assessment of urban transport and impacts of covid-19 ... data...7 2. data needs and data collection...

82
1 Assessment of Urban Transport and Impacts of COVID-19 on Mobility Data Collection Guideline May 2020

Upload: others

Post on 10-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

1

Assessment of Urban Transport and Impacts of COVID-19 on

Mobility

Data Collection Guideline

May 2020

Page 2: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

2

This Guideline has been issued without formal editing.

This Data Collection Guideline has been prepared to support collection and analysis of urban transport data for

application of Sustainable Urban Transport Index (SUTI) in participating cities. It can also be used by other cities

wishing to use SUTI for assessment of urban transport systems and services. The preparation of the guideline was

led by Mr. Madan B. Regmi and Mr. Henrik Gudmundsson provided substantive contribution to the report. Insights

gained during the application of SUTI in 15 cities and the deliberations of the three Capacity Building Workshops

on Urban Mobility and Sustainable Urban Transport Index held in 2017, 2018 and 2019 provided inputs for certain

modifications in SUTI. UN ESCAP Committee on Transport in its 5th session held in 2018 at Bangkok, recognized

the usefulness of SUTI and endorsed SUTI as a tool for assessment and improvement of urban transport policies.

The Committee recommends the continued development of SUTI and its further promotion throughout the region.

Further, the Committee acknowledged endeavors to decarbonize urban mobility through the adoption of low

emission vehicles, in particular electric vehicles. The SUTI guideline has been updated incorporating suggestions

from the Workshops and the Committee to address the concerns for gender equality and needs of differently abled

and aged users as well as use of renewable energy in public transport systems.

The Covid-19 pandemic has brought the world to a virtual halt. The mobility systems, especially public transport

systems, have suffered due to loss or/and drop in ridership. At this point, as a part of SUTI-2020, it is decided to

include an assessment of the transport situation during COVID-19 and the city’s responses during and post-COVID-

19 period as a separate section in the report. The guideline also incorporates elements to be considered for assessment

of impacts of COVID-19 on urban mobility.

The Guideline has been updated by Mr. Madan B. Regmi and Prof. H.M. Shivanand Swamy.

The designation employed and the presentation of the material in the Guideline do not imply the expression of any

opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country,

territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views

expressed, analysis, conclusions and recommendations are those of the authors, and should not necessarily be

considered as reflecting the views or carrying the endorsement of the United Nations. Mention of firm names and

commercial products does not imply the endorsement of the United Nations.

Page 3: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

3

Table of contents

List of tables ................................................................................................................................................................ 4

1. Introduction ............................................................................................................................................................. 5

1.1 Background and Purpose ................................................................................................................................... 5

1.2 Overview of the guideline ................................................................................................................................. 6

2. Data needs and data collection in general ............................................................................................................... 7

2.1 General procedure for all indicators .................................................................................................................. 7

2.2 Issues with indicators to consider in planning for data collection ..................................................................... 7

2.3 General definitions and data sheet entries ....................................................................................................... 10

3. Data collection for each SUTI indicator ................................................................................................................ 15

3.1 Indicator 1: Extent to which transport plans cover public transport, intermodal facilities and infrastructure for

active modes .......................................................................................................................................................... 15

3.2 Indicator 2: Modal share of active and public transport in commuting ........................................................... 21

3.3 Indicator 3: Convenient access to public transport service ............................................................................. 28

3.4 Indicator 4: Public transport quality and reliability ......................................................................................... 32

3.5 Indicator 5: Traffic fatalities per 100,000 inhabitants ..................................................................................... 37

3.6 Indicator 6: Affordability – travel costs as share of income ............................................................................ 41

3.7 Indicator 7: Operational costs of the public transport system ......................................................................... 45

3.8 Indicator 8: Investment in public transportation systems ................................................................................ 48

3.9 Indicator 9: Air quality (PM10)...................................................................................................................... 51

3.10 Indicator 10: Greenhouse gas emissions (CO2eq tons/year) ......................................................................... 54

3.11 Additional data: Gender, renewable energy and impacts of COVID-19 ...................................................... 56

4. Completion, interpretation, and way forward ....................................................................................................... 59

4.1 Completion and results .................................................................................................................................... 59

4.2 Interpretation of results ................................................................................................................................... 60

4.3 SUTI city assessment report outline ................................................................................................................ 61

4.4 Way forward ................................................................................................................................................... 62

Annex 1: Outline of city data collection and SUTI assessment and COVID-19 impact report ............................ 63

Annex 2: Household Survey Questionnaire (required to construct Indicators- 2, 4, 3, 6 & 10) ........................... 65

Annex 3: Public Transport Passengers Survey (required to construct Indicators - 3 & 6)................................. 67

Annex 4: Questionnaire for Public Transport Operators (required to construct Indicators - 7 & 8)..................... 68

Annex 5: SUTI data collection strategy and progress review format .................................................................... 71

Annex 6: Data collection strategy - Impacts of COVID-19 on Urban Mobility…………………………………79

Page 4: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

4

List of tables

Table 1. The ten SUTI indicators .................................................................................................................................5

Table 2. The indicators described according to expected required effort .....................................................................8

Table 3. The indicators that may require the most in contributions from outside city traffic/transport division .........9

Table 4. Basic general terms and definitions .............................................................................................................10

Table 5. Indicator 1 – Brief description .....................................................................................................................15

Table 6. Indicator 1 - Approach .................................................................................................................................17

Table 7. Indicator 1 – Score Card ..............................................................................................................................18

Table 8. Indicator 2 – Brief description .....................................................................................................................21

Table 9. Indicator 3 – Brief description .....................................................................................................................28

Table 10. Indicator 4 – Brief description ...................................................................................................................32

Table 11. Indicator 5 – Brief description ...................................................................................................................37

Table 12. Indicator 6 – Brief description ...................................................................................................................41

Table 13. Indicator 7 – Brief description ...................................................................................................................45

Table 14. Indicator 8 – Brief description ...................................................................................................................48

Table 15. Indicator 9 – Brief description ...................................................................................................................51

Table 16. Indicator 10 – Brief description .................................................................................................................54

Page 5: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

5

1. Introduction

1.1 Background and Purpose

The Sustainable Urban Transport Index (SUTI) has been developed by UN ESCAP to help summarize, track and

compare the performance of Asian cities with regard to sustainable urban transport and the related Sustainable

Development Goals (SDGs), more specifically target 11.2.

The objective of SUTI is to evaluate the status of urban transportation system in cities. SUTI is a quantitative tool

for member States and cities of the region to compare their performance on sustainable urban transport systems and

policies with peers. It can help to identify additional policies and strategies required to improve the urban

transportation systems and services. It includes ten indicators in system, economic environmental and social

domains. SUTI is also expected to make an assessment of the progress of transport contribution towards achievement

of SDGs.

SUTI has been successfully applied in 10 cities; Colombo, Hanoi, Kathmandu and Greater Jakarta in 2017 and

Bandung, Dhaka, HO Chi Minh City, Surabaya, Surat and Suva in 2018. The cities found the SUTI framework

adequate to measure the status and useful in identifying strategies towards sustainable mobility. This updated

document presents guidelines for cities, experts, and other agencies collecting data to calculate SUTI.

• SUTI calculation is based on the ten indicators, shown in Table 1, for which data needs to be collected

using this guideline.

Table 1. The ten SUTI indicators

1 Extent to which transport plans cover public transport, intermodal facilities and infrastructure for active modes

2 Modal share of active and public transport in commuting

3 Convenient access to public transport service

4 Public transport quality and reliability

5 Traffic fatalities per 100.000 inhabitants

6 Affordability – travel costs as share of income

7 Operational costs of the public transport system

8 Investment in public transportation systems

9 Air quality (pm10)

10 Greenhouse gas emissions from transport

The report describes in detail the process, framework, and criteria used to select these indicators from a large pool,

as well as the design of the SUTI. The number of indicators has been kept low in order to minimize the efforts

required to collect and report data for SUTI.

Page 6: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

6

This guideline is accompanied by a data sheet. The city experts are to enter the collected data for SUTI in this data

sheet. A city representative or related official(s) needs to endorse the data on behalf of the city.

Only one data value per indicator is needed to calculate SUTI. However, more data need to be collected and entered

in the data sheet to derive each SUTI indicator value, as explained later.

Entering data for all ten indicators will calculate SUTI and enable a sustainability-based review of the performance

of the city’s transport systems and policies, as well as comparisons with other cities.

It is important that each city collects data for the same ten indicators and seeks to follow the same procedure as described

in this guideline to enhance comparability of results across cities.

Any gaps or necessary deviations in the data collection or other procedures should be noted in the spaces provided

for comments in the data sheet.

At the end of the process the city will review the results, complete the data sheet, and submit it as annex to a report

on the city’s experience. A draft format for this report is annexed to this guideline.

1.2 Overview of the guideline

The aim of this guideline is to help cities and experts prepare the collection of data for the SUTI indicators, enter the

data into the data sheet for calculation, and report results and findings.

The guideline has four Chapters.

Chapter 2 provides a general description of the data collection process including issues to be aware of across

all the indicators, as well as general guidance on filling in the SUTI data sheet.

Chapter 3 provides the specific data collection guidance for the individual indicators. Each

indicator has its own section (3.1 – 3.10) where the following elements are included:

• Relevance of the indicator for the SUTI framework (why to measure it);

• Exact definition of the indicator;

• The unit for measuring the indicator and inserting in the data sheet

• Defining the scale (the minimum and maximum allowed values) for the indicator;

• Procedure and data sources to collect or derive data;

• Results to enter in the data sheet (with hypothetical examples); and

• Literature with further guidance on methodology or data sources (in some sections).

Chapter 4 describes how the city can review the results and outlines the way forward towards assessment

and comparison among cities in support of policies to improve urban transport systems.

Annex 1 is the outline for the city’s project data report.

Page 7: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

7

2. Data needs and data collection in general

2.1 General procedure for all indicators

A structured process to collect, calculate/produce and submit the data needed for deriving SUTI for each city is

needed. It is estimated that it should be possible to complete the process within one or two months, depending on the

existence/availability of useful data, and the manpower allocated.

There should be a key responsible person or a designated team for this process. It is to be expected that more than

one person needs to be involved at various points in the identification, collection and derivation of the full set of

indicators. Work on several indicators may proceed in parallel. The key responsible should be a person with good

overall knowledge of the transport systems and transport policies of the city, and preferably experienced with data

collection.

The data that is collected and produced/calculated must be entered in the SUTI data sheet that accompany this

guidance along the way, together with any relevant comments on the data. The indicator values to be entered in the

SUTI data sheet of behalf of the city need to be endorsed by official representatives of the city or other related

official(s).

2.2 Issues with indicators to consider in planning for data collection

Some indicators will require more work than others to collect and produce. For some indicators data will be more or

less immediately available in a database or document, whereas others will require collection of some data followed

by calculation and aggregation procedures. Most indicators will require more effort than simply looking up a number

in the archives.

Typically, the needed data may not all be found within one office or department of the city administration. Most

likely several offices or branches will need to be consulted or involved in the work at some point. Some data may

even require input from outside organizations, such as a local or regional public transport authority, police, hospitals,

national agency, or others (more on this below).

This guidance cannot foresee in advance which indicators will pose the most challenges or involve most work for

each city, or which particular offices the city needs to involve. This depends on how the city and country is organized

internally and city’s previous efforts and existing data.

However, as a general advice Table 2 seeks to indicate which indicators are likely to require the most effort. More

detail of the process of data collection for all indicators is found in the section on each indicator in chapter 3.

Page 8: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

8

Table 2. The indicators described according to expected required effort

Indicator 1: Extent to which transport plans cover public transport, intermodal facilities and infrastructure for active

modes

This indicator must be produced by undertaking a manual document review of the City’s most recent transport plan, and

score it with a set of criteria defined for this indicator. This review involves designating an expert or a small expert team to

read and score the plan according to the criteria. Time, manpower and independence, should be secured for this process.

Indicator 2: Modal share of active and public transport in commuting

This ‘modal share’ indicator is of interest in many cities, but definitions vary, and data can be a problem. In case no data

exist, or existing ones are outdated (e.g. 10 years old or more) the city will need to derive new data on transport volumes

(trips) per mode. This may involve conducting some form of a travel survey, or using other methods, as described in section

3.2. This can be a major task

Indicator 3: Convenient access to public transport service

This indicator requires the combination of data for the density and frequency of the public transport (PT) service network,

and data for the number of citizens living in 500 m buffer zones of main nodes in the network. There are different methods

to estimate these data as described in section 3.3 but it may require some effort to derive data both for PT frequency and

population inside the buffer zones.

Indicator 4: Public transport quality and reliability

This indicator is based on measuring the satisfaction of Public Transport users with the quality and reliability of public

transport service. Any existing survey results may need to be updated, adjusted or re-interpreted to match the format defined

in this guidance. If no survey exists, a basic survey has to be prepared and conducted within a short time. This involves some

practical survey work

Indicator 5: Traffic fatalities per 100.000 inhabitants

Traffic fatality numbers can usually be found in official statistics or police records. Limited effort.

Indicator 6: Affordability – travel costs as part of income

The indicator needs data on costs for a monthly pass or similar to the PT network as well as statistical data on income for

segments of the population. At best it requires limited effort.

Indicator 7: Operational costs of the public transport system

This needs to be derived from the accounting reports and data of public transport companies. It may be necessary for some

cities to consult Public Transport Authority or company or individual operators to request the data, which will require some

effort.

Indicator 8: Investment in public transportation systems

The indicator uses data on total transport sector investments and within that the investments in active and public transport

systems. This needs to be derived from the accounting reports and data from local, provincial and national governments, and

the private sector. This will require some effort.

Indicator 9: Air quality (pm10)

The indicator uses population weighted air quality monitoring data reported to national agency or WHO. May need

conversion from PM2.5 data if PM10 not available. Should require limited effort.

Indicator 10: Greenhouse gas emissions from transport

If an account or estimate of the emissions of CO2 from transport in the city is not available, a figure has to be calculated

using emission factors and data for traffic volumes (vehicle kilometers) for all emitting modes, or indirectly from gasoline

and diesel sales. Collecting and compiling this information could be one of the most time and effort consuming tasks of all.

As mentioned, for several indicators it may also be necessary to alert or involve other agencies early on. Depending

on the situation in each city this could be the case especially for the ones indicated in Table 3. However, this need

may pertain to other indicators as well depending on the local situation.

Page 9: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

9

Table 3. The indicators that may require the most in contributions from outside city traffic/transport division

Indicator 1: Extent to which transport plans cover public transport, intermodal facilities and infrastructure for active

modes

As mentioned in table 2.1 an expert or (more ideally) an expert panel is needed to for this indicator to review and score the

city’s transport plans. The review should involve at least one expert person not responsible for producing the plan to be

reviewed to ensure the integrity of the review. Such person(s) need to be contacted and accept the task from early on.

Indicators (2) 3, 4, 6, 7 and 8 are directly measuring public transport performance would typically require collaboration

with relevant PT authority, company or individual operators, in case this service is not all directly under the control of the

city. Rather than going ad hoc on each indicator it may be relevant to formulate a consolidated request for PT assistance for

all of these indicators. This may also involve some primary surveys. (see annexure – 3 for data collection formats)

Indicator 5: Traffic fatalities per 100,000 inhabitants

Traffic fatalities per 100,000 inhabitants. This may require the involvement of police or national transport or statistical

authorities.

Indicator 8: Investment in public transportation systems

The indicator will require assistance from a financial account officer of the city to identify and extract accounting data on

general and public transport expenditures. The public transport expenditures are also to include expenditures on pedestrian

and cycling infrastructure. Public transport investments to include those made by local, provincial or national governments

(including international aid agency supports) and private sector.

Indicator 9: Air quality (pm10)

This indicator may require input from city environmental department or national environmental agency. If PM10 data are

not available there may be data for PM2.5 or other pollutants that can be used as basis to derive the indicator (see section

3.9).

Indicator 10: Greenhouse gas emissions from transport

Greenhouse gas emissions from transport. If data for transport CO2 emissions are not available these may need to be

calculated based on traffic data for different modes and vehicles types or fuel data as mention in table 2. To provide such

data may require input from national road administration, national vehicle registry, or energy administration.

Rather than simply starting from one end, it is recommended to first sketch an overall plan for how to conduct the

data collection process with regard to each of the indicators, considering:

• Likelihood that the city already has data in house on the indicator;

• Data needed or useful for more than one indicator; and

• Need to involve different offices, authorities, external agencies or experts per indicator.

Annexure 5 may be used for preparing data collection plan.

Page 10: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

10

Green cells

2.3 General definitions and data sheet entries

This section provides general definitions and formats and describes the process to enter the required information in

the SUTI data sheet as part of the exercise.

2.3.1 General definitions

The SUTI uses mostly standard international definitions, formats, units etc.

Numbers are metric and generally use SI units; Points ‘.’ are used as decimal marks in the text and the data sheet.

Commas ‘,’ are 1,000 separators)

Some general basic terms used are shown in Table 4.

Table 4. Basic general terms and definitions

2.3.2 Data sheet entry

The data sheet has 13 sub-sheets. The two main sub-sheets are ‘A. GENERAL INFO’ and ‘B. DATA ENTRY’.

The city is to enter general information about the city in the Sub-sheet A. The data for each indicator to calculate

SUTI in entered in sub-sheet B. In these two sub-sheets the city should only enter data in the green cells:

Sub-sheet C ‘DIAGRAM’ will show the SUTI diagram as illustrated in the figure in chapter

4 when data have been entered in sub-sheet B. Sub-sheet C should not be modified by the city.

