applications typical application · 2020. 2. 1. · the ltc®5566 dual programmable gain...

28
LTC5566 1 5566f For more information www.linear.com/LTC5566 TYPICAL APPLICATION FEATURES DESCRIPTION 300MHz to 6GHz Dual Programmable Gain Downconverting Mixer The LTC ® 5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting. Each channel incorporates an active mixer and a digital IF VGA with 15.5dB gain control range. The IF gain of each channel is programmed in 0.5dB steps through the SPI. Programmable RF input tuning via the SPI or parallel control lines makes the device attractive for wideband radio applications. Furthermore, a reduced power mode is available, programmed through the SPI. Integrated RF transformers provide single-ended 50Ω in- puts. The differential LO input is designed for single-ended or differential drive. The differential IF output simplifies the interface to differential IF filters and amplifiers. The mixers are optimized for use up to 5GHz but may be used up to 6GHz with degraded performance. Dual Channel MIMO Receiver with Programmable 0.5dB Gain Steps LTC5566 Conversion Gain vs RF Frequency and IF Attenuation (0.5dB Gain Steps) APPLICATIONS n 4G and 5G MIMO Receivers n Diversity Receivers n Distributed Antenna Systems (DAS) n Network Test/Monitoring Equipment n Software-Defined Radios L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. n 12dB Power Conversion Gain n 35dBm Output IP3 n 15.5dB Range IF DVGA in 0.5dB Steps n Programmable RF Input Tuning n Reduced Power Mode n 3.3V Single Supply n Simple SPI for Fast Development n –40°C to 105°C Operation (T C ) n Very Small Solution Size n 32-Lead (5mm × 5mm) QFN Package RF INPUT FREQUENCY (GHz) 1.5 G C (dB) 14 12 8 4 10 6 –8 –6 –4 –2 0 2 3.5 2.5 4.5 5566 TA01b 5 3 2 4 BAND 0 RF TUNE IF = 153MHz SDI LTC5566 LPF 3.3V 3.3V 3.3V 3.3V BPF BPF 5566 TA01a IF1 IF1 + IF1 LO LO LTC6430 IF2 + IF2 IF2 LTC6430 LNA LNA CSB RF1 RF2 CLK SDO SPI BPF BPF LO LO + LO

Upload: others

Post on 19-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

15566f

For more information www.linear.com/LTC5566

Typical applicaTion

FeaTures DescripTion

300MHz to 6GHz DualProgrammable Gain

Downconverting Mixer

The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting. Each channel incorporates an active mixer and a digital IF VGA with 15.5dB gain control range. The IF gain of each channel is programmed in 0.5dB steps through the SPI.

Programmable RF input tuning via the SPI or parallel control lines makes the device attractive for wideband radio applications. Furthermore, a reduced power mode is available, programmed through the SPI.

Integrated RF transformers provide single-ended 50Ω in-puts. The differential LO input is designed for single-ended or differential drive. The differential IF output simplifies the interface to differential IF filters and amplifiers. The mixers are optimized for use up to 5GHz but may be used up to 6GHz with degraded performance.

Dual Channel MIMO Receiver with Programmable 0.5dB Gain Steps

LTC5566 Conversion Gain vs RF Frequency and IF Attenuation

(0.5dB Gain Steps)

applicaTions n 4G and 5G MIMO Receivers n Diversity Receivers n Distributed Antenna Systems (DAS) n Network Test/Monitoring Equipment n Software-Defined Radios L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear

Technology Corporation. All other trademarks are the property of their respective owners.

n 12dB Power Conversion Gain n 35dBm Output IP3 n 15.5dB Range IF DVGA in 0.5dB Steps n Programmable RF Input Tuning n Reduced Power Mode n 3.3V Single Supply n Simple SPI for Fast Development n –40°C to 105°C Operation (TC) n Very Small Solution Size n 32-Lead (5mm × 5mm) QFN Package

RF INPUT FREQUENCY (GHz)1.5

G C (d

B)

14

12

8

4

10

6

–8

–6

–4

–2

0

2

3.52.5 4.5

5566 TA01b

532 4

BAND 0 RF TUNEIF = 153MHz

SDI

LTC5566

LPF

3.3V

3.3V

3.3V

3.3V

BPF

BPF

5566 TA01a

IF1–

IF1+

IF1

LO

LO

LTC6430

IF2+

IF2–

IF2

LTC6430

LNA

LNA

CSB

RF1

RF2

CLK

SDO

SPI

BPF

BPF

LOLO+

LO–

Page 2: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

25566f

For more information www.linear.com/LTC5566

pin conFiguraTionabsoluTe MaxiMuM raTings

Supply Voltage (VDD, VCC1, VCC2, IF1+, IF1–, IF2+, IF2–) ...................................................................4VEN1, EN2, T0, T1 Input Voltages ......–0.3V to VCC + 0.3VLO+, LO– Input Power (150MHz to 6GHz) .......... +10dBmRF1, RF2 Input Power (300MHz to 6GHz) ..........+20dBmLO+, LO– DC Voltage ..............................................±0.5VIF DVGA Peak Differential Input Voltage ....................±4VSDI, CLK, CSB, PS Input Voltages ... –0.3V to VDD + 0.3VSDO Output Current ............................................. ±10mAOperating Temperature Range (TC) ........ –40°C to 105°CJunction Temperature (TJ) .................................... 150°CStorage Temperature Range .................. –65°C to 150°C

