arcylic process stimulation lab report

21
UNIVERSITI TEKNOLOGI MARA FAKULTI KEJURUTERAAN KIMIA PROCESS SIMULATION LABORATORY (CPE613) No. Title Allocated Marks (%) Marks 1 Procedure 10 2 Process Flow Diagram (PFD) 20 3 Workbook 30 4 Questions & Discussions 40 TOTAL MARKS 100 Remarks: NAME : AINI SOFIA BINTI MD ISA (2013216222) FIERA NADILAH BINTI SUHAIMI (2013236696) NURUL SHAZANA BINTI MOHD ZAIN (2013646736) EXPERIMENT : AN ARCYCLIC PROCESS DATE PERFORMED : SEMESTER : 5 PROGRAM : EH 221 5A SUBMIT TO : DR. RAHIDA WATI

Upload: fera16

Post on 22-Jan-2016

13 views

Category:

Documents


0 download

DESCRIPTION

simulation lab report

TRANSCRIPT

Page 1: arcylic process stimulation lab report

UNIVERSITI TEKNOLOGI MARA

FAKULTI KEJURUTERAAN KIMIA

PROCESS SIMULATION LABORATORY

(CPE613)

No. Title Allocated Marks (%) Marks

1 Procedure 10  

2 Process Flow Diagram (PFD) 20  

3 Workbook 30  

4 Questions & Discussions 40  

TOTAL MARKS 100  

Remarks:

Checked by: Rechecked by:

------------------------------- ----------------------------------( ) ( )Date: Date:

NAME : AINI SOFIA BINTI MD ISA (2013216222) FIERA NADILAH BINTI SUHAIMI (2013236696) NURUL SHAZANA BINTI MOHD ZAIN (2013646736)

EXPERIMENT : AN ARCYCLIC PROCESSDATE PERFORMED : SEMESTER : 5PROGRAM : EH 221 5ASUBMIT TO : DR. RAHIDA WATI

Page 2: arcylic process stimulation lab report

TABLE OF CONTENT

PAGE

1. PROCEDURE 2-8

2. PROCESS FLOW DIAGRAM 9

3. WORKBOOK / STREAM SUMMARY 10-12

4. QUESTIONS AND ANSWERS 13

5. DISCUSSION 14

6. CONCLUSION 14

2

Page 3: arcylic process stimulation lab report

1. PROCEDURE

1. Firstly, a new icon project is started.

2. Then, the Advanced Peng Robinson for thermodynamic model is selected.

3. The component was selected which are n-Heptane, Hydrogen and Toluene.

3

Page 4: arcylic process stimulation lab report

4. The simulation is started, where a material stream feed of n-heptane is

created by going to the main flow sheet and Add Material Stream selected

through the Simulation Tree all shown in figure below.

5. The material feed stream known as stream 1 is composed with n-heptane of

flowrate 100 lbmol/hr at 650F and 101.325kPa.

6. Stream 1 then is connected to the heater E-1 to increase temperature from 65

0F to 800 0F.

4

Page 5: arcylic process stimulation lab report

7. Outlet stream is created after the reaction occurred in E-1.The outlet stream is

renamed as S2. The stream data can be seen as figure below.

8. The outlet product from S2 undergoes further reaction in the component

catalytic reactor in order to convert the reaction. The equipment named as R-

1.

9. In catalytic reactor R-1,it is desired to convert 15 mol% of n-heptane to

toluene. The figure below shows 15% of conversion is added.

5

Page 6: arcylic process stimulation lab report

10.Outlet stream is created after the reaction occured in R-1. The outlet stream is

renamed as S3.The stream data can be seen as figure below.

11. The outlet stream of S3 is connected to cooler C-1 to cool the mixture to 650F.

6

Page 7: arcylic process stimulation lab report

12.The outlet stream 4 S4 is created after the reaction in C-1.

13.The outlet stream of S4 is connected to flash separator V-1 to separate the mixture.

14. Outlet stream is created after the reaction occurred in V-1.The outlet stream is renamed as S5 and S6.The stream data can be seen as figure below.