In addition to these three main sub-sheets there is one sub-sheet for each indicator, sub-sheets 1-10. These

sub- sheets should be used by the city to enter ‘raw’ and processed data and to perform intermediate calculations

to derive the SUTI indicator values to be included in sub-sheet B.

Following sections explain the detailed content and expected entry of information for the sub-sheets.

‘Indicator’: a variable selected to represent a key property of a system or a wider phenomenon of interest. A SUTI

indicator is one of ten variables selected to represent sustainable urban transport.

‘Index’ a type of indicator that consists of two or more indicators that each measure distinct system characteristics in

separate units that are normalized and aggregated.

‘SUTI’: Sustainable Urban Transport Index. SUTI is an index based on normalization, equal weighting, and aggregation of

the ten SUTI indicators.

‘Value’: the number to be entered for each variable (indicator) in the SUTI data sheet.

‘Data’: The numerical units used to calculate or derive values for the SUTI indicators. Data will originate in various

sources and methods (measurements, surveys, observations, calculations, etc).

City: The ‘city’ is the named geographical area and administrative unit that is responsible for filling in the data sheet. It is

important that all indicators refer to the same geographical area and same administrative unit. If this differs across

indicators it should be noted in the data sheet (see below.)

Page 11: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

11

Sub-sheet A. GENERAL INFO

In this sub sheet the city can enter information about the city and the data collection. Most elements are self-

explanatory:

A1. GENEREL INFO ENTRY

ENTER INFO BELOW

NAME OF CITY

MAIN CONTACT PERSON NAME

MAIN CONTACT PERSON TITLE/POSITION

MAIN CONTACT PERSON EMAIL

ENDORSED BY CITY REPRESENTATIVE

OTHER AGENCIES OR OFFICES

INVOLVED

DATE WHEN SHEET IS COMPLETED

YEAR(S) THAT THE DATA COVER

POPULATION OF THE CITY

AREA OF THE CITY

GENERAL COMMENTS

‘YEAR(S) THAT THE DATA COVER or THE SUTI ASSESSMENT YEAR’ Data should be for the same year

for all indicators, preferably the previous year to the year in which SUTI application is being undertaken. This will

make it easier to compare across cities or years. If data are for different years, the attempt should be made to update

the same to SUTI ASSESSMENT YEAR. These should be mentioned in the designated comment cells in the DATA

ENTRY and indicator sub-sheet.

‘POPULATION OF THE CITY’, is used in indicators 3, 5, 10. It should be the same figure used.

‘AREA OF THE CITY’ is not used directly in any indicator, but it is useful to ensure agreement about the

geographical area. It may also be useful for further analysis of city data.

‘GENERAL COMMENTS’ concerns any major comments the city has about the data, year, area, the procedure to

collect or derive data, or other context.

Page 12: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

12

Sub-sheet B. DATA ENTRY

This is the key part of the data sheet, where the city will enter data for the ten indicators, following the guidelines

presented in section 3 of this report, and drawing on data entered in sub-sheets 1-10.

In Sub-sheet B the city only enters one value for each SUTI indicator, ten values in total. If the city has indicator

data available for more years or areas, these can be included in the relevant sub-sheet 1-10.

The main table of the DATA ENTRY sub-sheet looks as follows:

B1 DATA ENTRY

ENTER CITY DATA BELOW

Each of the ten indicators has a row in the DATE ENTRY sub-sheet with 10 columns (A-J).

Nos.

Indicators

Natural Weights

Range

Units MIN MAX

1

Extent to which transport plans

cover public transport, intermodal

facilities and infrastructure for

active modes

0 - 16 scale

0.1

0

16

2 Modal share of active and public

transport in commuting

% of

trips/mode

0.1

10

90

3 Convenient access to public

transport service

% of

population

0.1

20

100

4 Public transport quality and

reliability

% satisfied

0.1

30

95

5 Traffic fatalities per 100,000

inhabitants

No. of

fatalities

0.1

10

0

6 Affordability – travel costs as part

of income

% of

income

0.1

35

3.5

7

Operational costs of the public

transport system

Cost

recovery

ratio

0.1

22

100

8 Investment in public

transportation systems

% of total

investment

0.1

0

50

9

Air quality (PM10)

μg/m3

0.1

150

10

10 Greenhouse gas emissions from

transport

Tons/

Capita/year

0.1

2.75

0

Total 1.0

VALUE YEAR COMMENT

0

0

0

0

0

0

0

0

0

0

Page 13: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

13

Column A is the number of the indicator.

Column B is the name of the indicator.

Column C lists the unit that each indicator is measured in. For example, for indicator 7 ‘Operational costs of the

public transport system’ it is not the total cost that is reported, but the recovery ratio (a percentage), as described in

the definition and guideline for the indicator.

Column D shows the relative weight that is applied to each indicator. In SUTI each indicator assumes equal weight

(10%) in the total number. This column is therefore to be ignored.

Columns E and F shows the minimum and maximum value allowed for each indicator; hence the range within the

value for each indicator for the city must fall. For example, for indicator 5 ‘Traffic fatalities per 100,000 inhabitants’

the number must be between 0 and 10 fatalities per 100,000 inhabitants per year. The min and max are mostly based

on data for highest and lowest performance for actual cities reported in literature and databases.

‘Min’ and ‘Max’ refers to worst and best value, not necessarily numerical minimum or maximum. Sometimes a high

number is ’Min’ (worst) (e.g. indicator 9 ‘Air quality’); sometimes a high number is ‘Max’ (best) (e.g. indicator 2

‘Modal share of active and public transport’). The calculation of SUTI is automatic, and the city does not need to be

concerned about this (only for information).

NOTE: If values outside the range are entered the SUTI cannot be correctly calculated. If the city observes data

outside the range, it should cap this to the respective min and max of the range. If, for example, there were 40

fatalities/100,000 in the reporting year the city should enter only 10. This will still indicate a very serious situation.

If the actual value is outside the range, the actual number should instead be entered in the column J as a comment.

Column H. This is where the city must enter the data value for each indicator. The value is to be copied from the

respective indicator sub-sheet where the city has entered and/or calculated the value using the guideline (see below).

The city/expert must replace the red ‘0’s in column H with the actual values.

Column I. Here the city/expert will note which year the data covers (if different from year in sub-sheet A).

Column J. Here the city/expert will enter comments about the indicator or the indicator value. For example, naming

the data sources and if data were derived via a special procedure; if it is uncertain; or any other aspects worth noting

for the interpretation of results and to repeat the exercise for future years.

Below table B1 is seen another set of nearly identical rows called ‘B2 NORMALIZATION (AUTOMATIC

INTERMEDIATE CALCULATION)’. This table is used for the calculation of the SUTI and the results when the

above data are entered. Table B2 is not used or modified by the city.

At the bottom (below table B1) is found B3 SUTI RESULT. This is the result of the automatic calculation of aggregate

the SUTI. See chapter 4 for how to use and interpret this.

Page 14: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

14

Sub-Sheets for Indicators 1-10

For each indicator there is one semi-structured sub-sheet 1-10. Here the city should seek to insert all relevant

collected basic data and conduct intermediate calculations or aggregations to derive the SUTI indicator value for

each indicator to be copied to B DATA ENTRY sub-sheet. Most of the sub-sheets provide basic tables or examples

to assist calculation of the value for each indicator.

Each indicator sub-sheet has the following four elements:

‘GENERAL DESCRIPTION OF AND LINKS TO MATERIAL USED TO COLLECT AND DERIVE

THIS INDICATOR’. Here the city should provide a brief qualitative description of the data source(s) for the

indicator, preferably with references and links to the relevant data sources used.

‘PROPSOSED CATEGORIES/TABLE FOR CALCULATING THIS INDICATOR’. Each indicator has its

own specific categories of data to be collected and calculated as described in this guideline, for each indicator sections

3.1-10. Where possible a table with the relevant categories of data for the indicator has been provided for the city

expert to fill in, along with a formula (ratio, sum, etc. as appropriate) to derive the single indicator value to be entered

in the data entry sub-sheet B for SUTI calculation. It is not ‘mandatory’ to use these sub-sheet tables. The tables are

merely suggested for support as it is not possible to foresee exactly how the data available to the city is structured.

The city expert may modify these tables, for example add other relevant categories, insert more and data columns or

rows etc., or decide to construct a different table or calculation metric.

‘THE SUTI ASSESSMENT YEAR i.e., YEAR THAT THE DATA CONCERNS’ (self-explanatory)

‘ANY BASIC DATA, CALCULATIONS, OR ADDITIONAL OBSERVATIONS’. Below this headline the

city should include whatever basic, raw, or intermediate data it has collected to derive the value for the SUTI

indicator. It is merely an infinite empty space where the city can enter their data in whatever format or structure it

pleases, and no structure is prescribed in advance. It is useful to include as much relevant data and information as

possible to support the interpretation of the SUTI indicators and to serve as data repository and to allow comparison

for data for subsequent years of reporting.

Page 15: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

15

3. Data collection for each SUTI indicator

3.1 Indicator 1: Extent to which transport plans cover public transport, intermodal

facilities and infrastructure for active modes

Table 5. Indicator 1 – Brief description

Relevance According to sustainable urban transport policy and research it is an essential element in urban

sustainable transport planning to provide for alternatives to motorized individual transport. This

involves especially public transport, walking, and cycling and includes both networks and

nodes/interchange facilities. Urban transport plans should support these modes explicitly and directly

by incorporating goals, strategies, physical facilities, services, etc. for them.

The indicator refers directly to SDG target 11.2 “By 2030, provide access to safe, affordable,

accessible and sustainable transport systems for all”. It is also relevant for SDG target 9.1 “Develop

quality, reliable, sustainable and resilient infrastructure”.

Definition The extent to which the city’s most current comprehensive transport or master plan covers the four

aspects I) walking networks, II) cycling networks, III) intermodal transfer facilities and IV) expansion

of public transport modes by adopting low emission vehicles, in particular electric vehicles, to

decarbonize urban mobility.

Unit The extent of coverage is calculated and measured on an ordinal scale from 0 to 16.

First, the extent of the coverage in the urban transport plan for each of the four defined aspects I – IV,

is reviewed and scored on a 5-step scale:

0) No coverage of the aspect (it is basically ignored)

1) Limited coverage of the aspect (only minor initiatives)

2) Middle coverage of the aspect (some typical initiatives)

3) Extensive coverage of the aspect (several strong initiatives)

4) Leading coverage of the aspect (ambitious, comprehensive, pioneering initiatives)

The scores for all four aspects are then added together to provide the overall score

(IS(0-4)+ IIS(0-4)+ IIIS(0-4)+ IVS(0-4)), where S(0-4) is score 0-4 for each aspect).

Min and Max

values

The lowest possible total score is 0 (=the case that none of the four aspects are covered at all).

The highest possible total score is 16 (=the case that a city is a regional leader in all four aspects)

Page 16: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

16

3.1.1 Procedure and data sources to collect or derive data

Overview

The indicator is based on a qualitative assessment of the city’s most recent operational transport plan.

This plan (with related documents) must be identified, and then reviewed and scored by an expert or an expert panel

using the units and scoring guidance provided in this section.

This indicator is of a different kind than the other nine indicators. The data to measure the indicator is the city’s

transport plan(s) that must be scored to produce the resulting indicator value. The method is uniquely developed for

SUTI. Therefore, there is no additional literature added for this indicator.

Identification of key material to review

First the city should identify its most recent comprehensive transport plans that are still formally valid or in use. The

plan should cover the jurisdiction of the city and/or transport authority.

It may be that the city has several plans covering various aspects, for example a road network plan and a plan for

public transport, or a master plan and more detailed plans. The transport plan may also be part of a wider urban or

master plan rather than a stand-alone transport plan, in which case the relevant parts of the master plan is reviewed.

There may also be accompanying material, e.g. maps or later extensions to the plan to include in a review.

The full set of relevant plans and documents necessary to undertake a fair assessment should be identified and

reviewed. If one recent comprehensive master transport plan is available, it should be sufficient to review this plan.

If the city does not have any kind of active transport plan, the basis for the review should be pieced together from

the main transport initiatives, decisions and investments over the last five years from the year of SUTI Assessment.

Designation of an expert reviewer or panel

The city should appoint an expert or a panel of experts whose task it will be to read and score the plans with regard

to this indicator. A panel can include members of the city administration, and external experts (for example from

university, consultant, NGO’s).

To ensure a neutral assessment it should be avoided that the review and scoring is conducted only by the same person

(employee/consultant) who has been the main author of the transport plan to be reviewed as well. Obviously, such a

person can be involved or consulted if necessary.

If the review is conducted by a panel the members should seek for a consensus on scoring. If this is not possible the

panel should note differences of opinion when reporting the indicator in the accompanying space in the data sheet.

Reviewing the material

The plan and and/or necessary other documents are read by the expert or the panel with the aim to assess and score

how well the plan covers public transport, intermodal facilities and infrastructure for active modes, more specifically

the four aspects described in the definition of the indicator.

Page 17: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

17

The review should conclude by a score 0-4 for each aspect, as described in the ‘Unit’ section above. These four

scores are then added to get one final number 0 -16.

To do this scoring the panel should review the following three features for each of the four aspects:

1) Goals and visions in the plan for each aspect

2) Infrastructure, facilities and measures in the plan for each aspect

3) Funding and budgets in the plan for each aspect

The table below explains and exemplifies how to understand and apply these features.

Table 6. Indicator 1 - Approach

1) Stating clear goals and visions for each aspect.

Visions, goals, objectives and targets are key components of a plan, and useful to demonstrate commitment to sustainable

transport. Goals are stronger if they are quantified and accompanied by a performance monitoring process. For example,

only a vague goal that, ‘The City will make cycling a more attractive option for short trips’ is rather less clear (= ‘limited’

coverage for cycling aspect). In contrast goals that ‘The City will increase the modal share of public transport from 20 to

35 %; will increase the share of electric vehicle fleet in public transport up to 50%, the share of walking and cycling from

20 to 35%, and limit individual motorized transport from 60 to 30% by 2030 – to be monitored on an annual basis’

suggests a strong goal feature (clear quantitative goals; extensive or even leading coverage for this aspect).

2) Designating infrastructure, facilities and measures for each aspect in the plan.

A transport plan usually designates specific projects and measures to be adopted and/or built, as typically described, shown

on maps, listed in tables. The extent of the designation is important as well as the level of detail. For example: Dedicated

cycle lanes are planned along one of the city’s main transport corridors only (= limited effort; low coverage of cycling). Or:

City is building three new intermodal terminals to connect rail and bus services in the city and will reroute bus lines to

serve these terminals optimally, with detailed assessment of impacts (=strong effort; extensive coverage).

3) Allocating funding, specifying budgets, securing finance for the facilities.

A plan needs investments and may involve running costs for new transport operations or services. Some budget may be

local (general tax, revenues), other parts may be from provincial/central government, or lending institutions. A budget can

be secured. For example: ‘The City plan does not mention any budget for facilities for cyclists (= no coverage of this action

for cycling aspect) Or: The City will allocate X amount to construct the cycle lanes needed for a fully connected cycle

network, which means a 200% increase of the budget over the next 5 years, which have been secured by a development

bank credit, and a city council budget decision (=strong commitment, extensive or even leading coverage of this aspect).

Assessing the three features together allows a comprehensive review and scoring for each aspect.

For example, if clear and ambitious goals are set for cycling this count towards higher score 0-4 for the cycling

aspect; whereas if their plan does not designate any real budget to fulfill the goal this counts towards lower score 0-

4 for the aspect. All three features should be considered.

Below table provides a roughly indicative guideline for allocating scores to the various aspects of an urban transport

plan. It is not possible to specify a fully detailed assessment framework as each city is unique. The evaluator/panel

may use an own approach. However, the process should review all four aspects in a comprehensive way and use the

0-16-point total scale, to match the SUTI framework.

Page 18: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

18

Table 7. Indicator 1 – Score Card

Aspects Score

0

No coverage

1

Limited

2

Middle

3

Extensive

4

Leading

Vague goal Qualitative goals Quantitative goals Ambitious goals

I) walking

networks No goals

No designation

No budget

Little designation

seen in plans

Small or unclear

budget

Some designation

in 1-2 major

areas/corridors

Some budget

Much designation

across city;

Increasing but

realistic budget

Full designation

across city

Major secured

new funding

Vague goal Qualitative goals Quantitative goals Ambitious goals

II) cycling

networks

No goals

No designation

No budget

Little designation

seen in plans

Small or unclear

budget

Some designation

in 1-2 major

areas/corridors

Some budget

Much designation

across city:

Increasing but

realistic budget

Full designation

across city

Major secured

new funding

Vague goal Qualitative goals Quantitative goals Ambitious goals

III) intermodal

transfer facilities

No goals

No designation

No budget

Little designation

seen in plans

Small or unclear

budget

Some designation

in 1-2 major

areas/corridors

Some budget

Much designation

across city;

Increasing but

realistic budget

Full designation

across city

Major secured

new funding

Vague goal Qualitative goals Quantitative goals Ambitious goals

IV) public

transport

No goals

No designation

No budget

Little designation

seen in plans

Small or unclear

budget

Some designation

in 1-2 major

areas/corridors

Some budget

Much designation

across city;

Increasing but

realistic budget

Full designation

across city

Major secured

new funding

3.1.2 Calculations and data sheet entry (with examples)

The evaluator/panel can use a simple table as below to note and explain scores and calculate the total score. This

table is also found in the data sub-sheet 1 for this indicator, with the total score summed.

Aspects Explanation Score

I) walking

networks

II) cycling

networks

III) intermodal

transfer facilities

IV) public

transport

Total (sum)

Below the same table is filled in with a hypothetical example of text and scores.

Page 19: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

19

Aspects Explanation Score

I) walking • The plan of City X has no clear vision or goals for the role and priority of pedestrians in the 1

networks city’s transport system.