(Notes 1, 2)

9 10 11 12

TOP VIEW

33GND

UH PACKAGE32-LEAD (5mm × 5mm) PLASTIC QFN

13 14 15 16

32 31 30 29 28 27 26 25

17

18

19

20

21

22

23

24

8

7

6

5

4

3

2

1GND

RF1

CSB

CLK

SDI

SDO

RF2

GND

IF1+

IF1–

VDD

LO+

LO–

PS

IF2–

IF2+

T1 MO1

MO1

+

V CC1

EN1

AI1+

AI1–

GND

T0

MO2

MO2

+

V CC2

EN2

AI2+

AI2–

GND

TJMAX = 150°C, θJC = 7.7°C/W

EXPOSED PAD (PIN 33) IS GND, MUST BE SOLDERED TO PCB

LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION CASE TEMPERATURE RANGE

LTC5566IUH#PBF LTC5566IUH#TRPBF 5566 32-Lead (5mm × 5mm) Plastic QFN –40°C to 105°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.

elecTrical characTerisTicsPARAMETER CONDITIONS MIN TYP MAX UNITS

Supply Voltage (VCC) l 3.0 3.3 3.6 VSPI Supply Voltage (VDD) l 1.6 3.6 VSupply Current (ICC) One Channel, Full Power Mode

Both Channels, Full Power Mode One Channel, Reduced Power Mode Both Channels, Reduced Power Mode Shutdown

l

192 384 147 294 1.2

225 450

1.9

mA mA mA mA mA

SPI Supply Current (IDD) Operating: CSB = Low, fCLK =10MHz Idle: CSB = High

0.2 10

1 mA µA

Enable and RF Tuning Logic Inputs (EN1, EN2, T0, T1) Internal Pull-Down Resistors on Each PinInput High Voltage (On) l 1.4 VInput Low Voltage (Off) l 0.5 VInput Current VIN = VCC = 3.6V 100 µAEnable Turn-On Time 0.3 µsEnable Turn-Off Time 0.1 µsRF Input Tuning Parallel Select Logic Input (PS) Internal Pull-Down ResistorInput High Voltage (Parallel Enabled) l 0.7 • VDD VInput Low Voltage (Serial Enabled) l 0.3 • VDD VInput Current VIN = VDD = 3.6V 50 µA

The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = VDD = 3.3V. Test circuit shown in Figure 1. (Note 2)

orDer inForMaTion(http://www.linear.com/product/LTC5566#orderinfo)

Page 3: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

35566f

For more information www.linear.com/LTC5566

elecTrical characTerisTics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = VDD = 3.3V. Test circuit shown in Figure 1. (Notes 3, 6)PARAMETER CONDITIONS MIN TYP MAX UNITS

SPI Port Logic Inputs (CSB, CLK, SDI)

Input High Voltage l 0.7 • VDD V

Input Low Voltage l 0.3 • VDD V

Input Current VIN = VDD = 3.6V 25 µA

Input Hysteresis 200 mV

SPI Port Logic Output (SDO)

Output High Voltage ISOURCE = 3mA l VDD – 0.4V V

Output Low Voltage ISINK = 3mA l 0.4 V

Output Leakage Current VCSB = VDD = 3.6V ±20 µA

SPI Port Timing

SDI Setup Time 5 ns

SDI Hold Time 10 ns

CLK Falling to SDO Valid Time CSDO = 20pF 15 ns

SDO Rise/Fall Time CSDO = 20pF 5 ns

SDO Enable Time 10 ns

SDO Disable Time 10 ns

CSB Setup Time 15 ns

CSB Hold Time 5 ns

CLK Frequency CSDO = 20pF 20 MHz

ac elecTrical characTerisTics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN1, EN2 = High, PLO = 0dBm. Test circuit shown in Figure 1. (Notes 3, 4, 5)

PARAMETER CONDITIONS MIN TYP MAX UNITS

RF Input Frequency Range External Matching Required l 300 to 6000 MHz

LO Input Frequency Range l 150 to 6000 MHz

IF Output Frequency Range External Matching Required l 1 to 500 MHz

1dB IF Gain Rolloff Relative to 100MHz Gain 400 MHz

IF Gain Error at 150MHz Differential; Between Any Two 0.5dB Atten Steps Integral; Over Entire 15.5dB IF Atten Range