7

Page 8: arcylic process stimulation lab report

]

8

Page 9: arcylic process stimulation lab report

2. PROCESS FLOW DIAGRAM

Figure 1: ARCYCLIC PROCESS SIMULATION

9

Page 10: arcylic process stimulation lab report

3. WORKBOOK / STREAM SUMMARY

TABLE 1: ADVANCED PENG-ROBINSON SUMMARY TABLE

                         Name FEED LIQUID_OUT S2 S3 S4 VAPOR_OUT

Description            

Upstream Op V-1.Liq0 E-1.Out R-2.Out E-2.Out V-1.Vap

Downstream Op E-1.In     R-2.In E-2.In V-1.In    

VapFrac 0.00 0.00 1.00 1.00 0.39156 1.00  

T [C] 18.3 18.3 426.7 426.7 18.3 18.3  

P [kPa] 101.32466 101.325 101.325 101.325 101.325 101.325  

MoleFlow/Composition Fraction kmol/h Fractionkmol/h Fraction kmol/h Fraction

kmol/h Fraction

kmol/h Fraction kmol/h

n-HEPTANE 1.0000 45.36 0.8488 37.48 1.0000 45.36 0.53125 38.56 0.53125 38.56 0.0378 1.07

HYDROGEN 0.0000 0.00 0.00052 0.02 0.0000 0.00 0.3750 27.22 0.3750 27.22 0.95691 27.19

TOLUENE 0.0000 0.00 0.15068 6.65 0.0000 0.00 0.09375 6.80 0.09375 6.80 0.00529 0.15

Total 1.00 45.36 1.00 44.16 1.00 45.36 1.00 72.57 1.00 72.57 1.00 28.42

Mass Flow [kg/h] 4545.08 4368.79 4545.08 4545.08 4545.08 176.29  

Volume Flow [m3/h] 6.607 6.165 2589.197 4159.447 685.980 679.815  

Std Liq Volume Flow [m3/h] 6.592 6.150 6.592 8.021 8.021 1.871  

Std Gas Volume Flow [Sm3/d] 2.579E+4 2.5107E+4 2.579E+4 4.1264E+4 4.1264E+4 1.6157E+4  

