Li BER,

10-------------------------------------- –

=

TFM Li BER,

pw 100 1 e10

qa TFM Li BER,

20--------------------------------------------------- –

––

=

qa 1 0.3 10

TFM Li BER,

20-------------------------------------- –

+

100 016 TFM Li BER, –

qt 4.3 10

TFM Li BER,

20-------------------------------------- – TFM Li BER,

800--------------------------------------+

+

=

TFM Li BER,

p pw 10

G10-------- –

=

G10.3 5 Log 1 Cos 2 Lat Li 0 7

+ 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.3 5 Log 1 Cos 2 Lat Li 0 7– 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

Pnspw

100----------=

© Forsk 2010 AT283_TRG_E2 85

Page 86: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

5.4.2.1.2 Method for Detailed Planning

Geoclimatic Parameters

• Geoclimatic Factor

The geoclimatic factor is calculated base on the location of the studied link:

Where

And

The month that has the highest value of should be chosen from the four seasonally representative months

of February, May, August and November from maps given in ITU-R P.453 recommendation. An exception to this

is that only maps for May and August should be used for latitudes greater than .

• Path Inclination

The magnitude of the path inclination is expressed in milliradians:

• Antenna Height Above the Average Terrain Profile

First the linear equation of the average profile is determined using the "method of least squares":

Where

and

With:

- which corresponds to the distance along the path. Expressed in meters.

- which corresponds to the terrain height on a pixel. Expressed in meters.

- which corresponds to the number of extracted pixels along the path.

Finally the transmitter and receiver antenna heights above the average terrain profile are calculated with thefollowing formulas:

and

• Grazing Angle

K

105.4 CLat– CLon– –

PL Li 1.5 for overland links if Hmin Li 700m

106 CLat– CLon– –

PL Li 1.5 for overland links if Hmin Li 700m

104.8 CLat– CLon– –

PL Li 1.5 for medium-sized over-water links if strait or gulf

104.4 CLat– CLon– –

PL Li 1.5 for large over-water links if sea

=

CLat

0 for 53oS Lat Li 53

oN

5.3–Lat Li

10-------------------+ for 53

oN or 53

oS Lat Li 60

oN or 60

oS

0.7 for Lat Li 60oN or 60

oS

=

CLon

0.3 for 30oW Lon Li 50

oE

0.3– for 150oW Lon Li 30

oW

0 for others

=

PL Li

60oN or 60

oS

phRx Li hTx Li –

d Li -----------------------------------------------=

AverageProfi le x a0 x a1+=

a0

xi hi

i 1=

N

xi

i 1=

N

hi

i 1=

N

N----------------------------------–

xi2

i 1=

N

xi

i 1=

N

2

N----------------------–

----------------------------------------------------------------------= a1

hi

i 1=

N

a0 xi

i 1=

N

N----------------------------------------------=

x

h

N

hTx_Avg Li hTx Li AverageProfile 0 –= hRx_Avg Li hRx Li AverageProfi le d Li –=

86 AT283_TRG_E2 © Forsk 2010

Page 87: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

The grazing angle is expressed in milliradians:

Where

• Multipath Fading Occurrence Factor

The multipath fading occurrence factor for the average worst month is expressed in percentage of time:

Selection Process Between Method for Small Percentage of Time and Method for VariousPercentage of Time

1. Calculate the Percentage of Time pw_25dB for the Average Worst Month where 25 dB Fading Depth is Exceeded

2. Calculate the Percentage of Time pw_35dB for the Average Worst Month where 35 dB Fading Depth is Exceeded

3. Calculate the Criterion for Selection of Percentage of Time pw_25dB

Where

4. Calculate the Criterion for Selection of Percentage of Time pw_35dB

Where

5. Then the following decision tree is used:

If then and 25 dB is the selection criterion.

If then Atoll uses the method for small percentage of time

If then Atoll uses the method for various percentage of time

or

If then and 35 dB is the selection criterion.

If then Atoll uses the method for small percentage of time

hTx_Avg Li hRx_Avg Li +

d Li ----------------------------------------------------------------- 1 m 1 b

2+ – =

b 2 m 1+3 m-------------- Cos

3---

13--- ArcCos

3 c2

------------ 3 m

m 1+ 3----------------------

+

=

md Li 2

4 ae hTx_Avg Li hRx_Avg Li + --------------------------------------------------------------------------------------------=

chTx_Avg Li hRx_Avg Li –

hTx_Avg Li hRx_Avg Li +--------------------------------------------------------------------=

with ae 8500=

Po 100 K d Li 3.3 fTx Li 0.93 1 p+ 1.1– 1.2–=

pw_25dB Po 10

2510------ –

=

pw_35dB Po 10

3510------ –

=

qt_25dBqa_25dB 2–

1 0 3 10

2510------ –

+

100.016 25 –

------------------------------------------------------------------------------------------ 4 3 10

2510------ –

25800----------+

–=

qa_25dB 20 Log Ln

100 pw_25dB–

100------------------------------------ –

25-------------------------------------------------------------------------------------=

qt_35dBqa_35dB 2–

1 0 3 10

3510------ –

+

100.016 35 –

------------------------------------------------------------------------------------------ 4 3 10

3510------ –

35800----------+

–=

qa_35dB 20 Log Ln

100 pw_35dB–

100------------------------------------ –

35-------------------------------------------------------------------------------------=

qt_35dB 0 qt qt_25dB=

TFM Li BER, 25 dB

TFM Li BER, 25 dB

qt_35dB 0 qt qt_35dB=

TFM Li BER, 35 dB

© Forsk 2010 AT283_TRG_E2 87

Page 88: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

If then Atoll uses the method for various percentage of time

Method for Small Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded:

Method for Various Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded:

Where

Percentage of Time p for the Average Year Where is Exceeded

The following formula is used:

Where the geoclimatic conversion factor expressed in dB is:

With .

Outage Probability due to Frequency Non-Selective Fading for the Average Worst Month

The following formaul is used:

5.4.2.2 ITU-R P.530-85.4.2.2.1 Method for Initial Planning

Geoclimatic Parameters

• Geoclimatic Factor

The geoclimatic factor is calculated base on the location of the studied link:

for inland links.

for coastal links over/near large bodies of water.

for coastal links over/near medium bodies of water.