±0.06 0.3

dB dB

IF Phase Error IF = 150MHz, Full 15.5dB Atten Range IF = 350MHz, Full 15.5dB Atten Range

2.4 5.5

Deg Deg

LO Input Return Loss Single-Ended, ZO = 50Ω, 150MHz to 6000MHz >10 dB

LO Input Power Single-Ended or Differential l –6 0 6 dBm

Mixer IF Output Impedance Differential, 10MHz to 400MHz 300Ω || 1pF R || C

IF DVGA Input Impedance Differential, 10MHz to 400MHz 300Ω || 1pF R || C

IF DVGA Output Impedance Differential, 10MHz to 400MHz 206Ω || 1pF R || C

RF to LO Isolation RF = 300MHz to 1000MHz RF = 1000MHz to 3800MHz RF = 3800MHz to 6000MHz

>68 >50 >40

dB dB dB

RF to Unbalanced IF Port Isolation RF = 300MHz to 900MHz RF = 900MHz to 6000MHz

>32 >54

dB dB

LO to Unbalanced IF Port Leakage LO = 300MHz to 800MHz LO = 800MHz to 6000MHz

<–33 <–43

dBm dBm

Page 4: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

45566f

For more information www.linear.com/LTC5566

ac elecTrical characTerisTics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = VDD = 3.3V, EN1, EN2 = High, PRF = –8dBm/Tone, PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 3, 4, 5)

Band 0 (See Figure 1): RF = 4.5GHz, IF = 153MHz, Low Side LO

PARAMETER CONDITIONS

FULL PWR REDUCED PWR

UNITSMIN TYP MAX TYP

RF Input Return Loss ZO = 50Ω, 3.1GHz to 5.1GHz >10 >10 dB

Power Conversion Gain 0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

10.6 4.5

–1.6

10.3 4.2

–1.9

dB dB dB

Conversion Gain Flatness RF = 4.5GHz ±100MHz, LO = 4.35GHz ±0.4 ±0.4 dB

Conversion Gain vs Temperature TC = –40°C to 105ºC l –0.014 –0.014 dB/°C

Two-Tone Input 3rd Order Intercept (ΔfRF = 2MHz)

0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

22.0 23.6 24.1

17.8 18.7 18.9

dBm dBm dBm

Two-Tone Input 2nd Order Intercept (ΔfRF = 154MHz = fIM2)

0dB to 15.5dB IF ATTEN 50 46 dBm

SSB Noise Figure 0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

16.3 17.8 21.1

15.2 17.1 20.9

dB dB dB

LO to RF Leakage LO = 3.1GHz to 5.2GHz <–42 <–42 dBm

Input 1dB Compression 0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher

7.0 9.6

11.2 11.5

6.4 8.9

10.3 10.6

dBm dBm dBm dBm

Channel-to-Channel Isolation RF = 4.5GHz 40 40 dB

RF = 3.6GHz, IF = 153MHz, Low Side LO

PARAMETER CONDITIONS

FULL PWR REDUCED PWR

UNITSMIN TYP MAX TYP

Power Conversion Gain 0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

11.8 5.7

–0.4

11.5 5.4

–0.7

dB dB dB

Conversion Gain Flatness RF = 3.6GHz ±100MHz, LO = 3.45GHz ±0.45 ±0.45 dB

Conversion Gain vs Temperature TC = –40°C to 105ºC l –0.012 –0.012 dB/°C

Two-Tone Input 3rd Order Intercept (ΔfRF = 2MHz)

0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

22.0 24.5 25.5

18.4 19.9 20.3

dBm dBm dBm

Two-Tone Input 2nd Order Intercept (ΔfRF = 154MHz = fIM2)

0dB to 15.5dB IF ATTEN 60 55 dBm

SSB Noise Figure 0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

13.8 15.4 18.8

12.7 14.8 18.6

dB dB dB

LO to RF Leakage LO = 3.1GHz to 5.2GHz <–42 <–42 dBm

Input 1dB Compression 0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher

6.0 8.8

10.7 11.5

5.4 8.2

10.1 10.6

dBm dBm dBm dBm

Channel-to-Channel Isolation RF = 3.6GHz 51 51 dB

Page 5: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

55566f

For more information www.linear.com/LTC5566

ac elecTrical characTerisTics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = VDD = 3.3V, EN1, EN2 = High, PRF = –8dBm/Tone, PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 3, 4, 5)

Band 1 (See Figure 1): RF = 2.6GHz, IF = 153MHz, High Side LO

PARAMETER CONDITIONS

FULL PWR REDUCED PWR

UNITSMIN TYP MAX TYP

RF Input Return Loss ZO = 50Ω, 1.8GHz to 4.4GHz >12 >12 dB

Power Conversion Gain 0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN

6.8

11.8 8.8 5.8 2.7

–0.3 –3.4

11.5 8.4 5.4 2.4

–0.7 –3.7

dB dB dB dB dB dB

Conversion Gain Flatness RF = 2.6GHz ±100MHz, LO = 2.75GHz ±0.5 ±0.5 dB

Conversion Gain vs Temperature TC = –40°C to 105ºC l –0.013 –0.013 dB/°C

Two-Tone Input 3rd Order Intercept (ΔfRF = 2MHz)