• The plan only includes a small number of pedestrian facilities (500 m of new sidewalk and

pedestrianization of one minor square, introducing two new pedestrian crossings),

• The plan does not state how much funding is needed for these facilities.

• All in all, City X plan has limited attention to and coverage of walking.

II) cycling

networks

• The plan of City X mentions that cycling is an important mode of transport that should be

given priority where possible. No quantitative goal to enhance cycling safety and comfort or

share of bicycles in the modal split.

• The plan provides separate cycle lanes (100m – 3 km) on four of 10 main arteries in the city,

but not a comprehensive net. There are also detailed plans for more bike parking facilities at

20 major squares across the city.

• The plan indicates investments needed for the planned facilities. Support from central

government is applied for, but not yet secured. No final commitment on a long-term budget

for the cycling plan.

• All in all, City X transport plan has middle attention to cycling

2

III) intermodal

transfer facilities

• City X plan is called ‘a multi-modal strategy’ but there are no goals for how to obtain or

measure a multi-modal mix

• The plan does include a BRT connection to the exiting long-distance bus station, but the

interchange is not designated in the plan or included in the budget. There are no facilities for

interchange between cycling and BRT e.g. in the form of secured bicycle parking at nodes.

Mention of the rail station area as a future intermodal transfer point with a detailed project

under way.

• Less than half of the budget for intermodal facilities is committed

• City X transport plan has limited attention to intermodality

1

IV) public

transport

• City X plan has a goal that public transport will carry 30% of the city’s trips when the plan is

fulfilled and there are specific intermediate goals for number of passengers to be carried on

the new planned BRT system lines.

• The plan introduces a BRT system with feeder lines, supplemented by significant

modifications to the street network and signaling to give BRT priority throughout the network,

plus other supporting measures. The long-term strategy is divided into phases, with a first 5-

year stage being planned in detail spatially and timewise.

• The plan proposes to decarbonize urban mobility through the adoption of low emission

vehicles, in particular increase the share of electric vehicles to 50% of city bus fleet during

the plan/ next 5-year period.

• The impact has been assessed with regard to transport volumes, vehicle flows, congestion and

emissions after completion

• The plan has secured funding for first phase from a bank, the national MOT and the city

budget based on a local tax that is awaiting the result of a referendum for approval. There is

indicative commitment for the full plan.

• Coverage of public transport is extensive; Score: 3.

3

Total (sum) 7

When the joint score is calculated the final value is inserted as indicator 1 in the DATA ENTRY SHEET B, as

exemplified below.

Page 20: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

20

Aspects Score YEAR COMMENTS

Sum score value to enter in data

sheet for indicator 1

7

2019 Score is based on ‘City X urban transport plan’, 201X. Scoring

conducted by 3-person team chaired by Professor NN

The planning documents and the panel/team involved could be mentioned in the COMMENTS field.

Page 21: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

21

3.2 Indicator 2: Modal share of active and public transport in commuting

Table 8. Indicator 2 – Brief description

Relevance To monitor the modal split is a useful indicator in providing for more sustainable urban transport

solutions. The indicator refers to SDG target 11.2 “By 2030, provide access to safe, affordable,

accessible and sustainable transport systems for all”.

Active and public transport may be considered as more sustainable transport compared to individual

motorized transport. Therefore, the indicator has a focus on increasing the share of these modes.

The modal split is most critical for commuting (travel to and from work), as this travel puts the most

stress on the urban transport system and the environment. Therefore, the indicator has its focus on

commuting.

The definition for this indicator is drawn from the ISO 37120 standard set of indicators developed by

the Global City Indicators Program (GCIP 2015).

Definition Percentage of commuting trips using active and public travel modes (= using a travel mode to and

from work and education other than a personal motorized vehicle).

‘Active transport’ means cycling and walking. It does NOT include mopeds or other motorized two-

wheelers.

‘Public transport’ includes public bus including minibus, BRT, tram, rail, scheduled ferry.

A range of intermediary / para transit services have traditionally been operating in Asian cities and

this type of services are expanding rapidly with the emerging innovations in information technology.

These include:

• auto rickshaw or taxies that act as hail service and providing door to door connectivity,

• auto rickshaw or chakda that act almost like public transport by providing fixed fare, fixed

route and accessible to all services but no fixed schedules or stops, and

• app based shared services like Uber, Ola, motorcycle/scooter sharing systems.

Though these are collective mobility systems, their quality, quantity and regulatory compliance is not

always in the desired order. Hence the same should be excluded from the definition of public

transport.

‘Personal motorized vehicle’ therefore means passenger car, motorcycle, scooter, moped, taxi, and

motorized paratransit/auto-rickshaw, app based taxi services etc.,

Unit Percentage of trips for commuters not by personal motorized vehicle

Min and Max

values

The lowest value is 10%; the highest value is 90%.

3.2.1 Procedure and data sources to collect or derive data

Overview

The data to derive this indicator are surveys or counts of daily trips made by commuters in the city divided into different

transport modes, as defined above.

Page 22: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

22

The task is thus to collect data for number of trips by mode (for a representative day, or week), add together the

number trips that are made by active and public transport (as defined above) and calculate their share of the total

number of trips made by all modes.

The section will discuss data sources and data categories and provide a simple table to calculate the modal split

according to the definition and based on the data collected.

Data sources

Possibly modal split data is collected and reported already in the city’s existing transport plan or other traffic related

strategies or documents. If so, this may directly deliver the data needed for this indicator or point to underlying

sources from where the needed modal split data can be derived.

If this is not the case, or if the data are significantly aged (6 years old or more) the modal split data must be provided

or adjusted using other sources. Sources for this can include travel surveys, or traffic counts, or some combinations

of sources.

Travel survey

The best source for trip by mode data is normally a travel survey, i.e. a survey of the travel activities by mode and

purpose of a representative sample of the population.

A travel survey asks respondents how many trips they undertook on a day of the week, or over a period of for example

five days, as well as which mode of transport was used for each trip. These data can be used to derive the modal split

per day and per citizen in general, or for different populations groups, if such data are collected as well. Usually, it

is the main mode of travel for each trip that is measured, if different modes were used during a trip chain.

Travel surveys also ask about the purpose of the travel, such as work, business, leisure, shopping, etc. For the SUTI

modal split indicator, it is only travel with the purpose of commuting that is needed; Commuting should include

travel to and from work and education (but not business trips, etc.).

Comprehensive surveys also collect background data on travelers such as their gender, age, occupation and other

features. This is not needed for the SUTI modal split indicator.

Survey methods and samples

All in all, a comprehensive travel survey would require a substantial effort. It is not likely that a full survey could be

planned and conducted from scratch by a city, solely for the SUTI.

Methods used to collect survey data include telephone interviews, personal interviews, postal questionnaires, web-

based questionnaires, self-filled travel diaries, home interviews or combinations of those. The choice of method will

depend on available resources (e.g. manpower and time) the local context (e.g. phone and internet availability in the

country), and the desired accuracy of the survey.

Possible alternatives to a full city travel survey

First, some countries have national or regional travel surveys conducted by a central authority (e.g. Ministry of

Transport or Statistical Agency. A national survey may allow an extract of data to the city level or provide other

relevant input. The Wikipedia (https://en.wikipedia.org/wiki/Travel_survey) provides a list of countries with

Page 23: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

23

national travel surveys but this includes only developed Western countries. As part of the population census, some

countries in Asia (e.g. India) have started collecting information on travel details. The same may be used for

computing the indicator, provided the data pertains to more recent period (5 years old or less) The city should consult

if a national or regional travel survey exists.

Second it may be relevant for the city to prepare a limited, targeted household travel survey using fewer resources

than for a typical normal survey. This will is specifically designed to compute indicators 2, 4, 6 and 10.

A travel survey asks respondents how many trips they undertook on a working day of the week, as well as which

mode of transport was used for each trip. These data can be used to derive the modal split per day and per citizen in

general, or for different populations groups, if such data are collected as well. Usually, it is the main mode of travel

for each trip that is measured, if different modes were used during a trip chain.

Travel surveys also ask about the purpose of the travel, such as work, business, leisure, shopping, etc. For the SUTI

modal split indicator, it is only travel with the purpose of commuting that is needed; Commuting should include

travel to and from work and education (but not business trips or other trips etc.).

Additionally, questions on trip lengths, household incomes, expenditures on transport and assessment of public

transport quality and regularity are also included to for computing SUTI indicator 4 and indicator 6. This could be

very useful to calculate indicator 10 on greenhouse gas emissions (CO2). The survey population is usually delimited

by age to target the independently mobile segments of the population. For modal split for commuting it would be

natural to select the adult, not retired population (e.g. 15-60 year of age). However, to gather information required

to compute other indicators survey of all trips (commuting and other trips) by all members is to be collected. A

simplified household-based travel survey has been designed for the purpose. A sample format for survey is provided

in Annex 2. However, it is to be noted that this survey would cover only passenger movements and not freight

mobility.

If a survey is conducted, it must be ensured that the survey sample is representative for the population, also

considering likely number of non-respondents. For a city of 500,000 inhabitants (100,000 households) or more it

may be required to contact some 400-500 households (1600 to 2000-person information) to get a valid response,

assuming a 95% confidence level of the sampling.

To ensure representativeness of the sample, while selecting samples for survey, random sampling method needs to

be adopted. The data obtained from the same sample survey can be used to calculate indicator 2, 4, 6 and part of

indicator 10.

Finally, a more indirect but may be practical, could be to use traffic count data as an approximation to travel modal

split. This would include visual counts of pedestrians, bicycles and passenger vehicles (e.g. bus, car, van, 2- wheeler)

as well as observing the number of occupants in vehicles, at a cross section of streets around the city. The count

should be restricted to the peak hours of traffic to serve as a proxy for commuting travel. This approach could provide

an estimate of the commuting modal split, although only for road traffic. Rye and Stanchev (see below under

references) estimate that a comprehensive cordon count requires something like 1-2 surveyors per cordon point for

3 hours, so in the order of 200-person hours for a medium sized city with 25-30 cordon points. As many cities have

put in place City Traffic Surveillance Systems and the video recordings may be used instead of roadside manual

counting.

Page 24: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

24

3.2.2 Calculations and data sheet entry (with examples)

Assuming relevant data can be obtained, the table below shows the categories to use for this indicator and how to

aggregate them. The table identifies the different travel mode categories that go into active, public, and individual

motorized transport, and shows the procedure for calculating the resulting SUTI indicator value form these data.

This table is also included in the data sub-sheet 2 for this indicator to help directly calculate the value.

Below the generic table an identical table with hypothetical data for average number of trips per day by each mode

for a person, for illustration.

Page 25: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

25

Average number of trips per person by main mode of transport

(for age group example 15-60 years)

PURPOSE

COMMUTING LEISURE,

BUSINESS AND

OTHER

PURPOSES (WORK AND EDUCATION)

MODE Nos Subtotals Not relevant

a. Scheduled bus and minibus A

b. Train, metro, tram B

c. Ferry C

d. Informal Public Transport (Fixed Route, Fare, Access to

all) D

e Other public E

f. Public transport (a+b+c+d+e) (a+b+c+d+e)

g. Walking G

h. Bicycle H

i. Active transport (g+h) (g+h)

j. Passenger car J

k. Taxi K

l. Motorcycle L

m. Scooter/moped M

n. Para transit (unscheduled/no fixed route) N

o. Other motorized (trucks, etc) O

p. Individual motorized (j+k+l+m+n+o) (j+k+l+m+n+o)

q. Total (f+j+p) (f+j+p)

r. Public and active (f+j) (f+j)

s. Modal share of active and public transport

= r/q *100

Page 26: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

26

Average number of trips per person per day by main modes of transport

(for age group example 15-60 years)

PURPOSE

COMMUTING

LEISURE,

BUSINESS AND

OTHER PURPOSES (WORK AND

EDUCATION)

MODE Nos. subtotals Not relevant

a. Scheduled bus and minibus 0.1

b. Train, metro, tram 0.2

c. Ferry

d. Informal Public Transport (Fixed Route, Fare, Access to all) 0.4

e Other public 0.1

f. Public transport 0.8

g. Walking 0.25

h. Bicycle 0.05

i. Active transport 0.3

j. Passenger car 0.3

k. Taxi 0.01

l. Motorcycle 0.4

m. Scooter/moped 0.3

n. Para transit (unscheduled/no fixed route) 0.2

o. Other motorized (trucks, etc.) 0.05

p. Individual motorized 1.26

q. Total 2.36

r. Public and active 1.1

s. Modal share of active and public transport

46.60%

Finally, when the result is calculated the value is inserted as indicator 2 in the DATA ENTRY SHEET B, as

exemplified below.

Indicator VALUE YEAR COMMENTS

Modal share of active and public

transport trips in commuting (%)

46.6

2019 Data is based on an update of travel

survey 2015

The source of the data and other relevant information should be entered in the COMMENTS field.

Page 27: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

27

3.2.3 Literature with further guidance on methodology or data sources for indicator 2

The basic definition for this modal split indicator has been established by the WORLD COUNCIL ON CITY DATA,

GCIF (2015). http://open.dataforcities.org/. It is included in the international ISO standard 37120 on ‘Sustainable

development of communities -- Indicators for city services and quality of life’. The indicator is defined in more detail

in the Standard, which can be purchased via ISO https://www.iso.org/standard/62436.html or via national standard

agencies, but this reference may not provide substantial methodological guidance for data collection.

The German aid organization GIZ provides extensive guidance on transport planning methodologies and tools for

developing countries and cities at http://www.sutp.org/en/. The report on ‘Urban Mobility Plans – National

Approaches and Local Practice’ offer some general guidance on travel data collection strategies for urban mobility

plans.

The Victoria Transport Policy Institute (VTPI) also provide general guidance and links to information on ‘Data

Collection and Surveys for transport planning, at https://www.vtpi.org/tdm/tdm40.htm

Several of the countries that have national travel surveys also offer English language guidelines for conducting travel

surveys. However, these are comprehensive and mostly linked to the national context, as there is no international

standard for travel surveys, for either countries or cities.

A very comprehensive and regularly updated description of travel survey methodologies is offered by the US

Transportation Research Board with its ‘ON-LINE TRAVEL SURVEY MANUAL: A Dynamic Document for

Transportation Professionals’. It is available at http://www.travelsurveymanual.org/

The report by Forsyth et al (2010) provides specific guidance on surveys of walking and cycling to be conducted

by local authorities www.transweb.sjsu.edu/project/2907.html.

Details on traffic counts and similar alternative methods for generating travel volume data is available in general

traffic planning textbooks and similar material on the internet (for example Leduc 2008

ftp.jrc.es/EURdoc/JRC47967.TN.pdf). The A basic strategy for generating modal split data via traffic counts is

offered by Rye & Stanchev (2016) in ‘City level Sustainable Mobility Indicator Descriptions’ (unpublished, available

from the consultant on request).

Page 28: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

28

3.3 Indicator 3: Convenient access to public transport service

Table 9. Indicator 3 – Brief description

Relevance Access to public transport service is a key requirement for equitable access in a sustainable city.

Convenient access to sustainable travel modes is the main indicator adopted by the United Nations

Social and Economic Council and the United Nations Statistical Commission for monitoring SDG

target 11.2 “By 2030, provide access to safe, affordable, accessible and sustainable transport systems

for all”.

Definition Proportion (percentage) of the population that has convenient access to public transport, defined as

living 500 meters or less from a public transport stop with minimum 20-minute service.

Public transport is a shared passenger transport service available to the general public, excluding taxis,

car pools, hired buses and para-transit (same delimitation as used for public transport in indicator 2.

Active transport is not included here)

If possible, the measure is measured for the general population as well as for vulnerable groups

(women, elderly, and persons with disabilities).

Unit Percentage of urban population

Min and Max

values

Minimum level is 20%; max level is 100% of the urban population. 100% is hardly realistic

everywhere, but some cities are close to this target.

3.3.1 Procedure and data sources to collect or derive data

The indicator requires an estimate of how many inhabitants are living within 500-meter buffer zones around stations

and bus stops with a 20 minute or more frequent scheduled service interval.

The first step is to identify the relevant stations and bus stops. To select those with a minimum 20-minute interval

service will typically require consultation of a public transport authority or operator station/stop data base to extract

the schedule for relevant lines indicating stop intervals at each stop, average over the day. It should be considered

that more lines may meet at the same stop and therefore increase the average frequency of the stop. A database over

all stops with the calculated average frequency per stop may be created, if it does not exist already. In case stations

and stop location details are not available, 500 buffer on either side of the public transport network would also

provide reasonably accurate measurement.

The second step is to calculate the number of inhabitants living in buffer zones within a 500-meter radius of each

selected station/stop. This data may be obtained e.g. via local census or a population registry at neighborhood level.

The more fine grained the data the more accurate the population estimate will be. Some cities may have geo-

referenced population data available in a Geographical Information System (GIS database or other digital form)

allowing a detailed calculation of density in each buffer zone. Others may need to provide more manual estimates

using maps and observations for each buffer zone.

If detailed population data by area is not available, it may be necessary to divide the city into area categories and

prescribe uniform average population density figures to each zone. This approach is exemplified in the next section

and table.

Finally, the populations in all buffer zones are added (avoiding double counting of population in case of zone

overlaps) and the share of inhabitants living in the buffer zones as a share of the total population is calculated.

Page 29: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

29

3.3.2 Calculations and data sheet entry (with examples)

This section provides a simplified hypothetical example of data and indicator calculation as shown in the table

below and explained after. The same table is included in the data sub-sheet for indicator 3.

The example is only intended to inspire cities to find their own way to structure the data and derive the indicator.

The city may choose to modify, detail or extend this table, or devise a different one.