Where

TFM Li BER, 35 dB

TFM Li BER,

pw Po 10

TFM Li BER,

10-------------------------------------- –

=

TFM Li BER,

pw 100 1 e10

qa TFM Li BER,

20--------------------------------------------------- –

––

=

qa 1 0.3 10

TFM Li BER,

20-------------------------------------- –

+

100.016 TFM Li BER, –

qt 4.3 10

TFM Li BER,

20-------------------------------------- – TFM Li BER,

800--------------------------------------+

+

=

TFM Li BER,

p pw 10

G10-------- –

=

G10.3 5 Log 1 Cos 2 Lat Li 0 7

+ 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.3 5 Log 1 Cos 2 Lat Li 0 7– 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

Pnspw

100----------=

K 5 107– 10

0.1– C0 CLat– CLon– PL Li 1.5=

K 101 rc– Log Ki rc Log Kcl +

if Kcl Ki

Ki if Kcl Ki

=

K 101 rc– Log Ki rc Log Kcm +

if Kcm Ki

Ki if Kcm Ki

=

88 AT283_TRG_E2 © Forsk 2010

Page 89: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

The month that has the highest value of should be chosen from the four seasonally representative months

of February, May, August and November from maps given in ITU-R P.453 recommendation. An exception to this

is that only maps for May and August should be used for latitudes greater than .

• Path Inclination

The magnitude of the path inclination is expressed in milliradians:

• Multipath Fading Occurrence Factor

The multipath fading occurrence factor for the average worst month is expressed in percentage of time:

Selection Process Between Method for Small Percentage of Time and Method for VariousPercentage of Time

1. Calculate the transition fading value between deep fading and shallow fading expressed in dB:

2. Then the following decision tree is used:

If then Atoll uses the method for small percentage of time

If then Atoll uses the method for various percentage of time

Method for Small Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded:

Method for Various Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded:

Where

C0

1.7 if 0 Hmin Li 400m

4.2 if 400 Hmin Li 700m

8 if Hmin Li 700m

=

CLat

0 for 53oS Lat Li 53

oN

53– Lat Li + for 53oN or 53

oS Lat Li 60

oN or 60

oS

7 for Lat Li 60oN or 60

oS

=

CLon

3 for 30oW Lon Li 50

oE

3– for 150oW Lon Li 30

oW

0 for others

=

Ki 5 107– 10

0.1– C0 CLat– CLon– PL Li 1.5=

Kcl 2.3 104– 10

0 1– C0 0.011 Lat Li –=

Kcm 100.5 Log Ki Log Kcl +

=

PL Li

60oN or 60

oS

phRx Li hTx Li –

d Li -----------------------------------------------=

Po 100 K d Li 3.6 fTx Li 0.89 1 p+ 1.4–=

At 25 1.2+ Log Po =

TFM Li BER, At

TFM Li BER, At

TFM Li BER,

pw Po 10

TFM Li BER,

10-------------------------------------- –

=

TFM Li BER,

pw 100 1 e10

qa TFM Li BER,

20--------------------------------------------------- –

––

=

© Forsk 2010 AT283_TRG_E2 89

Page 90: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

Where

Where

Where

Percentage of Time p for the Average Year where is Exceeded

The following formula is used:

Where the geoclimatic conversion factor expressed in dB is:

With .

Outage Probability due to Frequency Non-Selective Fading for the Average Worst Month

The following formula is used:

5.4.2.3 ITU-R P.530-10, ITU-R P.530-11 and ITU-R P.530-125.4.2.3.1 Method for Initial Planning

Geoclimatic Parameters

• Geoclimatic Factor

The geoclimatic factor is calculated base on the location of the studied link:

• Path Inclination

The magnitude of the path inclination is expressed in milliradians:

• Multipath Fading Occurrence Factor

The multipath fading occurrence factor for the average worst month is expressed in percentage of time:

qa 2 1 0.3 10

TFM Li BER,

20-------------------------------------- –

+

+ 100.016 TFM Li BER, –

qt 4.3 10

TFM Li BER,

20-------------------------------------- – TFM Li BER,

800--------------------------------------+

+

=

qtqa 2–

1 0.3 10

At

20------ –

+

100.016 At –

--------------------------------------------------------------------------------------- 4.3 10

At

20------ – At

800----------+

–=

qa 20 Log Ln

100 pt–

100-------------------- –

At----------------------------------------------------------------------=

pt Po 10

At

10------ –

=

TFM Li BER,

p pw 10

G10-------- –

=

G10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7

+ 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7– 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

Pnspw

100----------=

K 104.2– 0.0029 dN1 Li –

=

phRx Li hTx Li –

d Li -----------------------------------------------=

Po 100 K d Li 3 1 p+ 1.2–10

0.033 fTx Li 0.001 Hmin Li –=

90 AT283_TRG_E2 © Forsk 2010

Page 91: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

Selection Process Between Method for Small Percentage of Time and Method for VariousPercentage of Time

1. Calculate the transition fading value between deep fading and shallow fading expressed in dB:

2. Then the following decision tree is used:

If then Atoll uses the method for small percentage of time

If then Atoll uses the method for various percentage of time

Method for Small Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded

Method for Various Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded

Where

Where

Where

Where

Percentage of Time p for the Average Year Where is Exceeded

The following formula is used:

Where the geoclimatic conversion factor expressed in dB is:

With .