0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN

23.2 24.6 26.0 26.8 27.6 28.0

19.5 20.6 21.2 21.4 21.4 21.4

dBm dBm dBm dBm dBm dBm

Two-Tone Output 3rd Order Intercept (ΔfRF = 2MHz)

0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN

35.0 33.4 31.8 29.5 27.3 24.6

31.0 29.0 26.6 23.8 20.7 17.7

dBm dBm dBm dBm dBm dBm

Two-Tone Input 2nd Order Intercept (ΔfRF = 154MHz = fIM2)

0dB to 15.5dB IF ATTEN 59 54 dBm

SSB Noise Figure 0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN

13.3 14.1 15.3 17.0 19.3 21.7

13.0 14.0 15.3 17.2 19.5 22.1

dB dB dB dB dB dB

SSB Noise Figure Under Blocking (2.5GHz Blocker)

+2dBm BLOCKER, 3dB IF ATTEN +5dBm BLOCKER, 3dB IF ATTEN

18.7 21.1

18.3 20.9

dB dB

LO to RF Leakage LO = 1.6GHz to 4GHz <–45 <–45 dBm

1/2 IF Output Spurious Product (fRF Offset to Produce Spur at fIF = 153MHz)

fRF = 2676.5MHz, PRF = –6dBm 0dB to 15.5dB IF ATTEN

–71 –69 dBc

1/3 IF Output Spurious Product (fRF Offset to Produce Spur at fIF = 153MHz)

fRF = 2702MHz, PRF = –6dBm 0dB to 15.5dB IF ATTEN

–65 –60 dBc

Input 1dB Compression 0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher

6.2 9.2

11.5 12.6

5.6 8.6

10.9 11.6

dBm dBm dBm dBm

Output 1dB Compression 0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN

17.0 17.0 16.3 14.3

16.1 16.0 15.3 13.0

dBm dBm dBm dBm

Channel-to-Channel Isolation RF = 2.6GHz 49 49 dB

Page 6: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

65566f

For more information www.linear.com/LTC5566

ac elecTrical characTerisTics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = VDD = 3.3V, EN1, EN2 = 3.3V, PRF = –8dBm/Tone, PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 3, 4, 5)

Band 2 (See Figure 1): RF = 1.9GHz, IF = 153MHz, High Side LO

PARAMETER CONDITIONS

FULL PWR REDUCED PWR

UNITSMIN TYP MAX TYP

RF Input Return Loss ZO = 50Ω, 1.3GHz to 3.9GHz >10 >10 dB

Power Conversion Gain 0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN

11.9 8.8 5.8 2.8

–0.3 –3.3

11.6 8.5 5.5 2.5

–0.5 –3.6

dB dB dB dB dB dB

Conversion Gain Flatness RF = 1.9GHz ±100MHz, LO = 2.05GHz ±0.5 ±0.5 dB

Conversion Gain vs Temperature TC = –40°C to 105ºC l –0.013 –0.013 dB/°C

Two-Tone Input 3rd Order Intercept (ΔfRF = 2MHz)

0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN

22.6 23.9 25.4 26.1 26.3 26.5

19.8 21.2 22.0 22.3 22.4 22.5

dBm dBm dBm dBm dBm dBm

Two-Tone Output 3rd Order Intercept (ΔfRF = 2MHz)

0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN

34.5 32.7 31.2 28.9 26.0 23.2

31.4 29.7 27.5 24.8 21.9 18.9

dBm dBm dBm dBm dBm dBm

Two-Tone Input 2nd Order Intercept (ΔfRF = 154MHz = fIM2)

0dB to 15.5dB IF ATTEN 57 53 dBm

SSB Noise Figure 0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN

13.0 13.9 15.2 17.0 19.3 21.8

12.1 13.2 14.7 16.7 19.2 21.8

dB dB dB dB dB dB

SSB Noise Figure Under Blocking (1.8GHz Blocker)