Average frequency in daytime (6:00am-6:00pm) Pop. density Inhabitants

Node/stop Interval inh/km2 Nos.

Rail Line A

StationA1 5 min 15,000 11,781

StationA2 5 min 10,000 7,854

StationA3 8 min 10,000 7,854

BRT Line B

StopB1 10 min 10,000 7,854

StopB2 10 min 10,000 7,854

StopB3 15 min 5,000 3,927

BUS line C

StopC1 10 min 10,000 7,854

StopC2 15 min 5,000 3,927

StopC3 20 min 5,000 3,927

StopC4 20 min 2,000 1,571

StopC5 30 min 2,000

StopC6 60 min 2,000

SUM 64,403

Total Population 100,000

% within 500m buffers 64

The example concerns a case of a small city with 100,000 inhabitants.

The first column lists al the public transport stops in the city. In this limited case there is only one rail line with three

stops in the city, one BRT line with three stops, and one regular bus line with 6 stops.

Page 30: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

30

The second column reports the average frequency of stops during the daytime (6:00am-6:00pm) for each station/stop

based on operating schedules. As per the definition of the indicator only stops with 20 min. or higher frequency are

to be included.

In the third column the city has inserted the average population density in the 500m-buffer zone around each

stop/station. The case city has chosen a most basic approach by using only four categories of uniform urban area,

with average density at 15,000; 10,000; 5,000 and 2.000 inh/km2.The areas are classified based on population data

for the census area each buffer belongs to, plus each area functional composition (e.g. residential, commercial…)

and general observations of density and height of the building mass.

In the fourth column the population in each buffer zone is calculated. Each 500-m buffer circle corresponds to 0.785

km2, of land, and it is assumed that that the area is homogenous.

In the bottom row the population in the buffers is added and the share of the total population is calculated. In this

case it is found to be 64% of the population having convenient access to public transport. Due the simplifications in

this example the results would be an approximation to the actual or experienced convenience of access.

Finally, when the result is calculated the value is inserted as indicator 3 in the DATA ENTRY SHEET B, as

exemplified below.

Indicator VALUE YEAR COMMENTS

Convenient access to public transport

service

64

2019

The data is based on the city 2016 census

for population updated to 2019 in areas

within 500 m of main nodes, and the 2019

schedule of public buses and commuter

trains

3.3.3 Literature with further guidance on methodology or data sources for indicator 3

This buffer zone indicator has – in various specifications - been proposed by different authors and agencies to

measure access to transport. Most importantly it has been adopted as indicator for SDG target 13.2 on convenient

access to safe and sustainable urban transport.

The United Nations ‘Inter-Agency and Expert Group on Sustainable Development Goal Indicators’ has classified

this indicator as ‘Tier II’, meaning indicators “for which a methodology has been established but for which data are

not regularly available” https://unstats.un.org/sdgs/files/meetings/iaeg-sdgs-meeting-03/Provisional-Proposed-

Tiers-for-SDG-Indicators-24-03-16.pdf.

There is nevertheless still some debates and issues regarding methodology.

One useful reference is the report by UNHABITAT (2016) on Indicators and monitoring for SDG Goal 11 on Cities

and Sustainable Communities.1 The report discusses various approaches for this indicator. One consideration is to

replace the rigid 500 m circle as the buffer indicating ‘convenient access with the use of actual walking

1 UN Habitat (2016) SDG Goal 11 Monitoring Framework. A Guide to Assist National and Local Governments To Monitor

and Report on SDG Goal 11, UN Habitat, March 2016 https://webcache.googleusercontent.com/search?q=cache:-

73Bq2915SUJ:https://unhabitat.org/sdg-goal-11-monitoring-framework/+&cd=1&hl=da&ct=clnk&gl=dk

Page 31: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

31

distance e.g. from home to station or stop. However, this even if this may be more accurate it may also require more

effort on the data collection side in many cities.

The Word Business Council on Sustainable Development (WBCSD) also offers guidance for this indicator in their

‘Sustainable Mobility 2.0’ project2. One of the suggestions of WBCSD is to accept longer buffer distance to a rail

station (with higher quality connections) 800 m. and shorter for a bus stop, 400 m. Another proposed deviation is

that WBCSD includes access to shared services (share car and bike stations not only public transport nodes) in their

measure of the indicator. Those options are not adopted for the SUTI indicator.

WBCSD has run practical tests of their proposed transport indicators including this one in a number of several cities

including Indore, India, as reported in a case study report3. The city was able to derive data and apply the indicator

despite some challenges. A useful lesson was that the performance of the city was revealed as low, at only 53% of

population with convenient access. The city has now adopted a strategy to improve the level of convenient access,

among other efforts.

In another project ‘MISTRA’ the city of Bangalore also gained experience with this indicator. The figure below

shows the data collection process adopted for the city. The city reports several challenges for collecting the data, for

example lack of locating information for many bus stops and lack of data for exact population density within zones.

The city used average density values similar to what is applied in the hypothetical example above. Despite the

challenges the indicator was calculated, and the result found to be low at 42%. Like Indore, Bangalore also see the

result as important input, urging the city to provide more convenient access to public transport to large parts of the

population4.

2 WBCSD (2016). Methodology and indicator calculation method for sustainable urban mobility. Second Edition. Sustainable

Mobility Project 2.0 SMP2.0. The World Business Council for Sustainable Development, Geneva.

http://www.wbcsd.org/Overview/Resources?projects=967&searchText=

3 WBCSD (2016). Project Report for the city of Indore, India as part of Sustainable Mobility Project 2.0 (SMP2.0). World

Business Council for Sustainable Development, Geneva, January 2016. http://www.wbcsd.org/work-program/sector-

projects/mobility.aspx

4 Link for the report: http://journals.sagepub.com/doi/full/10.1177/0956247815619865

Page 32: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

32

3.4 Indicator 4: Public transport quality and reliability

Table 10. Indicator 4 – Brief description

Relevance The indicator is relevant in support of SDG target 11.2 “By 2030, provide access to safe, affordable,

accessible and sustainable transport systems for all” and SDG target 9.1 “Develop quality, reliable,

sustainable and resilient infrastructure”.

Providing high quality service in urban public transport (PT) is essential for attracting passengers and

limiting individual motorized transport in the long term. High share in public transport modes supports

urban sustainability including the economy.

Both objective and subjective indicators can be used to measure PT quality and reliability. The user’s

positive subjective experience of the service is critical for people’s desire to choose public transport.

Monitoring the subjective user satisfaction is therefore becoming a widespread approach among urban

public transport companies in the world using satisfaction surveys.

Reliability and predictability are important aspects of the perceived quality of the public transport

system.

Definition The degree to which passengers of the public transport system are satisfied with the quality of service

while using the different modes of public transport

Unit Overall share of satisfied customers as percentage of all public transport users (%) based on a survey.

Min and Max

values

30 is the expected minimum, 95 the expected maximum

3.4.1 Procedure and data sources to collect or derive data

Overview

The method to collect data for this indicator is via a satisfaction survey of users or customers of public transport

service. In a satisfaction survey, passengers are asked to rate their satisfaction with several aspects of the public

transport service on an ordinal scale, from very satisfied to very unsatisfied. Normally surveys are conducted as brief

questionnaires made on board the relevant service (in the bus, train, station etc.)

The city itself may have conducted such surveys more likely the local public transport authority, company, regional

agency or operator. The results of an existing survey may need to be adapted to follow the scope for the SUTI

indicator, as described below.

If the city or local public transport companies do not have recent or valid surveys, a new one need to be produced

for this indicator along the following scope.

Page 33: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

33

Scope for the survey

The survey (whether existing or new) should cover various aspects of user satisfaction using questions reflecting

those aspects. It is particularly important to address aspects like reliability or punctuality, as these are critical

parameters for PT quality. The following eight typical dimensions are proposed as ones to include in survey questions

to generate the SUTI indicator,

How satisfied are you with:

• Frequency of the service

• Punctuality (delay)

• Comfort and cleanliness of vehicles

• Safety of vehicles

• Convenience of stops/stations

• Availability of information

• Personnel courtesy

• Fare level

If the city already has a recent representative satisfaction survey at hand covering various aspects this may be used

even if it does not fully match these exact parameters. If the city or urban transport company has a strong focus on

particular aspects of quality (for example safety for women; or interconnectivity) these aspects may well be included

in the survey for SUTI, even if these are not mentioned above. It is not essential that all cities use the same questions

for satisfaction parameters used in the survey, as long as the survey ensures a broad representation of quality aspects.

For the SUTI indicator, a figure representing the total average satisfaction is needed. This must be derived as the

average score across the several categories (such as those above). The user satisfaction should be expressed on an

ordinal (Likert) scale. The suggestion here is to use a seven-point scale with the level 4 as neutral. The following

categories could be used,

1. ‘Very dissatisfied’

2. ‘Dissatisfied’

3. ‘Partly dissatisfied’

4. ‘Neither satisfied nor dissatisfied’

5. ‘Partly satisfied’

6. ‘Satisfied’

7. ‘Very satisfied’

Alternatively, a five-point scale may be used. On a five-point scale levels 2 and 6 above are excluded (and numbers

redefined to five steps).

The SUTI indicator is based on summing all the three categories that express to some degree ‘satisfied’. On the

seven-point scale it would be answers in categories 5, 6, 7. On a five-point scale it would be categories 4 and 5. The

indicator is the share of answers in these ‘satisfied’ categories out of the total responses (e.g. 70%).

For each mode of public transport, a representative sample of lines or services should be selected for the survey. As

a minimum the most frequently used lines should be surveyed.

Page 34: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

34

In the case of different modes of transport are used the survey should ideally be conducted for all services weighted

with respect to market share or patronage (the amount of transport users). the sample size is adjusted as well).

3.4.2 Calculations and data sheet entry (with examples)

Below in is an example of a table to collect satisfaction data for each respondent using the categories and point

scale introduced above.

Dissatisfied Satisfied

Very Partly Partly Very

Dimension 1 2 3 4 5 6 7

Frequency of the service

Punctuality (delay)

Comfort and cleanliness of vehicles

Safety of vehicles

Convenience of stops/stations

Availability of information

Personnel courtesy

Fare level

The second table illustrates hypothetical results if a survey, including all responses in one table and the survey results

in the columns to the right. The first results column sums all responses per satisfaction category. The second

calculates the average satisfaction score per category. The far right column presents results for the SUTI indicator,

the overall satisfaction value.

Dissatisfied Satisfied

Very Partly Partly Very

Dimension 1 2 3 4 5 6 7 RESP AV SCORE SATISF

Frequency of the service 39 69 67 86 56 11 83 411 4.01 36.50

Punctuality (delay) 24 65 78 87 89 33 46 422 4.03 39.81

Comfort and cleanliness of vehicles 22 32 105 85 111 44 5 404 3.95 39.60

Safety of vehicles 2 12 14 208 66 88 24 414 4.65 43.00

Convenience of stops/stations 23 45 34 136 170 22 1 431 4.06 44.78

Availability of information 99 127 110 66 24 12 11 449 2.71 10.47

Personnel courtesy 7 11 33 55 179 99 44 428 5.01 75.23

Fare level 22 46 98 99 120 87 22 494 4.21 46.36

Responses 238 407 539 822 815 396 236 3453 431.63 41.97

Page 35: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

35

The second table is available in the data sub-sheet for this indicator, allowing direct calculation of results if the same

categories and scales are used.

The aggregate result is arrived at by summarizing the share of responses in the three ‘satisfied’ categories 5, 6, 7

across all eight dimensions. In this case 42% of responses are in the satisfied range.

This result would not be very impressive if this was a real case. Some public transport companies demonstrate over

90% in the satisfied range using nearly the identical survey method to this. However, this may not be realistic

everywhere. Values as low as 30% are also observed.

In addition to providing the SUTI indicator the table also indicate other results of possible interest. In this case for

example, the dimension ‘Availability of information’ shows by far the lowest satisfaction, compared to ‘courtesy of

the personnel’ which scores the best. Besides informing the SUTI calculation the survey could also help the city

identify areas for improvement.

In the example above, it is assumed that there is only one public transport company conducting a survey for a

representative selection of its routes. If there are more lines or companies a larger study with weighted sum of results

for all entities would provide a more comprehensive response. However, it is more important that the city choose an

approach that is manageable enough to allow the survey to be repeated regularly, for example annually, in order to

track performance over time.

Finally, when the result is calculated the value is inserted as indicator 4 in the DATA ENTRY SHEET B, as

exemplified below.

Indicator VALUE YEAR COMMENTS

Public transport quality and

reliability

42

2019

Based on satisfaction survey on three main

bus lines available at website: www…

3.4.3 Literature with further guidance on methodology or data sources for indicator 4

There is a considerable literature on ways to measure public transport quality and reliability, but there is not one

agreed standard for it. There are basically two approaches, subjective ones as the satisfaction survey applied for the

SUTI, and objective indicators measuring distinct functional aspects of public transport quality such as punctuality

or connectivity. The German technical aid organization GIZ provides a condensed summary of various approaches

in their report on ‘Measuring Public Transport Performance’ (found at http://www.sutp.org/en/).

The eight categories used to survey satisfaction for the SUTI indicator were ones highlighted in the study by de Oña

and de Oña (2015), as among those most the most commonly applied in this context.5 The reference also offers a

review of the history of service quality measurement.

5 de Oña, Juan and de Oña. Rocio (2015) Quality of Service in Public Transport Based on Customer Satisfaction Surveys: A

Review and Assessment of Methodological Approaches. http://dx.doi.org/10.1287/trsc.2014.0544

Page 36: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

36

Eboli and Mazzulla (2009) provide an even wider account of different quality factors that have been or potentially

could be addressed in public transport user satisfactions surveys6. A similar effort for inspiration can be found at

https://nhtsurvey.econtrack.com.

In the ‘Sustainable Mobility 2.0’ project the World Business Council (WBCSD) adopts a similar indicator for

transport quality but including all modes, making the task bigger. However, in the WBCSD pilot study for the city

of Indore7 the focus is measuring satisfaction with the city’s BRT system only. This makes good sense because of

the natural interest in the city’s recent public transport investment. The case is more interesting as an example of bias

risk in the design and interpretations of subjective indicators. The study applies a 5-point Likert scale for the survey.

However, the ‘middle’ category, often regarded as neutral is here labeled as meaning ‘satisfied’ and therefore counted

with the two higher satisfaction scores to produce an average overall satisfaction of 75%. The level would obviously

be lower if the middle category was neutralized as in the SUTI method introduced in this chapter and many other

studies. The general point is that results obtained via (subjective) indicators are highly sensitive to various design

aspects.

As mentioned another option is to use objective measures for quality and reliability. Three of the most commonly

used ones are on-time performance, headway regularity, and the adherence to running time (Eboli and Mazzullo

2012). Such measures are often used by major, technically advanced systems such as Metros. One of the most

sophisticated measures to reflect passenger experience is the Excess Wait Time used by Transport for London (van

Ort 2014)8. This indicator is expressed as the difference between Scheduled Wait Time (e.g. average 5 minutes for

10-minute headway) and Actual Wait Time. Many other possible objective indicators for reliability have been

applied but according to van Ort 2014 and others there is still limited consistency in their usage and interpretation as

indicators of public transport quality. The suggested approach for SUTI remains as the satisfaction survey described

in the above. This is because of relatively simple methodology, the relatively easy interpretation, and its usefulness

to inform urban transport planning on a broad range of critical issues, besides the direct use for reporting in SUTI.

The information for calculating the indicator may also be obtained through household surveys listed in section 3.2

or Passenger surveys may also be planned for obtaining data for this indicator (see annex 3)

6 Eboli, Laura and Mazzulla Gabriella (2009). A New Customer Satisfaction Index for Evaluating Transit Service Quality.

Journal of Public Transportation, 12 (3): 21-37

7 WBCSD (2016). Project Report for the city of Indore, India as part of Sustainable Mobility Project 2.0 (SMP2.0). World

Business Council for Sustainable Development, Geneva, January 2016. http://www.wbcsd.org/work-program/sector-

projects/mobility.aspx

8 van Oort, Niels (2014). Incorporating service reliability in public transport design and performance requirements:

International survey results and recommendations. Research in Transportation Economics, Volume 48, pp. 92-100

Page 37: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

37

3.5 Indicator 5: Traffic fatalities per 100,000 inhabitants

Table 11. Indicator 5 – Brief description

Relevance Traffic accidents are a leading cause of death among younger population groups in some countries and

are therefore a critical element in public health. The number of fatalities also indirectly indicates the

(far more frequently occurring) injuries, as well as substantial health and material costs.

Almost half of all traffic fatalities occur in cities.

The indicator 5 is the same as the main one adopted for monitoring SDG target 3.6 ‘By 2020, halve

the number of global deaths and injuries from road traffic accidents.

Definition Fatalities in traffic (road; rail, etc.) in the urban areas per 100.000 inhabitants. As defined by the

WHO, a death counts as related to a traffic accident if it occurs within 30 days after the accident.

Unit Number of persons killed per 100,000 inhabitants

Min and Max

values

The minimum level is set to zero fatal accidents while the max is 10 per year.

While zero may not seem as an immediately realistic level to achieve, it is increasingly used as a long-

term goal among transport authorities around the world and therefore a meaningful lower yardstick.

3.5.1 Procedure and data sources to collect or derive data

The indicator is focused on fatalities: People killed as the result of traffic accidents in the city each year. Fatalities

are far from the only important traffic safety impact, as many more people are injured, and sometimes permanently

impaired. However, it is widely considered that fatalities are tragic events that absolutely should be avoided, and

therefore also registered and reported when they do occur. Moreover, it is considered by most experts and health

authorities worldwide that fatality data are generally more reliable, available, and comparable than data for injuries

or other impacts.