Outage Probability due to Frequency Non-Selective Fading for the Average Worst Month

The following formula is used:

At 25 1.2+ Log Po =

TFM si BER, At

TFM si BER, At

TFM Li BER,

pw Po 10

TFM Li BER,

10-------------------------------------- –

=

TFM Li BER,

pw 100 1 e10

qa TFM Li BER,

20--------------------------------------------------- –

––

=

qa 2 1 0.3 10

TFM Li BER,

20-------------------------------------- –

+

+ 100.016 TFM Li BER, –

qt 4.3 10

TFM Li BER,

20-------------------------------------- – TFM Li BER,

800--------------------------------------+

+

=

qtqa 2–

1 0.3 10

At

20------ –

+

100.016 At –

--------------------------------------------------------------------------------------- 4.3 10

At

20------ – At

800----------+

–=

qa 20 Log Ln

100 pt–

100-------------------- –

At----------------------------------------------------------------------=

pt Po 10

At

10------ –

=

TFM Li BER,

p pw 10

G10-------- –

=

G10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7

+ 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7– 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

Pnspw

100----------=

© Forsk 2010 AT283_TRG_E2 91

Page 92: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

5.4.2.3.2 Method for Detailed Planning

Geoclimatic Parameters

• Geoclimatic Factor

The geoclimatic factor is calculated base on the location of the studied link:

• Path Inclination

The magnitude of the path inclination is expressed in milliradians:

• Multipath Fading Occurrence Factor

The multipath fading occurrence factor for the average worst month is expressed in percentage of time:

Selection Process Between Method for Small Percentage of Time and Method for VariousPercentage of Time

1. Calculate the Transition Fading Depth Value between Deep Fading and Shallow Fading Expressed in dB:

2. Then the following decision tree is used:

If then Atoll uses the method for small percentage of time

If then Atoll uses the method for various percentage of time

Method for Small Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded:

Method for Various Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded:

Where

Where

Where

Where

K 103.9– 0.003 dN1 Li –

Sa Li 0.42–=

phRx Li hTx Li –

d Li -----------------------------------------------=

Po 100 K d Li 3.2 1 p+ 0.97–10

0.032 fTx Li 0.00085 Hmin Li –=

At 25 1.2+ Log Po =

TFM Li BER, At

TFM Li BER, At

TFM Li BER,

pw Po 10

TFM Li BER,

10-------------------------------------- –

=

TFM Li BER,

pw 100 1 e10

qa TFM Li BER,

20--------------------------------------------------- –

––

=

qa 2 1 0.3 10

TFM Li BER,

20-------------------------------------- –

+

+ 100.016 TFM Li BER, –

qt 4.3 10

TFM Li BER,

20-------------------------------------- – TFM Li BER,

800--------------------------------------+

+

=

qtqa 2–

1 0.3 10

At

20------ –

+

100.016 At –

--------------------------------------------------------------------------------------- 4.3 10

At

20------ – At

800----------+

–=

qa 20 Log Ln

100 pt–

100-------------------- –

At----------------------------------------------------------------------=

pt Po 10

At

10------ –

=

92 AT283_TRG_E2 © Forsk 2010

Page 93: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

Percentage of Time p for the Average Year Where is Exceeded

The following formula is used:

Where the geoclimatic conversion factor expressed in dB is:

With .

Outage Probability due to Frequency Non-Selective Fading for the Average Worst Month

The following formula is used:

5.4.2.4 Vigants-Barnett5.4.2.4.1 Method for Initial Planning

Climatic Parameters

• Climatic Factor

The climatic factor can be user-defined or can depend on the climate where the studied link is located :

• Multipath Fading Occurrence Factor

The multipath fading occurrence factor for the average worst month is expressed in percentage of time:

Method for Small Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded:

Percentage of Time p for the Average Year Where is Exceeded

With the assumption that the ’worst month’ conditions occur during the three summer months (June, July and August).

5.4.2.4.2 Method for Detailed Planning

Climatic Parameters

• Climatic Factor

The climatic factor depends on a climate factor and a terrain factor where the studied link is located:

Where

- When terrain roughness is considered

TFM Li BER,

p pw 10

G10-------- –

=

G10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7

+ 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7– 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

Pnspw

100----------=

C4 for hot/humid climate

1 for temperate climate

0.25 for dry climate

=

Po 100 6 107– C fTx Li d Li 3=

TFM Li BER,

pw Po 10

TFM Li BER,

10-------------------------------------- –

=

TFM Li BER,

p pw3

12------=

C FClimate Li FTerrain Li =

© Forsk 2010 AT283_TRG_E2 93

Page 94: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

And

where

- When terrain roughness is not considered

And

• Multipath Fading Occurrence Factor

The multipath fading occurrence factor for the average worst month is expressed in percentage of time:

Method for Various Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded:

Percentage of Time p for the Average Year Where is Exceeded

With the assumption that the ’worst month’ conditions occur during the three summer months (June, July and August).

5.4.2.5 CCIR Report 338 (KQ factor)5.4.2.5.1 Method for Detailed Planning

Climatic Parameters

• Climatic Factor

The climatic factor, , is user-defined. It depends on the climate and the terrain where the studied link is located.

• Multipath Fading Occurrence Factor

The multipath fading occurrence factor for the average worst month is expressed in percentage of time:

Method for Various Percentage of Time

Following is the percentage of time pw for the average worst month where is exceeded:

Percentage of Time p for the Average Year Where is Exceeded

The following formula is used:

FClimate Li 2 for hot/humid climate

1 for temperate climate

0.5 for dry climate

=

FClimate Li Rg Li 15.2

----------------

1.3–

= 6 m Rg Li 42 m

FClimate Li 0.5 for hot/humid climate

0.25 for temperate climate

0.125 for dry climate

=

FTerrain Li 4 for hot/humid climate

1 for temperate climate

0.25 for dry climate

=

Po 100 6 107– C fTx Li d Li 3=

TFM Li BER,

pw Po 10

TFM Li BER,

10-------------------------------------- –

=

TFM Li BER,

p pw3

12------=

KQ

Po 100 KQ fTx Li B338 d Li

C338=

TFM Li BER,

pw Po 10

TFM Li BER,

10-------------------------------------- –

=

TFM Li BER,

p pw 10

G10-------- –

=

94 AT283_TRG_E2 © Forsk 2010

Page 95: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

Where the geoclimatic conversion factor expressed in dB is:

With .