Energy [W] -9.779E+4 -1.247E+5 1.627E+6 1.686E+6 -5.528E+4 6.946E+4  

H [kJ/kmol] -7761.0 -10168.9 129119.1 83641.4 -2742.0 8798.9  

S [kJ/kmol-K] 197.474 156.879 502.459 353.165 156.153 155.023  

MW 100.20 98.94 100.20 62.63 62.63 6.20  

Mass Density [kg/m3] 687.8749 708.6145 1.7554 1.0927 6.6257 0.2593  

Cp [kJ/kmol-K] 214.775 204.155 315.982 199.144 137.667 34.350  

Thermal Conductivity [W/m-K] 0.1270 0.1281 0.0615 0.0929 0.1285 0.1381  

Viscosity [Pa-s] 4.1913E-4 4.4047E-41.3394E-

5 1.4702E-5 1.4343E-4 8.7405E-6  

Molar Volume [m3/kmol] 0.146 0.140 57.082 57.313 9.452 23.923  

Z Factor 0.0062 0.0059 0.9945 0.9983 0.3952 1.0001  

Surface Tension            

Speed of Sound                        

10

Page 11: arcylic process stimulation lab report

TABLE 2: WILSON SUMMARY TABLE

                         Name FEED LIQUID_OUT S2 S3 S4 VAPOR_OUT

Description            

Upstream Op V-1.Liq0 E-1.Out R-2.Out E-2.Out V-1.Vap

Downstream Op E-1.In     R-2.In E-2.In V-1.In    

VapFrac 0.00 0.00 1.00 1.00 0.39021 1.00  

T [C] 18.3 18.3 426.7 426.7 18.3 18.3  

P [kPa] 101.32466 101.325 101.325 101.325 101.325 101.325  

MoleFlow/Composition Fraction kmol/h Fractionkmol/h Fraction kmol/h Fraction

kmol/h Fraction

kmol/h Fraction kmol/h

n-HEPTANE 1.0000 45.36 0.84824 37.54 1.0000 45.36 0.53125 38.56 0.53125 38.56 0.0359 1.02

HYDROGEN 0.0000 0.00 0.00159 0.07 0.0000 0.00 0.3750 27.22 0.3750 27.22 0.95853 27.15

TOLUENE 0.0000 0.00 0.15018 6.65 0.0000 0.00 0.09375 6.80 0.09375 6.80 0.00557 0.16

Total 1.00 45.36 1.00 44.26 1.00 45.36 1.00 72.57 1.00 72.57 1.00 28.32

Mass Flow [kg/h] 4545.08 4373.97 4545.08 4545.08 4545.08 171.12  

Volume Flow [m3/h] 6.613 6.180 2604.737 4167.581 683.527 677.346  

Std Liq Volume Flow [m3/h] 6.592 6.161 6.592 8.021 8.021 1.861  

Std Gas Volume Flow [Sm3/d] 2.579E+4 2.5162E+4 2.579E+4 4.1264E+4 4.1264E+4 1.6102E+4  

Energy [W] -9.658E+4 -1.260E+5 1.629E+6 1.687E+6 -5.708E+4 6.894E+4  

H [kJ/kmol] -7665.5 -10251.3 129248.7 83689.9 -2831.5 8763.3  

S [kJ/kmol-K] 171.697 130.382 502.598 353.220 139.859 154.670  

MW 100.20 98.84 100.20 62.63 62.63 6.04  

Mass Density [kg/m3] 687.3041 707.7373 1.7449 1.0906 6.6495 0.2526  

Cp [kJ/kmol-K] 222.963 212.049 315.621 199.004 142.608 34.092  

Thermal Conductivity [W/m-K] 0.1270 0.1281 0.0615 0.0929 0.1285 0.1391  

Viscosity [Pa-s] 4.1913E-4 4.3820E-41.3394E-

5 1.4702E-5 1.4351E-4 8.7543E-6  

Molar Volume [m3/kmol] 0.146 0.140 57.425 57.425 9.418 23.918  

Z Factor 0.0061 0.0058 1.0000 1.0000 0.3938 1.0000  

Surface Tension            

Speed of Sound                        

11

Page 12: arcylic process stimulation lab report

TABLE 3: UNIQUAC SUMMARY TABLE

                         Name FEED LIQUID_OUT S2 S3 S4 VAPOR_OUT

Description            

Upstream Op V-1.Liq0 E-1.Out R-2.Out E-2.Out V-1.Vap

Downstream Op E-1.In     R-2.In E-2.In V-1.In    

VapFrac 0.00 0.00 1.00 1.00 0.39012 1.00  

T [C] 18.3 18.3 426.7 426.7 18.3 18.3  

P [kPa] 101.32466 101.325 101.325 101.325 101.325 101.325  

MoleFlow/Composition Fraction kmol/h Fractionkmol/h Fraction kmol/h Fraction

kmol/h Fraction

kmol/h Fraction kmol/h

n-HEPTANE 1.0000 45.36 0.84815 37.54 1.0000 45.36 0.53125 38.56 0.53125 38.56 0.03584 1.01

HYDROGEN 0.0000 0.00 0.00159 0.07 0.0000 0.00 0.3750 27.22 0.3750 27.22 0.95876 27.15

TOLUENE 0.0000 0.00 0.15027 6.65 0.0000 0.00 0.09375 6.80 0.09375 6.80 0.0054 0.15

Total 1.00 45.36 1.0000 44.26 1.00 45.36 1.00 72.57 1.00 72.57 1.00 28.31

Mass Flow [kg/h] 4545.08 4374.60 4545.08 4545.08 4545.08 170.48  

Volume Flow [m3/h] 6.613 6.181 2604.737 4167.581 683.366 677.185  

Std Liq Volume Flow [m3/h] 6.592 6.161 6.592 8.021 8.021 1.860  

Std Gas Volume Flow [Sm3/d] 2.579E+4 2.5166E+4 2.579E+4 4.1264E+4 4.1264E+4 1.6098E+4  