Data sources

Most counties undertake official collection and statistical reporting of traffic fatalities. This is most commonly the

responsibility of the police who report observed fatalities to a designated database. It is generally considered that

police reporting capture by far most of the traffic deaths that occur, much more so than injures, even if some

underreporting of traffic deaths may occur via police reports, especially in lower income countries.

Cities as such are usually not directly responsible for collection or reporting on traffic fatality data. The task for the

city for this indicator will therefore be to access the relevant published data or databases and extract data on the

number of fatalities that have occurred within the city boundary each year, and then calculate the fatality rate.

Hence, this indicator will normally not require original production of data by a city, but rather the collection and

aggregation of already existing data.

Page 38: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

38

Localized fatality data

In many countries the police reporting will include registration of the location of the accident, including within which

jurisdiction or city it has occurred. It differs across countries to what extent fatality data are published with a

geographical breakdown. For example, in India, numbers and details of traffic fatalities are reported separately for

the 50 cities with one million inhabitants or more. This is however not the case for smaller cities (Mohan et al 2015)9.

To what extent fatality data at city level can be extracted from statistical reports or databases in different Asian

countries is not clear. If official reports do not inform about fatality numbers at the individual city level it may be

necessary for city experts to take contact to relevant units of traffic police, statistical agency, or other body who is

responsible for the database in order to request a designated city extract from the data, if possible,

Other data sources

If no fatality data specifically for the city can be obtained it may be necessary to use average numbers on a regional

or even national level drawn from official national database for this indicator. It is not likely that the national average

will exactly match the city average due to different traffic and driving conditions etc. The city should therefore

consider if there is any information that could be used to adjust such average figures better to the conditions of the

city. This could for example be scientific studies and reports that have analyzed national fatality data in the country

in order to obtain improved estimates for the city level.

In some cities health authorities, including individual hospitals, university clinics etc. play a role in collecting and

reporting data on traffic accidents, injuries or fatalities. This may be extremely valuable for purposes like research

on health impacts of traffic, and it may also sometimes provide more accurate figures than police reports in areas

like injuries, if less so in regard to fatality data.

It is not straightforward to directly merge or aggregate information from such different sources due to the different

methodologies used to identify and collect the data. According to the World Health Organization, it is rare that

official police reporting/statistics and health institution data on traffic accidents are successfully integrated, even in

wealthy developed countries.10

What the city could do is to contact local health authorities to enquire if they are involved in systematic collection

of fatality data. If that is the case the city should enquire the health authority if a protocol or method to match those

data to national fatality statistics or to convert the national figures to city level have been defined.

It is not recommended that SUTI cities directly use health sector or other alternative fatality data, unless these are

part of an already well-established protocol.

9 Mohan, D; Tiwari, G; Bhalla, K (2015). Road Safety In India. Status Report. Indian Institute of Technology, Delhi. http://tripp.iitd.ernet.in/

10 Jackisch, J; Sethi, D; Mitis, F; Szymañski, T; Arra, Ian (2015). European facts and the Global status report on road safety 2015. World Health Organization, Copenhagen. http://www.euro.who.int/ data/assets/pdf_file/0006/293082/European-facts-Global-Status-Report-road-safety- en.pdf?ua=1

Page 39: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

39

There are a few international initiatives that seek to collect city level traffic safety data for international comparison.

These include the International Transport Forum- initiative on ‘Safer City Streets’ (https://www.itf- oecd.org/safer-

city-streets) and the Bloomberg Initiative for ‘Global Road Safety’

(https://www.grsproadsafety.org/programmes/bloomberg-initiative-global-road-safety/).

If the city or an agency of the national government is involved in such collaboration it may already have acquired or

developed fatality data at city level, which can be used.

Other modes

The fatality data should include traffic fatalities for all urban traffic modes, including road, rail, tram, water and

whatever relevant. In some cases, the data bases may refer to larger areas than the city and adjustments will have to

be made to exclude fatalities occurring in areas outside urban area.

There may be separate systems and databases for fatalities in road versus rail in the respective countries. The police

may for example not have responsibility to collect and report data for rail fatalities. This could instead be a rail

administration, a public health authority, or an occupational safety authority. If the city does not already collect this

information for other reporting or planning purposes it may need to identify and contact the relevant authority to

obtain available information. In the ‘worst case’ where data for other modes are not available, the road fatalities may

be used alone, as these would often comprise by far the largest element, and one the city should be able to target in

its policies

Aggregating the data

Assuming data are collected the city can now aggregate the data using WBCSD’s formula11.

𝐹𝑅 = ∑xi Ki ∗ 100,000

Inhab. City

Where,

FR is the fatality rate per 100,000

Ki is the number of fatalities for mode i

i are travel modes (road, rail, tram, ferry…)

11 WBCSD (2016). Methodology and indicator calculation method for sustainable urban mobility. Second Edition. Sustainable

Mobility Project 2.0 SMP2.0. The World Business Council for Sustainable Development, Geneva. URL:

http://www.wbcsd.org/work-program/sector-projects/mobility.aspx

Page 40: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

40

3.5.2 Calculations and data sheet entry (with examples)

A simple table to perform this aggregation is enclosed in the data sub-sheet for indicator 5.

Example aggregation of fatalities by mode

Fatalities #

Road transport 84

Railway transport 8

Tram 1

Ferryboats 3

Other 0

Total 96

Inhabitants 798,600

Fatalities/100,000 inh 12.02

When the indicator is calculated the final value is inserted as indicator 5 in the DATA ENTRY SHEET B, as

exemplified below.

Indicator VALUE YEAR COMMENTS

Traffic fatalities per 100.000

inhabitants

12

2019

Based on official police reports. 2018 was

a year with unusually few fatalities. The

average for the years 2016-18 was 20

The source of the data and other relevant information is entered in the COMMENTS field.

Page 41: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

41

3.6 Indicator 6: Affordability – travel costs as share of income

Table 12. Indicator 6 – Brief description

Relevance Transport costs represent a significant share of the household budget, especially for low income

households. High travel costs can also increase the costs of labor to business. Affordability is a

commonly recognized feature of a sustainable transport system.

The indicator will be helpful in support of the SDG target 11.2 “By 2030, provide access to safe,

affordable, accessible and sustainable transport systems for all”.

Definition Cost of a monthly network-wide public transport ticket covering all main modes in the city, compared

to mean monthly income for the poorest quartile of the population of the city.

Unit Percentage of monthly income

Min and Max

values

The minimum (worst) value is 35 percent of income to uses public transport. The maximum (best)

value is 3.5 percent

3.6.1 Procedure and data sources to collect or derive data

This indicator is derived from two elements. The first is data is on the costs of using public transport and the second

is the average monthly income of the poorest part of the population. The indicator is calculated as the ratio between

the two (a percentage of the income).

The two datasets should match and be used consistently for future years. For example, income data may be available

at individual or household level. It can influence comparison if different definitions of income are used. For the SUTI

it is important that cites describe which data sources and types are used.

The information for calculating the indicator may also be obtained through household surveys listed in section 3.2.

The information for calculating the indicator may also be obtained through passenger surveys carried out for SUTI

indicator 3 (See section 3.4).

Below further specifications and data sources are suggested for each element, along with calculation schemes.

Data on costs of public transport

The indicator for the cost of public transport is proposed to be the cost of a monthly network-wide pass for an adult

person. Network-wide means a card or pass covering all main PT operators and services in the city. If such a pass

exists in the city it is very easy to obtain the price information from the website, office, or ticket counter of the local

public transport organization or authority. The variable is also easy to enter directly in the calculation of the indicator.

If there is no network-wide monthly pass the following alternatives can be considered. In every case it should be

easy to obtain the needed information from the relevant PT authority or operators.

a) If there are similar pass on a yearly or weekly basis the division or multiplication is straightforward.

Page 42: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

42

b) if there is a monthly pass but only for parts of the network, for example different ones for different operators, or

separate for bus and metro, the card for the service deemed to have the largest share of the travel market is used. If

no operator has a large share (>50%) one of the following alternatives can be used.

c) If there are only monthly passes available on a line-by-line basis, the cost of passes for two lines for one of the

major operators can be added as a proxy for the price of a network pass.

d) Average trip length on public transport is easily available with public transport agencies. The ticket price for the

average trip length multiplied by 60 (two daily trips for 30 days of the month for one person) may be used as the

estimate for transport costs.

e) A final alternative is to use the price of a single, standard ticket. The ticket price is multiplied by 60 (two daily

trips for 30 days of the month for one person), to mirror the monthly pass price, as proposed by WBCSD in their

similar indicator. If standard ticket prices vary much across different companies/modes, a weighted average of these

prices could be used. For example, one company operates 30% of the services; tickets costs 10 [x]; another runs

70%; tickets cost 8 [x]. Average cost for a month (60 tickets) is then 516 [x].

In the data sub-sheet for this indicator the table below is provided to easily calculate the monthly price based on

single ticket prices and market shares for up to ten operators. The market shares may not be known but could likely

be stipulated by a local expert.

PUBLIC TRANSPORT PRICE

Example calculation for a city with up to 10 companies using daily ticket price as basis

Services Market shares

(estimated)

Single ticket price

[currency]

Monthly cost

60 tickets

Weighted monthly

cost

Company 1 19 10 600 114

Company 2 20 8.5 510 102

Company 3 35 4.5 270 94.5

Company 5 10 6 360 36

Company 6 7 12 720 50.4

Company 7 5 14 840 42

Company 8 4 10 600 24

Company 9 0 0

Company 10 0 0

Total 100 0 462.9

Data on Income

Data for income of the population in the country is normally available in reports and websites of a national statistical

agency, economic department, or similar. The World Bank also publishes national income data for all counties in the

world (http://databank.worldbank.org/data/home.aspx).

Page 43: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

43

Income statistics may report household income or personal income. SUTI was originally defined using personal

income but is reverting to household income since data for this variable seems more widely reported. The city should

make notes of which income definition is used, and then use the same one for subsequent years of SUTI calculation.

The SUTI indicator does not use average income but mean income for lower income segments of the population as

these are more vulnerable to high transport costs. The definition refers to the lowest income quartile (25%). However,

national income statistics is not always available in quartiles but may be partitioned in other segments (quintiles,

deciles, etc.) or not at all. The lowest quintile or the third lowest decile may for example be used as substitutes.

Again, the partition used by the city should be described in accompanying notes.

National income statistics is sometimes available in regional breakdowns (urban/rural, or for different provinces

etc.). Ideally the indicator should apply the breakdown most closely resembling the city’s population (e.g. for urban

population). However, as it may be impossible to obtain income group segmented values at regional level this may

not be feasible. It is more critical to reflect the significantly lower income levels of the disadvantaged income groups

than to reflect the typically somewhat higher incomes in urban areas for this indicator.

If income group segmented data for some reason is not available it has been proposed to use the national minimum

(monthly) wage as a proxy. According to the International Labour organization (ILO) minimum wages are applied

in about 90 per cent of countries in the world. The Wikipedia offers an updated list (reported in US$,

https://en.wikipedia.org/wiki/List_of_minimum_wages_by_country).

3.6.2 Calculations and data sheet entry (with examples)

When data for the two elements has been collected the last step is to calculate the percentage.

Below an example is offered using (approximate) values for Metro Manila in the Philippines.

As no monthly pass is available, the basic fare ticket price has been obtained for the city’s two main systems the

MRT-3 (13 pesos) and the Light Rail (15 pesos). It is assumed that the fares have not changed since 2015 (see below).

The market shares are approximated using Wikipedia information on the annual ridership of the two systems. No

attempt has been made to obtain further data on public transport services in the city for this example. The calculation

of the monthly cost is straightforward following similar metrics as in the table above.

Income levels have been obtained from the website of the Philippine Statistics Authority https://psa.gov.ph/income-

expenditure/fies. Household income levels for 2015 is available in deciles. The third lowest decile has an annual

income of 133,000 pesos = 11,083/per month.

The values are entered in the table below.

Example calculation for METRO MANILA (Note: approximation)

Services

Annual Ridership Market shares

(estimated)

Single ticket

price

Monthly cost (60

tickets)

Weighted monthly cost

MRT-3 700,000 58.3 15 900 525

LRTA 500,000 41.7 13 780 325

Company x 0.0 0 0

Page 44: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

44

Company y 0.0 0 0

Company z 0.0 0 0

Total 1200,000 100 0 850

Mean household income, 3 decile, 2018 11,083

7.7

The same table appears in the indicator 6 data sub-sheet for easy calculation if the situation is similar.

When the indicator is calculated the final value is inserted as indicator 6 in the DATA ENTRY SHEET B, as

exemplified below.

Indicator VALUE YEAR COMMENTS

Affordability – travel costs as part of

budget

7.7

2019

The result is based on an update of the

most recent survey of income levels for the

population

The source of the data and other relevant information should be entered in the COMMENTS field.

3.6.3 Literature with further guidance on methodology or data sources for indicator 6

The World Bank report ‘Cities on the Move’ has a wide discussion on various urban public transport finance

measurements and indicators12

The report from the International Transport Forum ‘Funding Public Transport’ brings a number of case studies on

public transport systems using fare box ratio and other indicators to characterize the systems.13

12 Gwilliam, Ken (2002) CITIES ON THE MOVE. A WORLD BANK URBAN TRANSPORT STRATEGY REVIEW. The International Bank for Reconstruction and Development / The World Bank, Washington, DC https://openknowledge.worldbank.org/handle/10986/15232

13 ITF (2013) Funding Urban Public Transport. A Case Study Compendium. International Transport Forum, OECD, Paris. https://www.itf-oecd.org/funding-urban-public-transport-case-study-compendium

Page 45: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

45

3.7 Indicator 7: Operational costs of the public transport system

Table 13. Indicator 7 – Brief description

Relevance The operational costs of the public transport system are critical for the ability of a city to provide

affordable, efficient and competitive transport services. In this indicator the operational costs are

compared to the revenue generated from fares to reflect the financial sustainability of the public

transport service.

The indicator relates to SDG target 11.2 “By 2030, provide access to safe, affordable, accessible and

sustainable transport systems for all”.

Definition Ratio of fare revenue to operating costs for public transport systems (‘Fare box ratio’)

Unit Percentage of operational costs recovered by fares

Min and Max

values

Min value is that only 22% of cost is recovered. Max is recovery rate of 100 %

A high value (more than 100% and above) reflects a good financial sustainability. Very low numbers,

close to 22%, indicates financial unsustainability with a need for extensive subsides from local or

central government.

3.7.1 Procedure and data sources to collect or derive data

Overview

The ‘fare box ratio’ indicator is one of many indicators applied in the management of public transport (PT)

companies. It is a ratio of two accounting datasets, namely the operational costs of running the public transport

system, and the revenues collected from fares. This indicator is either directly present in annual financial reports of

PT companies or it can be calculated with dataset extracted from such reports.

The indicator has been selected because it is a critical economic variable, which has been described as an indicator

of the financial sustainability of the public transport service. If the fare box ratio is negative, there is a need for

government subsidy. Such subsidies can come under (political) pressure and thereby challenge the service level,

quality, frequency or other features of the associated public transport services. Most urban public transport systems

worldwide do receive government subsidies, without this necessarily being a concern. Moreover, many PT

companies have or seek other sources of income than the fare box and Treasury, such as retail services, land

development, advertising etc., which makes it less critical. Nevertheless, a declining fare box ratio will, ceteris

paribus, put pressure on other sources of income and thereby indicate a potential threat to the stability of the service

and thereby indirectly to the promotion of the urban transport SDG target 11.2.

A limitation to the fare-box ratio as a comparative indicator is that not all cities and systems offer the same

opportunities for a high fare box recovery rate. A low population density can for example make it more difficult to

obtain a high ratio. Capital intensive systems (e.g. a metro) are very expensive to build leading to accumulation of

debt, but since these systems also more easily can generate savings on the operational side due to automation etc.,

their fare-box ratio performs better than some bus companies, even if they are financially more challenged on other

accounts.

All in all, this indicator is widely used and reported also because it and it utilizes already operating economic accounts

without much the need for additional data sources.

Page 46: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

46

Data sources

Data should be easily obtained from the annual reports or financial accounts of the local public transport providers.

The ‘Fare box ratio’ may not itself be reported directly, and the term may not even be used either. Major urban

transport public companies (metros, major bus companies etc.) should nevertheless have the data available. However,

for the indicator to make sense in the first place there obviously needs to be at least one major public transport

company operating in the city. If there is none the indicator cannot be produced and the SUTI will be 10% amputated

(but would still work for other indicators).

A data source is illustrated below in the form of an annual report of a dominant regional transport company in a

major Asian city.

In this case, the Fare box ratio for 2012 would be 13,168,409/11,077,291 = 119%

In case information is not readily available a simple questionnaire has been developed and attached as annex 4,

which may canvased with public transport operators in the city.

3.7.2 Calculations and data sheet entry (with examples)

The procedure for this indicator is therefore as follows: First, identify the major public transport provider. Second,

solicit its latest annual report. Third, identify the fare box ratio directly in the report or if it is not presented then

calculate it from other posts as in the above example. The cost post to use should preferably concern the transport

operating costs only; this is the ‘pure’ fare box recovery ratio, not distorted by any other operations the company

may pursue (e.g. retail, office space for rent etc.).

If these posts are not found in the annual report, it should be possible for the city, the national government, of other

public authority providing subsidies or other services for the company, to request a transcript of the relevant post in

its accounts.

There may be cities without any major or dominant PT provider, but several smaller ones. In that case it is an option

to collect reports from the relevant companies and calculate a simple weighted city fare box ratio, according to market

shares, similar to the procedure described for indicator 6.

Page 47: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

47

A hypothetical example is provided below. The same table is found in the indicator sub-sheet for ease of

calculation.