Outage Probability due to Frequency Non-Selective Fading for the Average Worst Month

The following formula is used:

Recommended Values of Parameters , and

These empirical values are proposed by the CCIR 338 for six different locations:

• For maritime temperate, Meditarranean, coastal or high humidity and temperate climatic regions

• For maritime sub-tropical climatic regions

• For continental temperate climates or mid-latitude inland climatic regions with average rolling terrain

• For temperate climates, coastal regions with fairly flat terrain

• For high dry mountainous climatic regions

G10.3 5 Log 1 Cos 2 Lat Li 0 7

+ 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.3 5 Log 1 Cos 2 Lat Li 0 7– 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

Pnspw

100----------=

KQ B C

B338

1.2 for Japan

1 for NW Europe, USA and Northern Europe

0.85 for UK

1.5 for ex-USSR

=

C338

3.5 for Japan,NW Europe and UK

3 for USA and Northern Europe

2 for ex USSR–

=

KQ4 10

3–

S11.3

--------------------- for USA

2 103– for ex-USSR

=

KQ 3 103–

S11.3

--------------------- for USA

=

KQ

1 107– for Japan

1.4 106– for NW Europe

8.1 105–

S21.3

-------------------------- to 4 10

4–

S21.3

--------------------- for UK

2.1 103–

S11.3

-------------------------- for USA

4.1 104– for ex-USSR

2.3 103–

S11.3

-------------------------- for Northern Europe

=

KQ

9.9 106–

h1 h2+-------------------------- for Japan

2.3 103– to 4.9 10

3– for ex-USSR

6.5 103–

S11.3

-------------------------- for Northern Europe

=

© Forsk 2010 AT283_TRG_E2 95

Page 96: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

• For temperate climates, inland regions with fairly flat terrain

Where and are the antenna heights expressed in meters. is the terrain roughness expressed in meters by the

standard deviation of terrain elevations at 1 km intervals, with . is the root mean square (r.m.s) value

of the slopes expressed in millirad (mrad) measured between points separated by 1 km along the path excluding the first

and the last complete interval, with .

5.4.3 Frequency Selective Fading

5.4.3.1 ITU-R P.530-8, ITU-R P.530-10 and ITU-R P.530-11

5.4.3.1.1 Method With the Equipment SignatureThe outage probability due to frequency selective fading for the average worst month is:

Where is the multipath activity factor:

And is the mean time delay:

5.4.3.1.2 Method With the Normalized Equipment SignatureThe outage probability due to frequency selective fading for the average worst month is:

Where is the equipment baud period expressed in ns:

Where is the bit rate expressed in bits:

or

when is not available.

5.4.3.2 ITU-R P.530-12

5.4.3.2.1 Method With the Equipment SignatureThe outage probability due to frequency selective fading for the average worst month is:

KQ

3.9 108– for Japan

1 103–

S11.3

--------------------- for USA

1 106– for Northern Europe

=

KQ7.6 10

3– to 2 10

3– for ex-USSR

3.3 103–

S11.3

-------------------------- for Northern Europe

=

h1 h2 S1

6 m S1 42 m S2

1 S2 80

Ps 2.15 WM_Tx Li

BM_Tx Li

20---------------------------–

10m

2

r_M------------- WNM_Tx Li

BNM_Tx Li

20-------------------------------–

10m

2

r_NM-----------------+

=

1 e0.2 P0

0.75––=

m

m 0.7d Li 50

-------------

1.3

=

Ps 2.16 Kn_Tx Li 2m

Ts------

2=

Ts

TsLog2 MTx Li BRateTx Li

---------------------------------------=

BRateTx Li

BRateTx Li CapacityTx Li PRateTx Li =

BRateTx Li CapacityTx Li GRateTx Li 3032------= PRateTx Li

Ps 2.15 WM_Tx Li

BM_Tx Li

20---------------------------–

10m

2

r_M------------- WNM_Tx Li

BNM_Tx Li

20-------------------------------–

10m

2

r_NM-----------------+

=

96 AT283_TRG_E2 © Forsk 2010

Page 97: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

Where is the multipath activity factor:

And is the mean time delay:

5.4.3.2.2 Method With the Normalized Equipment SignatureThe outage probability due to frequency selective fading for the average worst month is:

Where is the equipment baud period expressed in ns:

Where is the bit rate expressed in bits:

or

when is not available.

5.4.4 Signal Enhancement

5.4.4.1 ITU-R P.530-5

5.4.4.1.1 Thermal Fade Margin Exceeded for 0.01% of the Average Worst Month

Method for Small Percentage of Time

is found by solving the following equation:

Method for Various Percentage of Time

is found by solving the following equation:

Where

5.4.4.1.2 Thermal Fade Margin Exceeded for 0.01% of the Average Year

Method for Small Percentage of Time

is found by solving the following equation:

1 e0.2 P0

0.75––=

m

m 0.7d Li 50

-------------

1.3

=

Ps 2.15 Kn_M_Tx Li Kn_NM_Tx Li + m

Ts------

2=

Ts

TsLog2 MTx Li BRateTx Li

---------------------------------------=

BRateTx Li

BRateTx Li CapacityTx Li PRateTx Li =

BRateTx Li CapacityTx Li GRateTx Li 3032------= PRateTx Li

TFM Li BER, 0.01_m

pw Po 10

TFM Li BER, 0.01_m

10------------------------------------------------------- –

=

TFM Li BER, 0.01_m

pw 100 1 e10

qa TFM Li BER, 0.01_m

20------------------------------------------------------------------------

––

=

qa 1 0.3 10

TFM Li BER, 0.01_m

20------------------------------------------------------- –

+

100.016 TFM Li BER,

0.01_m –

qt 4.3 10

TFM Li BER, 0.01_m

20------------------------------------------------------- –

TFM Li BER, 0.01_m

800-----------------------------------------------------

+

+

=

TFM Li BER, 0.01_y

0.01

10

G10--------–

---------------- Po 10

TFM Li BER, 0.01_y

10------------------------------------------------------ –

=

© Forsk 2010 AT283_TRG_E2 97

Page 98: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

Where the geoclimatic conversion factor expressed in dB is:

With .

Method for Various Percentage of Time

is found by solving the following equation:

Where

Where the geoclimatic conversion factor expressed in dB is:

With .

5.4.4.1.3 Selection Process Between Method for Small Percentage of Time and Method for Various Percentage of TimeThe transition fading value between deep fading and shallow fading is expressed in dB:

Then the decison is made based on the following options:

If then Atoll uses the method for small percentage of time

If then Atoll uses the method for various percentage of time

5.4.4.1.4 Method for Small Percentage of Time

Percentage of Time pw for the Average Worst Month Where is Exceeded

Percentage of Time p for the Average Year where is Exceeded

Where

And the geoclimatic conversion factor expressed in dB is:

With .