+2dBm BLOCKER, 3dB IF ATTEN +5dBm BLOCKER, 3dB IF ATTEN

17.6 20.4

17.4 20.0

dB dB

LO to RF Leakage LO = 1.1GHz to 3.5GHz <–47 <–47 dBm

1/2 IF Output Spurious Product (fRF Offset to Produce Spur at fIF = 153MHz)

fRF = 1976.5MHz, PRF = –6dBm 0dB to 15.5dB IF ATTEN

–67 –65 dBc

1/3 IF Output Spurious Product (fRF Offset to Produce Spur at fIF = 153MHz)

fRF = 2002MHz, PRF = –6dBm 0dB to 15.5dB IF ATTEN

–71 –65 dBc

Input 1dB Compression 0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher

6.1 9.2

11.7 13.3

5.4 8.5

10.9 12.0

dBm dBm dBm dBm

Output 1dB Compression 0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN

17.0 17.0 16.5 15.1

16.0 16.0 15.4 13.5

dBm dBm dBm dBm

Channel-to-Channel Isolation RF = 1.9GHz 50 50 dB

Page 7: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

75566f

For more information www.linear.com/LTC5566

ac elecTrical characTerisTics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = VDD = 3.3V, EN1, EN2 = High, PRF = –8dBm/Tone, PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 3, 4, 5)

Band 3 (See Figure 1): RF = 850MHz, IF = 153MHz, High Side LO

PARAMETER CONDITIONS

FULL PWR REDUCED PWR

UNITSMIN TYP MAX TYP

RF Input Return Loss ZO = 50Ω, 700MHz to 1.3GHz >10 >10 dB

Power Conversion Gain 0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

12.2 6.1 0

11.8 5.7

–0.4

dB dB dB

Conversion Gain Flatness RF = 850MHz ±75MHz, LO = 1050MHz ±0.3 ±0.3 dB

Conversion Gain vs Temperature TC = –40°C to 105ºC l –0.014 –0.014 dB/°C

Two-Tone Input 3rd Order Intercept (ΔfRF = 2MHz)

0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

22.0 24.7 26.2

19.5 22.3 23.3

dBm dBm dBm

Two-Tone Input 2nd Order Intercept (ΔfRF = 154MHz = fIM2)

0dB to 15.5dB IF ATTEN 60.0 56.5 dBm

SSB Noise Figure 0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

12.6 14.9 19.1

12.1 14.7 19.2

dB dB dB

LO to RF Leakage LO = 300MHz to 1.5GHz <–60 <–60 dBm

Input 1dB Compression 0dB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher

5.8 8.8

11.5 13.3

5.1 8.2

10.6 11.9

dBm dBm dBm dBm

Channel-to-Channel Isolation RF = 850MHz 50 50 dB

Band 4 (See Figure 1): RF = 450MHz, IF = 153MHz, High Side LO

PARAMETER CONDITIONS

FULL PWR REDUCED PWR

UNITSMIN TYP MAX TYP

RF Input Return Loss ZO = 50Ω, 390MHz to 530MHz >10 >10 dB

Power Conversion Gain 0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

11.7 5.6

–0.5

11.1 5.0

–1.1

dB dB dB

SSB Noise Figure 0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

13.8 15.9 19.9

13.6 15.9 20.1

dB dB dB

Two-Tone Input 3rd Order Intercept (ΔfRF = 2MHz)

0dB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN

21.8 24.1 25.0

19.4 21.7 22.6

dBm dBm dBm

Channel-to-Channel Isolation RF = 450MHz 57 57 dB

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.Note 2: The mixer output pins on this device are sensitive to ESD greater than 750V (HBM). Proper ESD handling precautions must be observed. All other pins withstand 2kV.Note 3: The LTC5566 is guaranteed functional over the –40°C to 105°C case temperature range.

Note 4: SSB Noise Figure measured with a small-signal noise source, bandpass filter and 2dB matching pad on RF input, and bandpass filter on the LO input.Note 5: Channel-to-channel isolation is defined as the relative IF output power of channel 2 to channel 1, with the RF input signal applied to RF1 while the RF2 input is 50Ω terminated. Both channels are enabled and programmed for 3dB IF attenuation.Note 6: SPI timing guaranteed by design, not subject to test.

Page 8: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

85566f

For more information www.linear.com/LTC5566

Typical perForMance characTerisTics Test circuit shown in Figure 1. PRF = –8dBm/Tone, ∆f = 2MHz, PLO = 0dBm, VCC = 3.3V, VDD = 3.3V, TC = 25°C, unless otherwise noted.

Band 0: RF = 3.6GHz and 4.5GHz, IF = 153MHz, Low Side LO

Conv Gain and IIP3 vs RF Frequency0dB, 6dB and 12dB IF Attenuation

SSB NF vs RF Frequency 0dB, 6dB and 12dB IF Attenuation

RF Isolation and LO Leakage vs Frequency

3.6GHz Conv Gain, IIP3 and SSB NFvs LO Power and Case Temperature

3.6GHz Conv Gain, IIP3 and SSB NF vs IF Attenuation (0.5dB Steps)

3.6GHz Conv Gain vs IF Frequency and Attenuation, Swept RF/Fixed LO

4.5GHz Conv Gain, IIP3 and SSB NF vs LO Power and Case Temperature

4.5GHz Conv Gain, IIP3 and SSB NF vs IF Attenuation (0.5dB Steps)