WEIGHTED FARE BOX RECOVERY RATE

Services

Market shares

(estimated)

Fare Revenues

Transport Operating

expenses

Fare box ratio

Company 1 29.0 2,300,000 1,970,000 117%

Company 2 26.0 27,570,000 64,834,000 43%

Company 3 17.0 18,356,000 23,013,600 80%

Company 4 16.0 8,554,700 15,132,820 57%

Company 5 12.0 78,666,500 199,705,000 39%

Total 100 Weighted 72.2

Finally, when the result is calculated the value is inserted as indicator 7 in the DATA ENTRY SHEET B, as

exemplified below.

Indicator VALUE YEAR COMMENTS

Operational costs of the public

transport system

72.2

2019

The data are for the five main companies

offering public bus service in the city

(partly outside of city perimeter)

The source of the data and other relevant information should be entered in the COMMENTS field.

Page 48: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

48

3.8 Indicator 8: Investment in public transportation systems

Table 14. Indicator 8 – Brief description

Relevance Investment in public transport is a relevant indicator to monitor efforts to promote sustainable urban

mobility and to help shift passengers from individual to public modes. In general, it is considered more

sustainable to direct investments towards public transport rather than only incremental extensions of the

road network for individual transport.

Relates to SDG target 11.2 “By 2030, provide access to safe, affordable, accessible and sustainable

transport systems for all”.

Definition The share of all transport investments made in the city that is directed to public transport in the total

transport investments.

a. Public transport investments include investments in development of scheduled bus and minibus

services, BRT, train, metro and tram, ferry services. The investments on acquisition of fleet and

development of infrastructure including ITS. This also includes investments in development of

pedestrian and NMT infrastructure.

b. Other transport investments include investments in development of roads, bridges, flyovers and

such other infrastructure serving mixed traffic.

These investments may be from local, provincial or national governments, private sector or through non-

governmental organizations.

The investments are likely to vary from year to year in a pattern that may be sensitive to the profile of

individual projects. The value is therefore averaged over a period of five years.

Only actual and not budgeted investments are to be taken into account while calculating the indicator.

Unit Percentage of transport investment spending (running five-year average).

Min and Max

values

Min value is 0 used for public transport; max value is 50%

The Min-Max is informed by data from the UITP ‘Millennium Cities Database’ (UITP 2001). In this

database values from 12 to 85% occur. However, these are annual values that are likely to even out when

observed as average over five years. In some years a city may dedicate more than 50% of all its transport

investments to public transport but within a five-year average this would more rarely be the case.

3.8.1 Procedure and data sources to collect or derive data

Overview

This indicator is derived from combining two values of public expenditure. The first is data on investments in public

transport systems and facilities including pedestrian and bicycle infrastructure over the latest five-year period in the

city. The second is data on total transport investments by the city over the same period (including, roads, signals,

infrastructure, public transport facilities, facilities for pedestrians and cyclists, etc.). The ratio expresses the degree

to which public transport is being favored in the investment strategies and practices of the city. ‘investment by mode’,

was proposed for a global core set of indicators by Bongardt et al (2011)14 and it was also selected by Bachok et al

(2015) for a regional transport study in Klang Valley, Malaysia15.

14 Bongardt, D., Schmid, D., Huizenga, C. and Litman, T. (2011). Sustainable Transport Evaluation. Developing Practical Tools for Evaluation in the Context of the CSD Process. Sustainable Urban Transport Technical Document # 7. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Eschborn March 2011 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.357.2568&rep=rep1&type=pdf

Page 49: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

49

‘Transport investment by mode’, is however difficult to interpret from sustainability point of view. With the simple

transformation to PT share it is more straightforward. It should be kept in mind though, that maximizing the PT share

to 100% is not necessarily optimal. Some road improvements catering to private vehicles may still be justified, and

facilities for other modes such as cyclists and pedestrians may sometimes be equally or more sustainable.

Rather than using ‘transport investment by mode’, which would be difficult to interpret from sustainability point of

view it is proposed to focus on the share of PT in the total investments which is somewhat more straightforward to

interpret. However, it cannot necessarily be assumed that massive PT investment in all cases are more sustainable

than for example, operational efficiency measures, investments in non-motorized modes, or investment in (road)

safety. A high share, towards 50% is indicative of a very significant commitment from the city to public transport.

A low share towards zero is indicative of insufficient support to this target.

The value is defined as a running five-year average because annual investments tend to fluctuate much over time at

local level. A sharp drop when a major scheme is completed will for example not necessarily imply that the transport

system of the city is suddenly more unsustainable. 5-year average is suggested for similar indicator by Dimitrou and

Gakenheimer (2011).16

Data sources

The source of data will be public expenditure accounts of the city and /or regional government as appropriate (if the

latter is involved with funding.

Local government expenditure accounts do not follow a standardized format besides the use of normal public

accosting principles and terminology. It is not necessarily the case that transport investments are accounted for in

one or a set of separate accounting lines; similarly, public transport is not necessarily distinguished as such but may

appear under different posts.

Financial statements from local body, other public agencies (state/provincial/national including funding from donor

agencies) regarding transport investment projects needs to be obtained. A sample questionnaire has been developed

and attached (annex 4) to collect details of investments from the public transport operators (private/public agencies).

3.8.2 Calculations and data sheet entry (with examples)

If it will be possible to extract and process appropriate accounting data, it should be straightforward to calculate the

indicator as the ratio of public transport investment to the total

A hypothetical example calculation is shown below. The same table is included in the indicator sub-sheet for possible

use in calculations

15 Bachok, S; Ponrahono , Z; Osman, MM; Jaafar, S; Ibrahim, Mand Mohamed, MZ (2015). A preliminary study of sustainable transport indicators in Malaysia: the case study of Klang valley public transportation. Procedia Environmental Sciences 28, pp. 464 – 473

16 Dimitriou, H.T and Gakenheimer, R. (eds.) (2011). Urban Transport in the Developing World: A Handbook of Policy and Practice, Edward Elgar, Cheltenham

Page 50: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

50

INVESTMENTS BY THE CITY 1 2 3 4 5 average

PUBLIC TRANSPORT

FACILITIES

0.00

0.00

0.00

0.00

0.00

0.00

TOTAL TRANSPORT 0.00 0.00 0.00 0.00 0.00 0.00

SHARE #DIVISION/0!

HYPOTHETIC EXAMPLE

2014 2015 2016 2017 2018 average

PUBLIC TRANSPORT

FACILITIES

16,100,000.

00

14,250,000.

00

4,650,000.0

0

6,240,000.0

0

6,640,00

0.00

9,576,000.00

TOTAL TRANSPORT

46,350,000.

00

41,250,000.

00

34,776,990.

00

35,987,600.

00

32,776,9

90.00

38,228,316.00

SHARE 25.0

The resulting value is entered as indicator 8 in the DATA ENTRY SHEET B, as exemplified below.

Indicator VALUE YEAR COMMENTS

Investment in public transportation

systems 25

(2015-

2019)

Based on average transport investments by

the city for the five years 2011-15

The source of the data and other relevant information should be entered in the COMMENTS field.

Page 51: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

51

3.9 Indicator 9: Air quality (PM10)

Table 15. Indicator 9 – Brief description

Relevance Air pollution including particulate matter (PM) poses health risks for humans. More than 80% of people

living in urban areas that monitor air pollution are exposed to air quality levels that exceed the World

Health Organization limit values.

Particulate matter has been adopted by the United Nations Social and Economic Council and the UN

Statistical Commission as indicator to monitor SDG Target 11.6 ‘By 2030, reduce the adverse per

capita environmental impact of cities, including by paying special attention to air quality and municipal

and other waste management’.

Traffic is a major source of air pollution in cities causing significant health problems as well as

impairing visibility and affecting ecosystems and agriculture. Motor vehicles are among the main

contributors to PM pollution.

The UN Habitat mentions PM concentrations as a useful indicator for estimating effects of sustainable

transport policies in cities.

Definition Annual mean levels of fine particulate matter (PM10) in the air (population weighted) compared to the

health threshold. [for PM2.5 as alternative, see text]

Unit Micrograms per cubic meter (μg/m3).

Min and Max

values

Min value (worst) is 150; max value (best) is 10 (for PM10)

3.9.1 Procedure and data sources to collect or derive data

Overview

Air pollution comprises a range of components including particulate matter. The smaller the particles are, the greater

the risk for human health. The World Health Organization (WHO) has defined air quality standards for two sizes of

particulate matter to indicate levels of potential health risks. PM10 (particles with a size up to 10 micrometers) and

PM 2.5 (with a size up to micrometers).

The WHO limit values are shown in the table below.

The limits are differentiated between short term (24-hour mean) and long term (annual mean) According to WHO

the annual mean concentration is the best indicator for PM-related health effects.

The concentration of particulate matter is continuously monitored at stations in many cities around the world

including Asia. The measurements are compared to the standards to assess the risks for human health and if necessary

issue alerts to the populations.

PM2.5

10 μg/m3 annual mean

25 μg/m3 24-hour mean

PM10

20 μg/m3 annual mean

50 μg/m3 24-hour mean

Page 52: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

52

The indicator is based on monitoring of the annual mean concentration of PM10 (or alternatively PM 2.5, see later)

in the cities. Before only PM10 was monitored. Over the last decade or so attention has shifted more towards

monitoring PM 2.5, because of more significant health relation. However, both components are considered indicative

of health risks, and there are still more monitoring stations reporting PM 10 concentrations than PM 2.5.

Data sources

Air quality monitoring is conducted by environmental and human health authorities in each country. Most of the

monitoring stations are located in cities and urban areas. In larger cities there may be several stations. The monitoring

programs are for the most part open and results are readily available to local authorities and the public.

The air quality monitoring programs have also been connected across borders and coordinated by the WHO. WHO

maintains a database of measurements form stations in now over 3,000 cities worldwide

http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/. This database contains annual PM data and is

regularly updated. Asian countries and cities are represented to varying degrees in the database, for example India

with stations in more than 125 cities. Some monitoring stations also exist outside WHO database.

The data source for the indicator is generally WHO, national, and local programs for air quality monitoring. It would

be most appropriate to use only data from monitors reflecting traffic generated pollutions, i.e. monitors placed in

street canyons or the like if possible. In the SUTI participating cities should explore and clarify the characteristics of

the air quality monitoring network, including location of stations, what is monitored, etc. Cities with no monitoring

stations may consider using data from other similar city within same area or not fill in this part of SUTI.

PM 10 – PM 2.5

Concentrations of PM2.5 and PM10 are highly correlated. If a city monitors PM2.5 and not PM10 the WHO uses

conversion factors so both figures are represented at each station. The conversion factors are city and country

specific, and the correlation changes with the concentration.

To convert PM2.5 to PM10 for SUTI it is necessary to consult local expert to consider correct conversion factor.

3.9.2 Calculations and data sheet entry (with examples)

The simplest case is a city has one monitoring station located at street level, measuring PM 10. The most recent data

for this station could be entered directly as SUTI value.

There may be more than one relevant station monitoring PM-10 concentrations in a city. The indicator should be

population weighted. This means that the most relevant measure is to compare different concentrations measured in

the city with estimates of the population exposed to this level.

For example, if 20% of the population is exposed to 75μg/m3; 30% to 55μg/m3 and 50% to 30μg/m3, the weighted

concentration is 46.5μg/m3.

A simple table is provided to support population weighted calculation. In this example there are four monitoring

stations. Three of them are near traffic. The fourth is a background stations indicating the exposure of the share of

the population no living near heavier traffic. The same table is found in the indicator sub-sheet for ease of calculation.

Note that all values here are fictitious

Page 53: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

53

EXAMPLE TABLE WITH FOUR MEASUREMENT STATIONS REPRESENTING POPULATION

PM10 Population Population

Station Location yearly mean in area percentage

1 Boulevard A 48 650,000 19.75

2 Busy intersection B 66 750,000 22.79

3 Street canyon C 81 150,000 4.56

4 Rooftop / Background D 34.5 1,740,400 52.89

Total city population 3,290,400 100

Population weighted concentration 46.47 VALUE TO ENTER IN SUB-SHEET B

The need and possibility to convert PM 2.5 values to PM10 should be clarified as part of the project exploring

local air quality monitoring network and local conditions.

When the result is calculated the value is inserted as indicator 9 in the DATA ENTRY SHEET B, as exemplified

below.

Indicator VALUE YEAR COMMENTS

Air quality (PM10)

46.5

2019

Data for four monitoring stations managed

by XXX agency. The values are averaged

by estimate of population exposed per city

area (station 1 = 20%; station 2 = 30%;

station 3 = 50%)

The source of the data and other relevant information should be entered in the COMMENTS field.

Page 54: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

54

3.10 Indicator 10: Greenhouse gas emissions (CO2eq tons/year)

Table 16. Indicator 10 – Brief description

Relevance Man-made emissions of CO2 and other greenhouse gasses are causing global warming and climate

change. Transport contributes worldwide to around one quarter of the global energy related CO2

emissions. A major proportion of this contribution is emitted in cities.

The indicator Is highly relevant for SDG 13 ‘Take urgent action to combat climate change and its

impacts’, even if this goal does not directly specify GHG targets for the urban level.

Definition CO2 equivalent emissions from transport by urban residents per annum per capita.

Unit Ton CO2 equivalent emitted/capita/year

Min and Max

values

Min. value (worst) is 2.5 ton; Max value (best) is 0

3.10.1 Procedure and data sources to collect or derive data

The indicator is a calculated value of emissions of Greenhouse Gasses (CO2eq.) from transport in a city per year,

divided by the population number.

CO2 is the main greenhouse gas from transport, so it may be relevant to limit calculations to this gas. If CO2 emission

data are currently not estimated at the city level, the value needs to be derived from data for transport flows and

vehicle types multiplied by emission factors (g CO2/km per vehicle) for each type of vehicle, or other sources.

The World Resources Institute and others suggest a distinction between two approaches to estimate a CO2- emission

figure for transport in an urban area,

1) Bottom-up approaches need data for transport volumes. More specifically these approaches may combine data for

the four factors ‘ASIF’ - Activity (transport volume), Mode share of the volume (e.g. passenger car bus, truck, MC),

Fuel intensity per mode (l/km), and Fuel types for each type of vehicle (e.g. diesel, gasoline, electricity). When these

factors are estimated, it is possible to calculate CO2 emissions using standard CO2 emissions factors per type of fuel.

Transport volumes per mode and vehicle type may be calculated if a transport model, based on a travel survey for

the city is available. If no such model exists, transport data have to be estimated in another way.

One basic option is to use a representative sample of traffic counts to indicate number of vehicles for different street

types. These figures need to be multiplied by total road lengths in order to produce transport volumes. Data for

vehicle types and fuel use may have to be derived from national databases such as a motor registry.

2) The top-down approach is a bit simpler to apply since it does not require detailed data for travel patterns or vehicle

fleet composition. It requires fuel sale statistics by type of fuel. Form the fuel sale the CO2 emissions per fuel can

be calculated and aggregated using standard CO2 emissions factors per type of fuel. Fuel sale statistics for the city

area may be available in national energy statistics or databases. However, it may be difficult to obtain fuel sales data

that match the fuel consumed by the city population within the city.

There are various calculation guidance and tools available to further help derive transport CO2 emissions data, based

on input data for transport volumes, fuel consumption or other data:

Page 55: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

55

1) A comprehensive report on ways to calculate and monitor CO2 emissions from transport, published by the

Secretariat of the United Nations Framework Convention on Climate Change (UNFCCC, 2017), called

‘Compendium on GHG Baselines and Monitoring Passenger and freight transport.’ http://mobiliseyourcity.net/wp-

content/uploads/sites/2/2017/06/Compendium_Volume-6_Transport.pdf

2) A worksheet for calculating GHG Emissions from Transport or Mobile Sources, by the GHG protocol initiative

http://www.ghgprotocol.org/calculation-tools

3) An elaborate method for Co2 emission calculation at the city level is presented in WBCSD (2016)’ Methodology

and indicator calculation method for sustainable urban mobility. Second Edition’: http://www.wbcsd.org/work-

program/sector-projects/mobility.aspx

4) A detailed description of data collection for Transport CO2 Emission calculations for the case of Chinese cites

(with broader relevance) is published by the GIZ http://sutp.org/en/news-reader/new-guide-on-data-collection-for-

emission-quantification-in-chinese-cities.html

3.10.2 Calculations and data sheet entry (with examples)

Below is shown a simple example for the top down calculation based on fuel sales statistics at the city level. The

example is for a hypothetical city of 3.2 mill. Inhabitants. The same table is also included in the sub-sheet for

indicator 10 for support of calculations.

TOP DOWN EXAMPLE - VERY SIMPLIFIED CALCULATION BASED ON URBAN AREA FUEL

SALES

Litres sold CO2-factor

kg/l

Emissions

tons/year

Population Emission/capi

ta

GASOLINE/PETROL 784,550,000.00 2.272 1,782,105.33

DIESEL 420,000,000.00 2.676 1,123,920.00

TOTAL 2,906,025.33 3,200,000.00 0.91

The indicator sub-sheet 10 also includes a very simplified calculation sheet example for the bottom-op approach

(not shown here). The hypothetical example is based on the crudest standard assumptions regarding average traffic

volumes per type of street, composition of the traffic, and emission factors for vehicle types. The city is strongly

encouraged to collect and apply more detailed data, based on some of the more detailed guidance documents referred

to above.

When a result is calculated the value is inserted as indicator 10 in the DATA ENTRY SHEET B, as exemplified

below.

Indicator VALUE YEAR COMMENTS

CO2 emissions for transport

1.2

2019

Based on estimate of traffic volumes (car, bus,

minibus, MC, light truck, heavy duty truck)) on

city road network for 2015, and average

national emission factors per traffic mode

The source of the data and other relevant information should be entered in the COMMENTS field.