G10.3 5 Log 1 Cos 2 Lat Li 0 7

+ 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.3 5 Log 1 Cos 2 Lat Li 0 7– 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

TFM Li BER, 0.01_y

0.01

10

G10--------–

---------------- 100 1 e10

qa TFM Li BER, 0.01_y

20----------------------------------------------------------------------

––

=

qa 1 0.3 10

TFM Li BER, 0.01_y

20------------------------------------------------------ –

+

100.016 TFM Li BER,

0.01_y –

qt 4.3 10

TFM Li BER, 0.01_y

20------------------------------------------------------ –

TFM Li BER, 0.01_y

800----------------------------------------------------

+

+

=

G10.3 5 Log 1 Cos 2 Lat Li 0 7

+ 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.3 5 Log 1 Cos 2 Lat Li 0 7– 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

SEM si BER, 10=

SEM si BER, SEM si BER,

SEM si BER, SEM si BER,

SEM Li BER,

pw 100 10

1.7– 0.2 TFM Li BER, 0.01_m

SEM Li BER, –+

3.5--------------------------------------------------------------------------------------------------------------------------------------

–=

SEM Li BER,

p pw 10

G10-------- –

=

pw 100 10

1.7– 0.2 TFM Li BER, 0.01_y

SEM Li BER, –+

3.5-------------------------------------------------------------------------------------------------------------------------------------

–=

G10.3 5 Log 1 Cos 2 Lat Li 0 7

+ 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.3 5 Log 1 Cos 2 Lat Li 0 7– 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

98 AT283_TRG_E2 © Forsk 2010

Page 99: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

Outage Probability due to Signal Enhancement for the Average Worst Month

The following formula is used:

5.4.4.1.5 Method for Various Percentage of Time

Percentage of Time pw for the Average Worst Month Where is Exceeded

Where

Where

Where

Where

Percentage of Time p for the Average Year where is Exceeded

The following formula is used:

Where

Where

Where

Where

Where

And the geoclimatic conversion factor expressed in dB is:

With .

Psepw

100----------=

SEM Li BER,

pw 100 58.21 1 e10

qe SEM Li BER,

20---------------------------------------------------- –

––

–=

qe 8 1 0.3 10

SEM Li BER,

20--------------------------------------- –

+

+ 10

0.7 S EM Li BER,

20----------------------------------------------------- –

qs 12 10

SEM Li BER,

20--------------------------------------- – SEM Li BER,

800---------------------------------------+

+

=

qs 2.05 qe 20.3–=

qe 20–

SEM si BER, ---------------------------------------- Log Ln 1

100 pw –

58.21------------------------–

=

pw 100 10

1.7– 0.2 TFM si BER, 0.01_m

SEM si BER, –+

3.5----------------------------------------------------------------------------------------------------------------------------------------

–=

SEM Li BER,

p pw 10

G10-------- –

=

pw 100 58.21 1 e10

qe SEM Li BER,

20---------------------------------------------------- –

––

–=

qe 8 1 0.3 10

SEM Li BER,

20--------------------------------------- –

+

+ 10

0.7 S EM Li BER,

20----------------------------------------------------- –

qs 12 10

SEM Li BER,

20--------------------------------------- – SEM Li BER,

800---------------------------------------+

+

=

qs 2.05 qe 20.3–=

qe 20–

SEM Li BER, ----------------------------------------- Log Ln 1

100 pw–

58.21------------------------–

=

pw 100 10

1.7– 0.2 TFM Li BER, 0.01_y

SEM Li BER, –+

3.5---------------------------------------------------------------------------------------------------------------------------------------

–=

G10.3 5 Log 1 Cos 2 Lat Li 0 7

+ 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.3 5 Log 1 Cos 2 Lat Li 0 7– 2.8 Log d Li 1.8 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

© Forsk 2010 AT283_TRG_E2 99

Page 100: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

Outage Probability due to Signal Enhancement for the Average Worst Month

The following formula is used:

5.4.4.2 ITU-R P.530-8, ITU-R P.530-10, ITU-R P.530-11 and ITU-R P.530-12

5.4.4.2.1 Thermal Fade Margin Exceeded for 0.01% of the Average Worst Month

Method for Small Percentage of Time

is found by solving the following equation:

Method for Various Percentage of Time

is found by solving the following equation:

Where

5.4.4.2.2 Thermal Fade Margin Exceeded for 0.01% of the Average Year

Method for Small Percentage of Time

is found by solving the following equation:

Where the geoclimatic conversion factor expressed in dB is:

With .

Method for Various Percentage of Time

is found by solving the following equation:

Where

And the geoclimatic conversion factor expressed in dB is:

Psepw

100----------=

TFM Li BER, 0.01_m

pw Po 10

TFM Li BER,

10-------------------------------------- –

=

TFM Li BER, 0.01_m

pw 100 1 e10

qa TFM Li BER,

20--------------------------------------------------- –

––

=

qa 1 0.3 10

TFM Li BER, –

20----------------------------------------------

+

100 016 TFM Li BER, –

qt 4.3 10

TFM Li BER, –

20---------------------------------------------- TFM Li BER,

800--------------------------------------+

+

=

TFM Li BER, 0.01_y

0.01

10

G10--------–

---------------- Po 10

TFM Li BER, 0.01_y

10------------------------------------------------------ –

=

G10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7

+ 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7– 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

TFM Li BER, 0.01_y

0.01

10

G10--------–

---------------- 100 1 e10

qa TFM Li BER, 0.01_y

20----------------------------------------------------------------------

––

=

qa 1 0.3 10

TFM Li BER, 0.01_y

20------------------------------------------------------ –

+

100.016 TFM Li BER,

0.01_y –

qt 4.3 10

TFM Li BER, 0.01_y

20------------------------------------------------------ –

TFM Li BER, 0.01_y

800----------------------------------------------------

+

+

=

100 AT283_TRG_E2 © Forsk 2010

Page 101: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

With .