4.5GHz Conv Gain vs IF Frequency and Attenuation, Swept RF/Fixed LO

RF FREQUENCY (GHz)3.1

G C (d

B), I

IP3

(dBm

)

27

23

15

7

19

11

3

–1

–54.3 4.7

5566 G01

5.13.93.5

0dB

IIP3

GC0dB

6dB

12dB

6dB12dB

FULL POWER MODE

RF FREQUENCY (GHz)3.1

SSB

NF (d

B)

24

22

16

20

18

14

124.3 4.7

5566 G02

5.13.93.5

0dB

6dB

12dB

FULL POWER MODE

RF/LO FREQUENCY (GHz)2.9

ISOL

ATIO

N (d

B)

80

70

20

60

50

40

30

10

0

LO LEAKAGE (dBm)

20

10

–40

0

–10

–20

–30

–50

–604.1 4.5 4.9

5566 G03

5.33.73.3

3dB IF ATTENUATIONFULL POWER MODE

RF –LOISOLATION

LO –RF

RF –IF+ OR RF –IF–

(UNBALANCED)

CHANNELISOLATION

LO –IF+ OR LO –IF–

(UNBALANCED)

LO INPUT POWER (dBm)–6

G C (d

B), I

IP3

(dBm

), NF

(dB)

25

21

23

11

19

17

15

13

9

70 2 4

5566 G04

6–2–4

GC

NF

IIP3

TC = –40°CTC = 25°CTC = 85°C

3dB IF ATTENUATIONFULL POWER MODE

IF ATTENUATION (dB)0

G C (d

B), I

IP3

(dBm

), NF

(dB)

28

22

25

7

19

16

13

10

4

–5

1

–2

6 8 10 12 14

5566 G05

1642

GC

FULL POWERREDUCED POWER

NF

IIP3

IF FREQUENCY (MHz)50

CONV

GAI

N (d

B)

12

10

0

8

6

4

2

–2

–8

–4

–6

150 200 250 300

5566 G06

350100

0dB

RF = 3.5GHz TO 3.8GHzLO = 3.45GHzFULL POWER MODE

3dB

6dB

9dB

12dB

15dB

LO INPUT POWER (dBm)–6

G C (d

B), I

IP3

(dBm

), NF

(dB)

24

20

22

10

18

16

14

12

8

60 2 4

5566 G07

6–2–4

GC

NFIIP3

TC = –40°CTC = 25°CTC = 85°C

3dB IF ATTENUATIONFULL POWER MODE

IF ATTENUATION (dB)0

G C (d

B), I

IP3

(dBm

), NF

(dB)

25

19

22

4

16

13

10

7

1

–8

–2

–5

6 8 10 12 14

5566 G08

1642

GC FULL POWERREDUCED POWER

NF

IIP3

IF FREQUENCY (MHz)50

CONV

GAI

N (d

B)

11

9

–1

7

5

3

1

–3

–9

–5

–7

150 200 250 300

5566 G09

350100

RF = 4.35GHz TO 4.65GHzLO = 4.3GHzFULL POWER MODE

3dB

6dB

9dB

12dB

15dB

0dB

Page 9: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

95566f

For more information www.linear.com/LTC5566

Typical perForMance characTerisTics Test circuit shown in Figure 1. PRF = –8dBm/Tone, ∆f = 2MHz, PLO = 0dBm, VCC = 3.3V, VDD = 3.3V, TC = 25°C, unless otherwise noted.

Band 1: RF = 2.6GHz, IF = 153MHz, High Side LO

Conv Gain and IIP3 vs RF Frequency0dB, 6dB and 12dB IF Attenuation

SSB NF vs RF Frequency 0dB, 6dB and 12dB IF Attenuation

Conv Gain vs IF Frequency and IF Attenuation, Swept RF/Fixed LO

2.6GHz Conv Gain, IIP3 and SSB NFvs LO Power and Case Temperature

2.6GHz Conv Gain, IIP3 and SSB NFvs IF Attenuation (0.5dB Steps)

2.6GHz RF Input and IF Output P1dBvs IF Attenuation

Isolation vs RF Frequency LO Leakage vs LO Frequency 2.6GHz Conv Gain, IIP3, NF andRF Input P1dB vs Temperature

RF FREQUENCY (GHz)1.8

G C (d

B), I

IP3

(dBm

)

30

27

21

15

12

9

6

24

18

3

0

–33 3.4

5566 G10

3.82.62.2

IIP3

GC

0dB

6dB

12dB

6dB

12dB

FULL POWER MODE

0dB

RF FREQUENCY (GHz)1.8

SSB

NF (d

B)

22

20

14

18

16

12

103 3.4

5566 G11

3.82.62.2

6dB

12dB

FULL POWER MODE

0dB

IF FREQUENCY (MHz)50

CONV

GAI

N (d

B)