Page 56: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

56

3.11 Additional data: Gender, renewable energy and impacts of COVID-19

UN ESCAP Committee on Transport in its 5th session held in 2018 at Bangkok, recognized the usefulness of SUTI

and endorsed SUTI as a tool for assessment of urban transport systems. It also recommended the continued

development of SUTI and its further promotion throughout the region. Further, the Committee acknowledged

endeavors to decarbonize urban mobility through the adoption of low emission vehicles, use of renewables energy

in public transport, in particular use electric vehicles. There is also the need to address the concerns for gender

equality and needs of differently abled and aged users in planning and operating public transport systems.

Additional data collection relating to gender and energy use has been incorporated in Annex 5: SUTI data collection

strategy and progress review format.

The outbreak of COVID-19 has had a profound impact on transport and mobility. Countries and cities in the region

have announced measures to restrict travel and social gatherings while prescribing that all maintain social/physical

distance and personal hygiene to limit the spread of the coronavirus.

Travel restrictions are discouraging the use of public transport in the short term. In some cities, public transport

operators are employing sanitization and physical distance policies for passengers such as staggered seating. Yet,

winning the confidence of users remains difficult for psychological and behavioral reasons.

It has thus been necessary to look at the impacts of COVOD-19 on urban mobility and rethink planning,

development and operation of public transport in short- and medium turn. At the face of it the active mobility

seems to be the one of the preferred mobility options. The Annex 6 includes a questionnaire for collection of data

for analysis of impacts on urban mobility.

Therefore, three important topics of special interest are:

• Inclusive Transport: Universal Accessibility, Provisioning for Differently-abled, aging population and

Gender Equality

• Use of renewable energy in public transport

• Disaster Response: City responses to disasters with a focus on COVID-19 and urban mobility.

Inclusion of needs of the differently-abled, ageing population and gender equity

It is estimated that about two thirds of the world’s population living in the developing countries face exclusion due to

their disability (Economic and Social Commission for Asia and Pacific, United Nations, 2012, p. 17). The inability to

reach and participate in activity results in social exclusion of individuals especially seen in case of differently able

people (disabled), elderly, women and poor to name a few. Literature on social exclusion highlights the dilemmas faced

by differently abled people and aging population of skipping a doctor’s appointment, job interviews or social visits as

a result of inadequate transport means (Hine & Mitchell, 2001, p. 319).

Similarly, women travel needs differs from those of men with limited access to personalized vehicles and the travel

patterns being governed by dependence on public transport, trip chaining and travel during off peak hours this is couples

with the fear of being exposed to crime and sexual harassment. Studies in carried out in Delhi, India have highlighted

that over 90 % of women had faced some sort of sexual harassment in the past year. The study also showed that 51 %

of women faced harassment inside the vehicle and 42 % while waiting for the vehicle (Bhandare, 2014). Hence it is

seen that even though transportation does not have a direct bearing on social exclusion it does play an important role

in the process of eliminating social exclusion. What measures have cities taken in this regard needs to be outlined.

Page 57: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

57

The provisioning for differently-abled and ageing population may be discussed to cover the following:

• An estimation of differently-abled and ageing population

• Policies and programmes to address their special needs of the city/ provincial / national governments and

their implementation

• Specific interventions in terms of infrastructure provision (access, facilities, announcements, level boarding,

special fares, walkability etc.,) in terms of elements and scale of provisioning.

• Usage by the communities

The provisioning for gender equality may cover the following details.

• An overview of the safety and security situation for women and third gender

• Policies and programmes to address the same

• Operationalisation of these policies and programmes

• Public responses

Use of renewable energy in public transport

Globally, transport energy demand has been rising faster than any other sector. Energy consumption in the transport

sector is set to continue to grow, with a high rate of growth in Asia1. In the Asia-Pacific region, the transport sector

accounts for 19 per cent (852 Mtoe) of the total final energy consumption2 and 51.9 per cent of the total oil

consumption and contribute to nearly 13.5 per cent of the total CO2 emissions3 with road vehicles account for

majority of the sector’s emission. The sector’s total final energy consumption and CO2 emissions4 has doubled

since 2000 due the rapid growth in population and economic development5 and will continue to increase. As more

than 50% of the population are living in urban areas of the region, energy use and emissions from urban public

transport take significant share. Therefore, new policy initiatives, innovation and technology are essential to

increase share of renewable energy use and reduce emissions from public transport. These initiatives would

contribute to the ambition of making transport carbon neutral and increasing energy efficiency of public transport

systems. Therefore, data and information on the type of energy use in public transport is necessary to initiative new

policy measures and initiatives to ramp-up energy efficiency measures in transport in the Asia-Pacific region and

these are also recognized as the most cost-effective means of reducing emissions. Annex 5 include some additional

data collection relating to energy use in public transport.

City Responses to COVID–19 Pandemic

The COVID-19 pandemic has brought the world to a virtual halt. The mobility systems, especially public transport

systems, have suffered due to discontinuance and drop in ridership. As the social distancing has become a new norm

of the society, people have started to travel less and depend more on technology enabled processes such as work

from home, online delivery systems, etc., It would be interesting to assess how the city coped with the pandemic

and how it plans to manage the effects in the future. The analysis may cover the following aspects. (Please refer to

Annexure – 6 for a checklist on assessment city responses to pandemic).

• COVID-19 situation covering the beginning of cases, in the city and their trajectory over time

1 UNDESA, Interlinkages Between Energy and Transport, Policy Brief No. 16. Bangkok, 2018 2 ESCAP (2018), Energy Transition Pathways For the 2030 Agenda in Asia and the Pacific: Regional Trends Report on Energy for

Sustainable Development 2018 3 ESCAP calculation based on data from IEA CO2 Emissions from Fuel Combustion, available from https://www.iea.org/subscribe-

to-data-services/co2-emissions-statistics 4 Ibid 5 ESCAP (2018), Energy Transition Pathways For the 2030 Agenda in Asia and the Pacific: Regional Trends Report on Energy for

Sustainable Development 2018

Page 58: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

58

• City responses in terms of lockdown, identification zones for restricting spread of infection etc.,

• City transport responses in terms of mobility restrictions

• City public transport responses in terms of restrictions on operations, measures taken to ensure social

distancing and financial situation and supports provided

• Changing travel patterns during and post COVID-19 times (trends in work from home, online delivery etc.,

and public agency strategy to promote the same)

• Long term strategy to manage COVID-19 and such other disaster rapid response City public transport

responses in terms of restrictions on operations and measures taken to ensure social

Page 59: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

59

4. Completion, interpretation, and way forward

4.1 Completion and results

When data for all ten indicators are collected and entered into the Sheet B DATA ENTRY in the appropriate fields,

the SUTI is complete and the results can be reviewed.

Two different calculated results can be observed.

Data Sheet B cell H35, shows the aggregate value for SUTI for the city. This is the geometric mean aggregate score

across all 10 indicators, a value between 0 (worst case) and 100 (best case).

The main use of the SUTI number is for comparison. Either in comparison with other cities or comparison over time,

for following or previous years for the same city. Therefore, at this phase, the SUTI number can tell state of urban

transport in a city compared to other cities. A high score is generally positive.

The other result is a spider diagram calculated in Sheet C DIAGRAM. The spider diagram illustrates the

performance of each indicator for the city, compared with min and max performance in the literature. This diagram

is produced automatically in the data sheet when the data in entered.

An example using data for a more or less fictive city X is shown in the figure below.

City X Normalized performance

Page 60: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

60

In the diagram the city can immediately observe how it performs compared on a scale of 1-100 for each indicator. A

high value (near the outer circle of the diagram) indicates good result, whereas the opposite is the case for a low

value.

However, before starting to interpret and use the information (see below), the input should first be checked for any

problems or errors in the data entry, or any possible malfunctions or of the SUTI worksheet or calculation procedures.

Elements the city should check include the following;

• Have all the red 0 values in the Data Entry Sheet B been replaced with real data?

• Were the right data entered in each field?

• Does the spider diagram look technically correct with all points at or within the scale of 100, not outside?

• Do any negative values appear in TABLE 2 NORMALIZATION in the Data Entry Sheet? Negative values

indicate that the city has entered data outside the given range for each indicator. This should be corrected

(capped to the lowest or highest value in the range)

More practical issues include,

• Did the city fill the General Info field of the sheet (Area, Name of contact person etc., )

• Did the city provide comments in the comment fields to explain data sources, choices made, deviation from

the guideline, etc.? It is important to do right away for memory.

• Did the city include all relevant data in the indicator sub-sheet (for later documentation and repeating)?

• Was the data sheet file saved and a backup created?

4.2 Interpretation of results

The city should now look on the SUTI results as presented in the spider diagram and consider any implications.

As noted, this diagram directly illustrates the relative performance of the city across the ten indicators, compared to

high and low performance of cities in general, as reported in the literature.

It may be useful to first pay attention to indictors with highest and lowest performance. To begin with, the city can

consider if these outcomes seem plausible. Do high or low results confirm what is already known, or expected? Or

do these results seem strange in some way, perhaps contradicting what is assumed today?

Significant poor performance on some indicators may actually point to problems in the transport system that the city

was not aware of before, or which are more critical than assumed. This could potentially lead the city to take new

actions or begin further analysis. Positive performance results may on the other hand be indicative of successful

initiatives or may point to unknown strengths. It is a key function of systems like SUTI to help inspire reflections of

this kind.

Page 61: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

61

However, any extreme or surprising results may also simply be ‘project artifacts’ reflecting inadequate or misleading

data, failures in the calculations, or flaws in the data sheet. Of course, seemingly neutral results may be just as be

wrong or misleading as the ‘extreme’ ones.

Another observation to make in regard to results concerns the general consistency of performance. Do the results

vary greatly across the indicators from very poor to excellent performance, or is everything on the same level? Strong

inconsistency may offer clues to areas to focus more on than others in the future, whereas a more even performance

could suggest that the city generally follows a balanced approach in its management of the transport system. And

are the results grouped in some possibly meaningful way? For example, poor air quality may be linked also with

high emissions of CO2. Or a low share of public transport could perhaps be linked with low satisfaction among

users? Are there any interesting coincidences or paradoxes to observe from the spider diagram?

The point of these questions is certainly not to encourage any unfounded claims of correlation or causality among

SUTI indicators. The point is rather to urge the city to discuss the how the results could be used and what kind of

questions they may raise.

The city should not keep its observations and interpretations to itself. They should be noted in the project report that

each city is to prepare as part of the exercise. The city is invited to reflect on anything in regard to SUTI results;

including,

• outcomes of interest

• confirmation of existing knowledge

• possible implications for current plans

• new problems indicated

• positive learnings

• consistency/inconsistency/paradoxes

• any suspicions concerning the SUTI methodology in general or for specific indicators.

The following section describes more generally what is expected of the phase reports from cities.

4.3 SUTI city assessment report outline

The annex provides an outline with headlines for the SUTI assessment report for a city.

The content is structured in sections as follows.

Section 1 will contain basic facts on the city, including basic data entered in the GENERAL INFO data sheet;

population, area, location, a map.

Section 2 will provide more context by describing briefly the urban structure, transport system, the transport

administration, and the sustainable transport planning efforts of the city. The section should also address how the

city could benefit from using SUTI, why SUTI could be relevant.

Page 62: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

62

Section 3 will provide the city’s account of the process they went through to generate SUTI, including organization

of the process, general sources of information, calculations, reporting, and any difficulties experienced.

Section 4 describes the data collected for each indicator. Key sources should be mentioned, as well as calculations.

Any issues/gaps/deviations from protocol should be mentioned. The data material itself has a place as corresponding

sub-sheets of the SUTI Data Sheet that is to be submitted with the report. Please describe additional data collected

for gender analysis, use of renewable energy in public transport and impacts of COVID-19 on urban mobility.

Section 5 presents SUTI results and performance for the city, the aggregate SUTI number, and the SUTI diagram.

The city’s observations, interpretations and conclusions regarding the results are included here, as described in

section 4.2. Is the city performing well, less well, or mixed? Can the SUTI tell anything new, confirm what is known,

or provoke reflections?

Section 6 will contain analysis of urban mobility before and after COVID-19 and impacts of COVID-19 on urban

mobility with respect to use of public transport, travel restriction, health and safety measures used by PT, new policy

introduced to promote NMT, economic impacts and suggestions for future pandemic situations.

Section 7 will contain the city’s perspective on the SUTI process. Has the process been meaningful and manageable?

Did the communication and guidance work? How could the city use SUTI in the future? Which are the biggest

challenges to make the system effective – for example manpower, data, skills, lack of standards across countries,

political interest, or others? Include summary of COVID-19 impacts on mobility and policy measures taken by

cities/authorities.

4.4 Way forward

The overall purpose of SUTI is to help empower cities to better address sustainable transport planning challenges

via structured provision and use of targeted information.

The vision of SUTI is to accelerate this process by connecting two levels; the level of the individual city who will

continuously monitor and manage its transport performance with a focus on the key dimension of sustainability; and

the level of the ensemble of cities who will compare and learn from one another within an open system of

coordination supported by national governments, the United Nations and other international organizations.

The Committee on Transport in its 5th session held during 19 to 21 November 2018 at Bangkok, endorsed SUTI for

wider application in the region. In line with this effort will be made to encourage new cities to adopt SUTI and those

cities which have already adopted SUTI to undertake next round of application as a follow up.

Cities and national governments are key players in such a process and their participation and experience is therefore

essential to construct and operate a successful system.

Page 63: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

63

Annex 1: Report outline for Assessment of urban mobility using SUTI indicators and

impacts of COVID-19 on urban mobility

1. Introduction (define city area, population, outline map, basic facts).

2. State of urban transport systems and service (brief explanation of land use, main networks and systems,

key connections, major transport issues, urban transport situation, infrastructure, intermodal transfer

facilities/locations, congestion issues, urban transport policies, ongoing projects, etc.). Please include

current situation and impacts due to spread of COVID-19 on urban mobility.

3. Data collection approach for SUTI indicators and impacts of COVID-19 on mobility (brief explanation

of data collection approaches, officials met, main sources of information, preliminary survey,

interpretation, aggregation of data, panel, experts and city officials concurring with the input data on

various indicators – any other difficulties in data collection – how it was overcome)

4. Data for SUTI (key data – detail in Excel sheet)

a. Indicator 1

b. Indicator 2

c. Indicator 3

d. Indicator 4

e. Indicator 5

f. Indicator 6

g. Indicator 7

h. Indicator 8

i. Indicator 9

j. Indicator 10

k. Additional data on energy use, and gender and inclusiveness (public transport modes by adopting low

emission vehicles, in particular, use of sustainable/renewable fuels (electric vehicles/hybrid or bio

fuels) to decarbonize (share of renewable energy use by public transport), gender equality and

consideration for a differently-abled and aging society- priority seats for women, aged and differently

abled users).

5. Analysis of data (input data in Excel sheet and results)

a. Spider diagram (interpretation of results, observation etc.)

b. SUTI (interpretation of value, index numbers, observation etc.)

6. Impacts of COVID-19 on urban mobility (Public transport situation before COVID-19 and current

situation (Average daily vehicle km, daily passengers, monthly expenditure-total, manpower, fuel, monthly

revenue-fare & others), mobility restrictions, what is impact of mobility and public transport systems,

Page 64: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

64

cleanliness, hygiene and disinfection process of public transport, measures employed for safety and hygiene

of workers and commenters, change in frequency of operation, staggering seating arrangements, potential

financial implications (additional expenditure & reduced revenues) to the public transport operators, policy

measures taken by city/local government and public transport operators). City perspectives on Post-COVID-

19 mobility (role of public transport, IPT and other technology driven micro systems, NMT, personalized

transport) and strategies (investments and regulations).

7. Concluding remarks/recommendation to improve sustainability of urban mobility

a. Viewpoint on SUTI assessment and results

b. Views on decarbonization of public transport (energy/renewable energy use, inclusiveness-

addressing the concerns for gender equality and needs of differently abled and aged users),

c. Results of impacts of COVID-19 on urban mobility and policy measures

8. Useful references and persons, experts and officials met

9. Annexes: Useful data and material such as city transport plan, photographs of urban transport systems etc.

Page 65: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

65

Annex 2: Household Survey Questionnaire (to capture information required to

construct Indicators- 2, 4, 3, 6 & 10)

1. General Information

1.1 Respondent Name

1.2 Address

1.3 Contact Number

1.4 Interviewers name

1.5 Date and Time

2. Socio Economic Characteristics

2.1 No. of Household Members

2.2 No. of Workers (Employed)

2.3 No. of Students

2.4 Total Monthly Household Income (Local Currency)

2.5

Monthly HH Expenditure on Transportation (Local Currency)

Trip Purpose

Total

Trips

Amount

Spent

Daily

Amount

Spent

Monthly

Work

Education

Others

3. Vehicle Ownership Status

S. No Type of Vehicle Numbers Age of Vehicle Fuel Type

3.1 2 Wheelers (Scooter/Motor Cycle/Moped)

3.2 4 Wheelers (Car/Jeep/Taxi)

3.3 Three Wheelers (Auto rickshaw, Tuk-tuk etc.)

3.4 Bicycles

3.5 Others, Specify

Note: Please enter ‘0’ in case HHs do not own any vehicle.

Page 66: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

66

4. Trip Diary for Work, Education and Other Trips (to be collected for previous working

day)

Person

Number

Trip

No.