5.4.4.2.3 Selection Process Between Method for Small Percentage of Time and Method for Various Percentage of TimeThe transition fading value between deep fading and shallow fading is expressed in dB:

Then the decison is made based on the following options:

If then Atoll uses the method for small percentage of time

If then Atoll uses the method for various percentage of time

5.4.4.2.4 Method for Small Percentage of Time

Percentage of Time pw for the Average Worst Month Where is Exceeded

The following formula is used:

Percentage of Time p for the Average Year Where is Exceeded

The following formula is used:

Where

And the geoclimatic conversion factor expressed in dB is:

With

Outage Probability due to Signal Enhancement for the Average Worst Month

5.4.4.2.5 Method for Various Percentage of Time

Percentage of Time pw for the Average Worst Month Where is Exceeded

The following formula is used:

Where

Where

G10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7

+ 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7– 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

SEM si BER, 10=

SEM si BER, SEM si BER,

SEM si BER, SEM si BER,

SEM Li BER,

pw 100 10

1.7– 0.2 TFM Li BER, 0.01_m

SEM Li BER, –+

3.5--------------------------------------------------------------------------------------------------------------------------------------

–=

SEM Li BER,

p pw 10

G10-------- –

=

p 100 10

1.7– 0.2 TFM Li BER, 0.01_y

SEM Li BER, –+

3.5-------------------------------------------------------------------------------------------------------------------------------------

–=

G10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7

+ 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7– 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

Psepw

100----------=

SEM Li BER,

pw 100 58.21 1 e10

qe SEM Li BER, –

20------------------------------------------------------------

––

–=

qe 8 1 0.3 10

SEM Li BER,

20--------------------------------------- –

+

+ 100.7

SEM Li BER,

20---------------------------------------–

qs 12 10

SEM Li BER,

20--------------------------------------- – SEM Li BER,

800---------------------------------------+

+

=

qs 2.05 qe 20.3–=

© Forsk 2010 AT283_TRG_E2 101

Page 102: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

Where

Where

Percentage of Time p for the Average Year Where is Exceeded

The following formula is used:

Where

Where

Where

Where

Where

And the geoclimatic conversion factor expressed in dB is:

With

Outage Probability due to Signal Enhancement for the Average Worst Month

The following formula is used:

5.4.5 XPD Reduction

5.4.5.1 ITU-R P.530-8, ITU-R P.530-10 and ITU-R P.530-11

5.4.5.1.1 Multipath Parameter

Multipath Activity Factor

The following formala is used:

qe 20–

SEM si BER, ---------------------------------------- Log Ln 1

100 pw–

58.21------------------------–

=

pw 100 10

1.7– 0.2 TFM Li BER, 0.01_m

SEM Li BER, –+

3.5----------------------------------------------------------------------------------------------------------------------------------------

–=

SEM Li BER,

p pw 10

G10-------- –

=

pw 100 58.21 1 e10

qe SEM Li BER, –

20------------------------------------------------------------

––

–=

qe 8 1 0.3 10

SEM Li BER,

20--------------------------------------- –

+

+ 100.7

SEM Li BER,

20---------------------------------------–

qs 12 10

SEM Li BER,

20--------------------------------------- – SEM Li BER,

800---------------------------------------+

+

=

qs 2.05 qe 20.3–=

qe 20–

SEM Li BER, ----------------------------------------- Log Ln 1

100 pw –

58.21------------------------–

=

pw 100 10

1.7– 0.2 TFM Li BER, 0.01_y

SEM Li BER, –+

3.5---------------------------------------------------------------------------------------------------------------------------------------

–=

G10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7

+ 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45oN or 45

oS

10.5 5.6 Log 1.1 Cos 2 Lat Li 0 7– 2.7 Log d Li 1.7 Log 1 p+ +–– for Lat Li 45

oN or 45

oS

=

G 10.8 dB

Psepw

100----------=

1 e0.2 P0

0.75––=

102 AT283_TRG_E2 © Forsk 2010

Page 103: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

5.4.5.1.2 Cross-Polarisation Parameters

Static XPD

The static XPD during unfaded conditions is expressed in dB:

XPD Improvement Factor

The improvement factor that shows strong dependence on the slope of the cross-polarized antenna patterns in the verticalplaneis expressed in dB:

Where for one transmit antenna

Static Improved XPD

The static improved XPD during unfaded conditions is expressed in dB:

5.4.5.1.3 Outage Probability due to XPD Reduction for the Average Worst MonthThe following formula is used:

Where

5.4.6 Diversity

5.4.6.1 ITU-R P.530-8, ITU-R P.530-10, ITU-R P.530-11 and ITU-R P.530-12

5.4.6.1.1 Space Diversity

Optimum Antenna Separation

• Non-Terrain Based Method

The optimum antenna separation on the receiver is expressed in meters:

• Terrain Based Method

The optimum antenna separation on the transmitter is expressed in meters:

with being an even number (e.g. )

Where

The optimum antenna separation on the receiver is expressed in meters:

with being an even number (e.g. )

XPD0XPDg 5+ for XPDg 35

40 for XPDg 35

=

Q 10 LogkXP

P0------------------- –=

kXP 0.7=

C XPD0 Q+=

PXP Po 10

MXPD

10---------------- –

=

MXPD

CCI----

0_TxLi – with XPIC

CCI----

0_TxLi – XPIFTx Li + without XPIC

=

SRx3 Tx Li d Li

8 hTx Li -----------------------------------------------=

STxm Tx

2--------------------= m m 1 3 5 7 9 ...

Tx150 d Li

fTx Li hRxdRx

2

12.74 k------------------------–

--------------------------------------------------------------------=

SRxm Rx

2--------------------= m m 1 3 5 7 9 ...