12

10

0

8

6

4

2

–2

–8

–4

–6

150 200 250 300

5566 G12

350100

RF = 2.4GHz TO 2.7GHzLO = 2.75GHzFULL POWER MODE

3dB

6dB

9dB

12dB

15dB

0dB

LO INPUT POWER (dBm)–6

G C (d

B), I

IP3

(dBm

), NF

(dB)

25

21

23

11

19

17

15

13

9

70 2 4

5566 G13

6–2–4

GC

NF

IIP3 TC = –40°CTC = 25°CTC = 85°C

3dB IF ATTENUATIONFULL POWER MODE

IF ATTENUATION (dB)0

G C (d

B), I

IP3

(dBm

), NF

(dB)

31

22

2528

7

19

1613

10

4

–5

1–2

6 8 10 12 14

5566 G14

1642

GC

FULL POWERREDUCED POWER

IIP3

NF

IF ATTENUATION (dB)0

P1dB

(dBm

)

19

15

17

9

13

11

5

7

6 8 10 12 14

5566 G15

1642

FULL POWERREDUCED POWER

IFOUTP1dB

RFINP1dB

RF FREQUENCY (GHz)1.8

ISOL

ATIO

N (d

B)

90

80

70

60

50

40

303 3.4

5566 G16

3.82.62.2

3dB IF ATTENUATIONFULL POWER MODE

RF –LO

RF –IF+ OR RF –IF–

(UNBALANCED)

CHANNEL ISOLATION

LO FREQUENCY (GHz)1.6

LO L

EAKA

GE (d

Bm)

–20

–30

–40

–50

–60

–702.8 3.2 3.6

5566 G17

42.42

LO –RF

LO –IF+ OR LO –IF–

(UNBALANCED)

3dB IF ATTENUATIONFULL POWER MODE

CASE TEMPERATURE (°C)–45

G C (d

B), N

F (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

25

23

21

19

17

15

13

11

9

745 75

5566 G18

10515–15

3dB IF ATTENUATIONFULL POWER MODE

IIP3

NF

GC INPUT P1dB

Page 10: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

105566f

For more information www.linear.com/LTC5566

Typical perForMance characTerisTics Test circuit shown in Figure 1. PRF = –8dBm/Tone, ∆f = 2MHz, PLO = 0dBm, VCC = 3.3V, VDD = 3.3V, TC = 25°C, unless otherwise noted.

Band 1: RF = 2.6GHz, IF = 153MHz, High Side LO

2-Tone IF Output Power, IM3 and IM5 vs RF Input Power

Single-Tone IF Output Power, 2 × 2 and 3 × 3 Spurs vs RF Input Power

2 × 2 and 3 × 3 Spur Suppressionvs LO Power

VCC Supply Current vs Supply Voltage (Both Channels Enabled) SSB NF vs RF Blocker Power

2.6GHz Conv Gain IIP3 and SSB NF vs Supply Voltage and Case Temperature

RF INPUT POWER (dBm)–15

OUTP

UT P

OWER

(dBm

)

20

0

10

–20

–10

–40

–30

–60

–70

–50

–90

–80

–6 –3 0 3 6 9

5566 G20

12–9–12

IFOUT(RF = 2.6GHz)

3LO –3RF(RF = 2702MHz)

2LO –2RF(RF = 2676.5MHz)

LO = 2753MHz6dB IF ATTENUATIONFULL POWER MODE

LO POWER (dBm)–6

RELA

TIVE

SPU

R LE

VEL

(dBc

)

–50

–55

–60

–65

–70

–75

–800 2 4

5566 G21

6–2–4

TC = –40°CTC = 25°CTC = 85°C

LO = 2753MHzPRF = –6dBm6dB IF ATTENUATIONFULL POWER MODE

3LO –3RF(RF = 2702MHz)

2LO –2RF(RF = 2676.5MHz)

VCC SUPPLY VOLTAGE (V)3

SUPP

LY C

URRE

NT (m

A)

450

425

400

350

375

325

300

275

2503.3 3.4 3.5

5566 G22

3.63.23.1

FULLPOWER

105°C85°C55°C

25°C–10°C–40°C

REDUCEDPOWER

RF BLOCKER POWER (dBm)–18

SSB

NF (d

B)

24

22

20

18

16

14

12

10–6 –2 2

5566 G23

6–10–14

RF = 2.6GHzBLOCKER = 2.5GHzLO = 2753MHzIF ATTENUATION = 3dBFULL POWER MODE

PLO = –3dBm

PLO = 0dBm

PLO = 3dBm

VCC SUPPLY VOLTAGE (V)3

G C (d

B), N

F (d

B), I

IP3

(dBm

)

27

21

23

25

11

19

17

15

13

9

73.3 3.4 3.5

5566 G24

3.63.23.1

GC

NF

TC = –40°CTC = 25°CTC = 85°C

3dB IF ATTENUATIONFULL POWER MODE

IIP3

RF INPUT POWER (dBm/TONE)