Energy [W] -9.658E+4 -1.261E+5 1.629E+6 1.687E+6 -5.715E+4 6.891E+4  

H [kJ/kmol] -7665.5 -10252.8 129248.7 83689.9 -2835.0 8761.4  

S [kJ/kmol-K] 171.697 130.356 502.598 353.220 139.845 154.679  

MW 100.20 98.83 100.20 62.63 62.63 6.02  

Mass Density [kg/m3] 687.3041 707.7501 1.7449 1.0906 6.6510 0.2518  

Cp [kJ/kmol-K] 222.963 212.042 315.621 199.004 142.612 34.072  

Thermal Conductivity [W/m-K] 0.1270 0.1281 0.0615 0.0929 0.1285 0.1393  

Viscosity [Pa-s] 4.1913E-4 4.3821E-41.3394E-

5 1.4702E-5 1.4355E-4 8.7534E-6  

Molar Volume [m3/kmol] 0.146 0.140 57.425 57.425 9.416 23.918  

Z Factor 0.0061 0.0058 1.0000 1.0000 0.3937 1.0000  

Surface Tension            

Speed of Sound                        

12

Page 13: arcylic process stimulation lab report

4. QUESTIONS AND ANSWERS

1. What is the phase of n-heptane at the inlet and outlet of the heater?

Phase of n-heptane at the inlet is in liquid phase, and of n-heptane at the inlet is at

gas phase.

2. What is the mole fraction for each component after conversion of 15% of n-

heptane?

The mole fraction for n-heptane is 0.53125, toluene is 0.09375 and hydrogen is

0.3750 after conversion of 15% of n-heptane.

3. What is the phase and temperature of the separator feed stream?

The phase of the separator feed stream is liquid stream and its temperature at

18.30C.

4. Determine the mole fraction for each component at the outlet of the separator?

Mole fraction for top product separator (gas phase)

n-heptane = 0.0378

toluene = 0.00529

hydrogen = 0.95691

Mole fraction for bottom product separator (liquid phase)

n-heptane = 0.8488

toluene = 0.15068

hydrogen = 0.00052

13

Page 14: arcylic process stimulation lab report

5. DISCUSSIONSIn this experiment, toluene was produced from n-heptane by dehydrogenation.

The objective of this experiment is to install and converged a conversion reactor as

well as this experiment is to simulate a process involving reaction and separation. A

stimulation of acrylic process was carried out using iCON stimulation software.

The thermodynamic models used are Advanced Peng-Robinson, Wilson and

UNIQUAC models. This different type of model are used for understanding of the

effects of odels calculation and the output details of the product. The thermodynamic

models were also known as the equation of state that describe the state of matter

under a certain set of physical conditions.

The equation are constitutive that provides a mathematical relationship between

two or more state function that associated with the matter such as temperature,

pressure, volume and internal energy. The inlet stream was n-heptane which

undergoes varies process to produce toluene. After the separation process, there

was no component of n-heptane.

From this experiment, we can also determine the conversion values by varies the

temperature inlet of the separator. Therefore, to achieved the 96% conversion after

the separation process, the temperature outlet from condenser will be varies. Thus,

we can conclude that as the temperature of the system decreased, the conversion

value will increase. An adjuster was added so that the model will adjust a target

variable until it reached a specified value.

6. CONCLUSION

To conclude this stimulation of an acyclic process where toluene was produced from

n-heptane by dehydrogenation it is shown that the mole fraction of each component

at the outlet stream for top product (gas phase) for n-heptane are 0.0378, toluene

are 0.00529 and hydrogen 0.95691. However the mole fraction at the outlet stream

for bottom product (liquid phase) are 0.8488 for n-heptane, 0.15068 for toluene and

0.00052 for hydrogen. However, the amount of toluene produces in liquid phase are

less than the other product which prove that it needs more purification process to

produce more pure toluene in the system.

14