© Forsk 2010 AT283_TRG_E2 103

Page 104: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

Where

Space Diversity Improvement Factor

Outage Probability due to Frequency Non-Selective Fading for the Average Worst Month

The following formula is used:

Outage Probability due to Frequency Selective Fading for the Average Worst Month

The following formula is used:

Where is the multipath activity factor:

And

Where is the frequency selective correlation coefficient:

Where is the frequency non-selective correlation coefficient:

5.4.6.1.2 Frequency Diversity

Optimum Frequency Separation

• Terrain Based Method

The optimum frequency separation on the transmitter is expressed in MHz:

with being an even number (e.g. )

Where

Frequency Diversity Improvement Factor

Rx150 d Li

fTx Li hTxdTx

2

12.74 k------------------------–

--------------------------------------------------------------------=

Ins_s 1 e0.04 SepRx Li 0.87 fTx Li

0.12–d Li

0.48Po

1.04––

TFM si BER, GTx Li GRx Li ––

10-----------------------------------------------------------------------------------------------

10=

PdnsPns

Ins_s------------=

PdsPns

2

1 ks_s2

– ----------------------------------=

1 e0.2 P0

0.75––=

ks_s2

0.8238 for rw 0.5

1 0.195 1 rw– 0.109 0.13 Log 1 rw– –

– for 0.5 rw 0.9628

1 0.3957 1 rw– 0.5136– for rw 0.9628

=

rw

rw1 0.9746 1 kns_s

2–

2.17– for kns_s

20.26

1 0.6921 1 kns_s2

– 1.034

– for kns_s2

0.26

=

kns_s2

kns_s2

1Ins_s Pns

---------------------------–=

STx m fTx= m m 1 3 5 7 9 ...

fTx7.5 10

4 d Li

hTxdTx

2

12.74 k------------------------–

hRxdRx

2

12.74 k------------------------–

------------------------------------------------------------------------------------------------=

Ins_f80

fTx Li d Li ------------------------------------

Sep_FreqTx Li fTx Li

------------------------------------------- 10

TFM Li BER,

10--------------------------------------

=

104 AT283_TRG_E2 © Forsk 2010

Page 105: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

Where

Outage Probability due to Frequency Non-Selective Fading for the Average Worst Month

The following formula is used:

Outage Probability due to Frequency Selective Fading for the Average Worst Month

The following formula is used:

Where is the multipath activity factor:

And

Where is the frequency selective correlation coefficient:

Where is the frequency non-selective correlation coefficient:

5.4.6.1.3 Space and Frequency Diversity (Two Receivers)

Space and Frequency Diversity Improvement Factor

The space and frequency diversity improvement factor is the same as the space diversity improvement factor:

Outage Probability due to Frequency Non-Selective Fading for the Average Worst Month

The following formula is used:

Outage Probability due to Frequency Selective Fading for the Average Worst Month

The following formula is used:

Where is the multipath activity factor:

And

Sep_FreqTx Li Min Sep_Freq Li Tx 0.5 =

PdnsPns

Ins_f-----------=

PdsPns

2

1 ks_f2

– ---------------------------------=

1 e0.2 P0

0.75––=

ks_f2

0.8238 for rw 0.5

1 0.195 1 rw– 0.109 0.13 Log 1 rw– –

– for 0.5 rw 0.9628

1 0.3957 1 rw– 0.5136– for rw 0.9628

=

rw

rw1 0.9746 1 kns_f

2–

2.17– for kns_f

20.26

1 0.6921 1 kns_f2

– 1.034

– for kns_f2

0.26

=

kns_f2

kns_f2

1Ins_f Pns

--------------------------–=

Ins_sf 1 e0.04 SepRx Li 0.87 fTx Li

0.12–d Li

0.48Po

1.04––

TFM Li BER, GTx Li GRx Li ––

10-----------------------------------------------------------------------------------------------

10=

PdnsPns

Ins_sf-------------=

PdsPns

2

1 ks_sf2

– -----------------------------------=

1 e0.2 P0

0.75––=

© Forsk 2010 AT283_TRG_E2 105

Page 106: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

Where is the frequency selective correlation coefficient:

Where is the frequency non-selective correlation coefficient:

5.5 Surface Reflection Analysis

5.5.1 Input

5.5.2 ITU-R P.530-10, ITU-R P.530-11 and ITU-R P.530-12

5.5.2.1 Surface Reflection Point LocationThe following calculations are conducted on the studied reflection area.

From the transmitter the location of the reflexion point is expressed in km:

ks_sf2

0.8238 for rw 0.5

1 0.195 1 rw– 0.109 0.13 Log 1 rw– –

– for 0.5 rw 0.9628

1 0.3957 1 rw– 0.5136– for rw 0.9628

=

rw

rw1 0.9746 1 kns_sf

2–

2.17– for kns_sf

20.26

1 0.6921 1 kns_sf2

– 1.034

– for kns_sf2

0.26

=

kns_sf2

kns_sf2

kns_s kns_f 2=

Name Value Unit Description

Calculated km Path length of link Li

Calculated m Transmitter antenna height on link Li

Calculated m Receiver antenna height on link Li

Site parameter mReceiver altitude of ground above sea

level

Site parameter mTransmitter altitude of ground above

sea level

Calculated mAltitude of mid-point of reflection area

above the sea level

Calculated kmDistance of mid-point of reflection

area from transmitter

Calculated mAltitude of first point of reflection area

above the sea level

Calculated mAltitude of last point of reflection area

above the sea level

Calculated kmTransmitter distance to the first point

of reflection area

Calculated kmTransmitter distance to the last point

of reflection area

Calculated none Median k factor

User defined none Maximum k factor

User defined none Minimum k factor

Calculated km Effective earth radius

Link Parameter GHz Transmitter frequency on link Li

Link Parameter degreesTransmitter antenna’s tilt angle on link

Li

Link Parameter degrees Receiver antenna’s tilt angle on link Li

d Li

hTx Li

hRx Li

yRx

yTx

y0

x0

ya

yb

xa

xb

kMedian

kmax

kmin

ae

fTx Li

t_Tx

t_Rx

106 AT283_TRG_E2 © Forsk 2010

Page 107: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

From the receiver the location of the reflexion point is expressed in km:

Where

Where

with

Where

Where the antenna height of the transmitter above the reflection area is expressed in meters:

And the antenna height of the receiver above the reflection area is expressed in meters:

Where

5.5.2.2 Difference in Path Length Between Direct and Reflected SignalsThe difference in path length between direct and reflected signals is expressen in wavelengths:

This difference is calculated for that would produce and for that would produce .

5.5.2.3 Surface Reflection Coefficient

Where is the grazing angle:

And is the complex permittivity of the surface:

Where is the relative permittivity and is the conductivity. Both are interpolated data from the ITU-R P.527

recommendation’s curves.