Trip

Origin

(Address)

Trip

Destination

(Address)

Trip

Purpose-

Work/

Education

/ Other

Mode

*

In

vehicle

Travel

time/

distance

to

destinatio

n

If public Transport/Auto/IPT

Min

Km

Access

mode

Access

time

Egress

mode

Egress

time

Mode*- Walk, Cycle, 2-Wheeler, 3 Wheeler, Car/Jeep, Bus, Rail, Other public transport, Other (specify)

5. Public Transport Quality & Reliability

(If respondent is using public transport for any of the work/education trips)

Please tick satisfaction level of public transport as below.

Dissatisfied Satisfied

Very Partly Partly Very

Dimension 1 2 3 4 5 6 7

Frequency of the service

Punctuality (delay)

Comfort and cleanliness of vehicles

Safety of vehicles

Convenience of stops/stations

Availability of information

Personnel courtesy

Fare level

Page 67: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

67

Annex 3: Public Transport Passengers Survey (to capture information required to

construct Indicators - 3 & 6)

1. General Information:

Area: Route No.: Operator’s Name:

2. Respondents Information:

Name of the Respondent: Age:

Occupation: Gender: Male/Female

Contact Info (if possible):

3. Purpose of Travel:

Purpose of Travel (tick the appropriate box)

Work Social

Education Entertainment/Leisure

Shopping Others

4. How satisfied are you with the Public Transport (Rate on 1–7 scale; please tick):

Dimension

Dissatisfied Satisfied

Very Partly Neutral Partly Very

1 2 3 4 5 6 7

Frequency of the service

Punctuality/Time schedule

Comfort and cleanliness

Safety

Convenience at bus stop

Availability of information

Courteous staff

Fare level

5. Monthly Average Household (hh) Income and hh Travel Expenditure (in local currency):

Income (monthly) Expenditure on travelling (monthly) % age income spent on travel

6. Number of trips you undertake in a day:

7. Suggestions regarding improvement of the service quality of public transport:

i.

ii

iii.

Name of the Surveyor: Contact No.

Date and Time of Survey: Signature

Page 68: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

68

Annex 4: Questionnaire for Public Transport Operators (to capture information

required to construct Indicators - 7 & 8)

1. General Information:

Area:

Name of the bus operator:

Year of registration:

Bus routes operated by the operator:

2. Respondents Information:

Name of the

Respondent:

Age:

Profession: Gender: Male/Female

Contact Info (if possible):

3. The total number of buses currently operated by the company: ...................................................

4. How many new buses did the operator induct for replacement or addition during the past five

years?

Year 5th 4th 3rd 2nd Previous

New buses

inducted

Price per bus

(local currency)

Total

Investments

5. Infrastructure developed by the company during the past five years?

5.1 How many depots have been developed by the company during the past five years? &

what was the total cost?

5.2 How many workshops have been developed by the company during the past five years? &

what was the total cost?

Page 69: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

69

5.3 How many terminals have been developed by the company during the past five years? &

what was the total cost?

5.4 Did the company develop bus stops during the past f i v e years? If yes, how many

& what was the total cost?

5.5 Did the company invest in ITS (PIS, Vehicle Tracking and Fare Collection Systems) during the past

five years? If yes, what is the magnitude of investment (collect details by agency): Description of

investments:

Total Costs:

5.6 Did the city invest in bicycle sharing or development of such bicycle infrastructure during the past

five years? If yes, what were the type, quantity and costs?

Year Description of Work Investment (local

currency)

Previous

2nd

3rd

4th

5th

5.7 Did the city invest in the development of pedestrian infrastructure during the past five years? If yes,

what were the type, quantity and costs?

Year Description of Work Investment (local

currency)

Previous

2nd

3rd

4th

5th

Page 70: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

70

6. Revenues each day/each month from each bus (in local currency):

Fare Revenues Other Operating Revenues

(from advertisement/subsidies)

Per day Last Month Total Last Month

7. Operating cost per month (in local currency):

Transportation Cost

(Fuel cost/driver’s and helper’s wages/regular

maintenance etc.)

Other Operating Cost

(Compensation for accidents, traffic law violation fine

etc.)

8. Please provide route details:

S. No

Route

Number

Path Details

No. of

buses

allocated

Total

frequency /

trips

• Add more rows if required

• Please attach a route map (if possible, in GIS/Cad)

9. Suggestions regarding improvements in the public transport sector:

Name of the Surveyor: Contact No.

Date and Time of Survey: Signature

Page 71: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

71

Annex 5: SUTI data collection strategy and progress review format

Sustainable Urban Transport Index Preparing

for SUTI Application and Analysis

Report on the proposed data collection strategy and progress

City:

Country:

Name of the officer/researcher responsible for the SUTI database: Designation:

Contact Details:

Address:

Email:

Mobile:

Page 72: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

72

Indicator 1: Extent to which transport plans cover public transport, intermodal facilities and

infrastructure for active modes

This indicator must be produced by undertaking a manual document review of the city’s most recent transport plan and scoring

it with a set of criteria defined for this indicator. This review involves designating an expert or a small expert team to read

and score the plan according to the criteria.

Time, manpower and independence should be secured for this process.

Is the city’s most recent (<10

years) transport plan available? If

yes, when was it

prepared/approved?

Expert(s) reviewing the document

(Name, Designation &

Affiliation)

i.

ii.

Indicator 2: Modal share of active and public transport in commuting

This ‘modal share’ indicator is of interest in many cities, but definitions vary, and data can be a problem. In case no data

exists, or existing ones are outdated (e.g. 10 years old or more), the city will need to derive new data on transport volumes

(trips) per mode. This may involve conducting some form of a travel survey, or using other methods, as described in Section

3.2. This can be a major task

Commuting trips using active and public travel modes: using a travel mode to and from work and education other than a

personal motorized vehicle.

A. Active Modes: ‘Active transport’ means cycling and walking.

We need to include share of cycle rickshaws as part of cycle and mention the share separately in a footnote.

B. Public transport: Includes public bus, BRT, tram, rail, scheduled ferry.

Please mention share of informal public transport & para transit separately in a footnote. These may include taxi or unofficial

motorized para-transit (auto-rickshaw, mini-bus, tuk-tuk etc. as well as school bus and company bus).

Is mode share data (<10 years)

available?

Page 73: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

73

Please indicate status of data

collection & the strategy you are

planning to adopt.

Result:

Indicator 3: Convenient access to public transport service

This indicator requires the combination of data for the density and frequency of the public transport (PT) service network,

and data for the number of citizens living in 500 m buffer zones of the main nodes in the network. There are different methods

to estimate this data as described in Section 3.3, but it may require some effort to derive data for both the PT frequency and

population inside the buffer zones.

Proportion (percentage) of the population that has convenient access to public transport, defined as living 500 meters

or less from a public transport stop with minimum 20-minute service.

Public transport is a shared passenger transport service available to the general public, excluding taxis, car pools, hired buses

and para-transit (same delimitation as used for public transport in indicator 2; active transport is not included here)

We need:

1. Population density map

2. Bus Flow Map (No. of bus trips/hour on the link)

Do we have a population density

map readily available for the

smallest spatial unit feasible

(ward/zone/...)?

Road Network Map

Bus Route Network &

Bus Frequency

Estimation of area and population

with PT access

Please provide status:

1. Density map available?

2. Route maps available?

Strategy & status

Page 74: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

74

Indicator 4: Public transport quality and reliability

This indicator is based on measuring the satisfaction of Public Transport users with the quality and reliability of the public

transport service. Any existing survey results may need to be updated, adjusted or re-interpreted to match the format defined

in this guidance. If no survey exists, a basic survey has to be prepared and conducted within a short time.

The degree to which passengers of the public transport system are satisfied with the quality of service while using

different modes of public transport.

This involves some practical survey work.

How satisfied are you with the following?

• Frequency of the service

• Punctuality (delay)

• Comfort and cleanliness of vehicles

• Safety of vehicles

• Convenience of stops/stations

• Availability of information

• Personnel courtesy

• Fare level

Sample size = 250–300 is desirable. Ensure gender and age group representation (at least 30% women).

Is there any survey available to

measure user satisfaction?

If not, what is the plan for carrying

out a survey?

Status of data collection

Page 75: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

75

Indicator 5: Traffic fatalities per 100,000 inhabitants

Traffic fatality numbers are available with the City Traffic Police. It is probably the most comprehensive secondary data

source. Data can usually be found in official statistics or hospital records.

Fatalities in traffic (road, rail

etc.) in the urban areas per

100,000 inhabitants. As defined

by the WHO, a death counts as

related to a traffic accident if it

occurs within 30 days after the

accident.

What is the definition adopted by

the city police?

Please collect time series data (5

years)

Strategy adopted & status

Indicator 6: Affordability – travel costs as part of income

The indicator needs data on costs for a monthly pass or similar to that of the PT network as well as statistical data on

income for different segments of the population.

Cost of a monthly network-wide public transport ticket covering all main modes in the city, compared to the mean

monthly income for the poorest quartile of the population of the city.

Data on:

1. Is there household income

available from other surveys

(recent)?

2. Transit Riders Survey

3. Minimum wage-based

assessment

4. Obtain average trip length

and fare for average trip

Strategy adopted & status of

data collection

Page 76: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

76

Indicator 7: Operational costs of the public transport system

This indicator needs to be derived from the accounting reports and data of public transport companies. It will likely be

necessary for some cities to consult public PT authority or company or individual operators to request the data.

1. Account statement/Audited

balance sheet for public

companies

2. Survey of operators

Strategy adopted & status of data

collection

Indicator 8: Investment in public transportation systems

The indicator uses data from public accounts of investments and spending. Some but unknown effort. (5-year data to be

averaged)

i. Investments in Bus Procurement

ii. Investments in Bus Infrastructure Development (Workshop, Depot, Terminal, Bus Stop)

iii. Investments in ITS (PIS, Vehicle Monitoring, Fare Collection Equipment & Infrastructure)

iv. Investments in Bicycle & Pedestrian Infrastructure

v. Investments in Infrastructure for Public Transport

- How many buses have been added in the city by public/private agencies during the past five years?

- How many depots have been developed by public/private agencies during the past five years? and what

is the unit cost?

- How many workshops have been developed by public/private agencies during the past five years? and

what is the unit cost?

- How many terminals have been developed by public/private agencies during the past five years? and

what is the unit cost?

- How many bus stops have been developed by public/private agencies during the past five years? and

what is the unit cost?

Status/strategy

Page 77: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

77

Indicator 9: Air quality (PM10)

The indicator used is population weighted air quality monitoring data reported to a national agency or WHO. May need

conversion from PM2.5 data if PM10 is not available. Should require limited effort.

1. Are there Air Quality Monitoring

Systems set up in the city?

Yes/No:

If yes, how many stations?

What is being monitored?

Remarks/Status

Indicator 10: GHG emissions from transport

GHG Emissions

Is an account or estimate of the

emissions of CO2 from transport in the

city available?

Yes/No:

If yes, data source:

Reference Year:

If not, a figure has to be calculated using

one of the following methods:

1. Modes (i) X daily trip length x

emission factors (i)

2. Indirectly from gasoline and diesel

sales. Petrol consumed x emission

factor + diesel consumption x

emission factor

i. Is data on mode-wise total trips and trip length available for both passenger and

goods vehicles?

Some indication of vintage information to indicate technology and mix of

vehicles by fuel type would be required.

Is such data available? Yes/No

ii. Is data on sale of petrol and diesel available? Yes/No

Any reasonable estimate on consumption of the same within and outside is

feasible? Yes/No

How is the city collecting data?

What is the status?

Page 78: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

78

Additional data

Energy: Energy/renewable energy use by public transport

Inclusiveness: Addressing the needs of gender equality and consideration for differently-abled and aging

society

Are the data related to energy use by public

transport available?

(public transport modes by adopting low emission

vehicles, in particular, use of sustainable/renewable

fuels (electric vehicles/hybrid or bio fuels) to

decarbonize (share of renewable energy use by

public transport),

Yes/No:

If yes, data source:

Reference Year:

Are information on gender and inclusive policy and

practice available Such as allocation of priority

seats, ease of riding, extending help to differently-

abled and aging society- priority seats for women,

aged and differently abled users, discounts, security

measures, polices to attract women as public

transport workers.

Yes/No:

If yes, data source:

Reference Year:

If not, various approaches need to be taken to

collect additional data

Review of reports, discussion with officials and

public transport operators,

Information on existing policies and future plan to

decarbonize public transport

Polices and future plan related to gender

dimensions, and concerns of the differently abled

and aging population

Page 79: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

79

Annex 6: Data collection strategy - Impacts of COVID-19 on Urban Mobility

1. Is/was your city locked down in response to spread of Covid-19 virus?

a. Yes/No

b. Dates please:

i. Full: xx-xx-xxxx to yy-yy-yyyy

ii. Partial: xx-xx-xxxx to yy-yy-yyyy

2. If your city is/was under lockdown, was the lockdown applied to entire city or to a few limited pockets? Few Pockets/

Full city ________

3. If your city/town is/was under lockdown, what types of restrictions are/were imposed on economic activities? (Tick

multiple answers)

Sl No Type of Restriction – In lock down areas Yes /No Remarks

1 Closure of factories

2 Closure of whole sale markets

3 Closure of retail markets

4 Closure of malls

5 Closure of offices

6 Closure of Schools

7 Banned Cultural/Social/ Religious gatherings/events

8 Limited size of gathering for socio-cultural, religious gatherings

4. If your city is/was under lockdown, what type of essential services are/were allowed to function? (Tick multiple

answers)

Sl No Type of Exemptions – In lock down areas Yes /No Remarks

1 Medical services

2 Surgeries

3 Public utilities such as water, drainage, sanitation, solid waste

4 Policing

5 Milk, Grocery, vegetables

6 Any others (Please give details)

--------------------------------------------------------------

5. If your city is/was under lockdown, what type of restrictions are/were imposed on mobility? (Tick multiple answers)

Sl No Type of Restriction Yes /No Remarks

1 No movement of people was allowed completely except emergencies

2 No movement of personalized vehicles allowed completely except

emergencies

3 No movement of Intermediary Public Transport/ Taxis/ Uber etc., allowed

completely except emergencies

4 No public transport was allowed to operate

5 No movement outside home for physical exercises/walking etc., was

allowed

Page 80: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

80

Sl No Type of Restriction Yes /No Remarks

6 Control on social/religious gathering

7 Social Distancing

8 Others – Pl specify

6. What were the measures, did the government (National/Provincial) used to promote compliance/manage control of

infection spreading? (Tick multiple answers)

Sl No Information dissemination methods Yes /No Remarks

1 National Media Announcements

2 Stay home campaign

3 Local Police Use

4 Military / para military force use

5 Others – Pl specify

7. Post lockdown, what are measures city/state/central governments have taken to enforce social distancing?

Sl No Measures Yes /No Remarks

1 Information campaign

2 Face masks compulsory

3 App based monitoring of users/staff

4 Disinfection of buses, depots, etc., multiple times a day

5 Regular health monitoring of staff

6 Others – Pl specify

8. Quantification of Impacts of COVID-19 on Public Transport

Sl.

No Description

Before

COVID-19

During

COVID-19

Post

COVID-19 Remarks

1 Total number of buses

2 Average daily buses on road

3 Average daily utilisation of

buses (Km/bus/day)

4 Average daily passengers on

board

5 Average revenue per day

6 Average expenditure per

day

9. Post lockdown, due to introduction of disinfection activities, are there additional costs to the operator?

a. Yes/ no

b. If yes, . __ % higher

10. Post lockdown, due to implementation of social distancing measures, is there a limit on the capacity of bus? If yes,

what are the implications on the revenue streams?

a. Yes/ no

b. If yes, __ % lower

11. Post lockdown, what measures have the city/state/central governments have extended additional support to public

transport agencies?

Page 81: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

81

1. Financial support – one time: ____________________________________________________

2. Long term financial support – one time: ____________________________________________

3. Restrictions on car use: _________________________________________________________

4. Taxes on Car/Personalized vehicles purchase ________________________________________

5. Taxes on Car/Personalized vehicles use _____________________________________________

6. Any others? __________________________________________________________________

________________________________________________________________________________

12. During lockdown, did the following gain popularity as alternative to access opportunities? (Tick multiple answers)

Sl

No

Type of Restriction – In lock

down areas

Popularity Level

1.Very High 2.High 3.Moderate 4.Low 5.Very Low/Nil

1 Online working

2 Online teaching

3. Online Meeting

4 Online shopping

4 Online services (Banks, etc.,)

5 Walk/Bicycle to work

6 Others – Pl specify

Some Details: _______________________________________________________________________

_______________________________________________________________________

13. Post lockdown, Post lockdown, how far/to what extent will people adopt the following practices in normal course of

daily life? (Tick appropriate level)

Sl

No

Type of Restriction – In lock

down areas

Popularity Level

1.Very High 2.High 3.Moderate 4.Low 5.Very Low/Nil

1 Online working

2 Online teaching

3. Online Meeting

4 Online shopping

4 Online services (Banks, etc.,)

5 Walk/Bicycle to work

6 Others – Pl specify

Some Details: _______________________________________________________________________

_______________________________________________________________________

14. What are the short / medium- and long-term responses being initiated by the City? Please list and provide details. The

initiatives may include preparation of a Covid-19 action plan, setting up of an advisory committee, developing

standard operating procedures, initiating preparation of urban transport resilience plan, urban transport disaster

management plan etc.,

Short Term initiatives:

________________________________________________________________________________

Page 82: Assessment of Urban Transport and Impacts of COVID-19 ... Data...7 2. Data needs and data collection in general 2.1 General procedure for all indicators A structured process to collect,

82

________________________________________________________________________________

Medium term initiatives:

________________________________________________________________________________

________________________________________________________________________________

Long term initiatives:

________________________________________________________________________________

________________________________________________________________________________

15. Any other important aspects/suggestions to be noted with regard to restarting and expanding of public transport, NMT

and walking in the city?

________________________________________________________________________________

________________________________________________________________________________