5.5.2.4 Effective Surface Reflection Coefficient

is the divergence factor of the surface:

dTxd Li 1 b+

2-------------------------------------=

dRxd Li 1 b–

2-------------------------------------=

b 2 m 1+3 m-------------- Cos

3---

13--- ArcCos

3 c2

------------ 3 m

m 1+ 3----------------------

+

=

md Li 2

4 ae hTx hRx+ --------------------------------------------------- 10

3= ae 6375 kMedian=

chTx hRx–

hTx hRx+------------------------=

hTx hTx Li yTx y0– x0 103

Tan v + +=

hTx hRx Li yRx y0– d Li x0– 103

Tan v + +=

Tan v yb ya–

xb xa–-----------------=

2 fTx Li 0.3 d Li --------------------------- hTx

dTx2

12.74 kMedian-----------------------------------------–

hRxdRx

2

12.74 kMedian-----------------------------------------–

103–=

kmin min kmax max

Sin Cos2 ––

Sin Cos2 –+

-------------------------------------------------------------- for Horizontal polarisation

Sin Cos2 –

2--------------------------------–

Sin Cos2 –

2--------------------------------+

-------------------------------------------------------------- for Vertical polarisation

=

hTx hRx+

d Li ------------------------ 1 m 1 b

2+ – =

rj 18

fTx Li ------------------------–=

r

eff D Rs Rr=

D

© Forsk 2010 AT283_TRG_E2 107

Page 108: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

is the divergence factor of the surface:

with

is the roughness factor of the surface:

Where

is the standard deviation of the surface height along the reflection area:

Where , , and

where is a sorted liste of .

is the linear equation of the average profile etermined using the "method of least squares":

Where

and

Where

• which corresponds to the distance along the path. Expressed in meters.

• which corresponds to the terrain height on a pixel. Expressed in meters.

• which corresponds to the number of extracted pixels along the path.

5.5.2.5 Thermal Fade Margin AttenuationThe maximum possible thermal fade margin attenuation from interference between the direct and the reflected signals isexpresses in dB:

is the attenuation of reflected signals expressed in dB:

D 1 m 1 b2

+ –

1 m 1 3 b2+ +

---------------------------------------------------=

Rs

RsfTx Li hTx hRx+ x

210

2–

3 hTx hRx d Li 3-----------------------------------------------------------------------------------= x Max

d Li 14 fTx Li hTx hRx 10

2–3 d Li

---------------------------------------------------------------------------+

1fTx Li hTx hRx+ 2 10

2–3 d Li

-------------------------------------------------------------------------+

------------------------------------------------------------------------------------------------------------- xb xa–

=

Rr

Rr

1 g2

2------+

1 2.35g

2

2------ 2 g

4

4------+

-----------------------------------------------------------------=

g40 fTx Li h Sin

3-----------------------------------------------------------------------------=

h

h

1N---- Zi

2

i 1=

N

for Root Mean Square Method

1N---- Zi Z–

2

i 1=

N

for Standard Deviation Method

RelativeHeight90 RelativeHeight10– for Interferdecile Range Method

=

Zi hi AverageProfi le xi –= Z1N---- Zi

i 1=

N

= RelativeHeight10 RelativeHeights(Int(0.1 N =

RelativeHeight90 RelativeHeights(Int(0.9 N = RelativeHeights Zi

AverageProfi le x

AverageProfi le x a0 x a1+=

a0

xi hi

i 1=

N

xi

i 1=

N

hi

i 1=

N

N----------------------------------–

xi2

i 1=

N

xi

i 1=

N

2

N----------------------–

----------------------------------------------------------------------= a1

hi

i 1=

N

a0 xi

i 1=

N

N----------------------------------------------=

x

h

N

Amax 20 Log 10

Ld

20------–

10

Ls

20------–

–=

Ls

108 AT283_TRG_E2 © Forsk 2010

Page 109: Atoll 2.8.3 MW Technical Reference Guide E2

Chapter 5: Microwave Radio Links Networks

Where

With the corresponding angle of arrival of the refelcted signal expressed in degrees:

and

is antenna attenuation for angle on transmitter’s antenna pattern.

is antenna attenuation for angle on receiver’s antenna pattern.

is the attenuation of the direct signal expressed in dB:

With the corresponding angle of arrival of the direct signal expressed in degrees:

5.5.2.6 Attenuation GraphsThe plotted parameter on the attenuation graphs is expressed in dB:

Three graphs can be plotted by varying:

• The receiver’s antenna height• The transmitter’s frequency• The k factor

Ls La 20 Log eff –=

La AntLossTx Tx t_Tx+ AntLossRx Rx t_Rx+ +=

Tx180

----------hTx

dTx--------

hTx hRx–

d Li ------------------------

dRx

12.74 kMedian-----------------------------------------––

3–10= Tx180

----------hRx

dRx---------

hRx hTx–

d Li ------------------------

dTx

12.74 kMedian-----------------------------------------––

3–10=

AntLossTx x

AntLossRx x

Ld

Ld AntLossTx t_Tx d– AntLossRx t_Rx d– +=

d 0.0045 d Li 1k--- 3

4---–

–=

10 Log 1 eff2

2 eff Cos 2 –+ =

© Forsk 2010 AT283_TRG_E2 109

Page 110: Atoll 2.8.3 MW Technical Reference Guide E2

Technical Reference Guide

110 AT283_TRG_E2 © Forsk 2010

Page 111: Atoll 2.8.3 MW Technical Reference Guide E2

© Forsk 2010 AT283_TRG_E2 111

MW Technical Reference Guide

Page 112: Atoll 2.8.3 MW Technical Reference Guide E2

Head Office

7, rue des Briquetiers31700 Blagnac - FranceTel: +33 562 747 210Fax: +33 562 747 211

US Office

200 South Wacker Drive - Suite 3100Chicago, IL 60606 - USATel: +1 312 674 4846Fax: +1 312 674 4847

China Office

Suite 302, 3/F, West Tower,Jiadu Commercial Building,No. 66 Jianzhong Road,Tianhe Hi-Tech Industrial Zone,Guangzhou, 510665, P. R. of ChinaTel: +86 20 8553 8938Fax: +86 20 8553 8285

www.forsk.com

MW TechnicalReference Guide

version 2.8.3AT283_TRG_E2

December 2010