OUTP

UT P

OWER

(dBm

/TON

E)

20

0

10

–20

–10

–40

–30

–60

–70

–50

–80–8 –6 –4 –2 0 2 4

5566 G19

6–10–12

IM3

IM5

RF1 = 2599MHzRF2 = 2601MHzLO = 2753MHz6dB IF ATTENUATIONFULL POWER MODE

IFOUT

7.6 8 8.4 8.8 9.2 9.6 100

DIST

RIBU

TION

(%)

35

25

20

15

10

5

30

45

40

CONVERSION GAIN (dB)5566 G25

3dB IF ATTENUATIONFULL POWER MODE

85°C 25°C–40°C

22.5 23.523 24 24.5 25 25.5 260

DIST

RIBU

TION

(%)

25

20

15

10

5

30

IIP3 (dBm)5566 G26

3dB IF ATTENUATIONFULL POWER MODE

85°C25°C–40°C

12.3 12.9 13.5 14.1 14.7 15.3 15.90

DIST

RIBU

TION

(%)

35

25

20

15

10

5

30

45

40

SSB NOISE FIGURE (dB)5566 G27

3dB IF ATTENUATIONFULL POWER MODE

85°C25°C–40°C

2.6GHz Conversion Gain Distribution 2.6GHz IIP3 Distribution 2.6GHz SSB NF Distribution

Page 11: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

115566f

For more information www.linear.com/LTC5566

Typical perForMance characTerisTics Test circuit shown in Figure 1. PRF = –8dBm/Tone, ∆f = 2MHz, PLO = 0dBm, VCC = 3.3V, VDD = 3.3V, TC = 25°C, unless otherwise noted.

Band 2: RF = 1.9GHz, IF = 153MHz, High Side LO

Conv Gain and IIP3 vs RF Frequency0dB, 6dB and 12dB IF Attenuation

SSB NF vs RF Frequency 0dB, 6dB and 12dB IF Attenuation

Conv Gain vs IF Frequency and Attenuation, Swept RF/Fixed LO

1.9GHz Conv Gain, IIP3 and SSB NF vs LO Power and Case Temperature

1.9GHz Conv Gain, IIP3 and SSB NF vs IF Attenuation (0.5dB Steps)

1.9GHz RF Input and IF Output P1dB vs IF Attenuation

Isolation vs RF Frequency LO Leakage vs LO Frequency 1.9GHz Conv Gain, IIP3, NF andRF Input P1dB vs Temperature

RF FREQUENCY (GHz)1.3

G C (d

B), I

IP3

(dBm

)

30

27

21

15

24

18

12

9

6

3

0

–32.5 2.9

5566 G28

3.32.11.7

IIP3

GC0dB

6dB

6dB

12dB

FULL POWER MODE

12dB

0dB

RF FREQUENCY (GHz)1.3

SSB

NF (d

B)

22

20

14

18

16

12

102.5 2.9

5566 G29

3.32.11.7

0dB

6dB

12dB

FULL POWER MODE

IF FREQUENCY (MHz)50

CONV

GAI

N (d

B)

12

10

0

8

6

4

2

–2

–8

–4

–6

150 200 250 300

5566 G30

350100

RF = 1.7GHz TO 2GHzLO = 2.05GHzFULL POWER MODE

3dB

6dB

9dB

12dB

15dB

0dB

LO INPUT POWER (dBm)–6

G C (d

B), I

IP3

(dBm

), NF

(dB)

25

21

23

11

19

17

15

13

9

70 2 4

5566 G31

6–2–4

GC

NF

IIP3 TC = –40°CTC = 25°CTC = 85°C

3dB IF ATTENUATIONFULL POWER MODE

IF ATTENUATION (dB)0

G C (d

B), I

IP3

(dBm

), NF

(dB)

28

22

25

7

19

16

13

10

4

–5

1

–2

6 8 10 12 14

5566 G32

1642

GC

FULL POWERREDUCED POWER

NF

IIP3

IF ATTENUATION (dB)0

P1dB

(dBm

)

19

17

15

13

11

9

5

7

6 8 10 12 14

5566 G33

1642

FULL POWERREDUCED POWER

IFOUTP1dB

RFINP1dB

RF FREQUENCY (GHz)1.3

ISOL

ATIO

N (d

B)

90

50

80

70

60

40

302.5 2.9 3.3

5566 G34

2.11.7

RF –IF+ OR RF –IF–

(UNBALANCED)

CHANNEL ISOLATION

RF –LO

3dB IF ATTENUATIONFULL POWER MODE

LO FREQUENCY (GHz)1.1

LO L

EAKA

GE (d

Bm)

–20

–60

–30

–40

–50

–702.3 2.7 3.1 3.5

5566 G35

1.91.5

LO –IF+ OR LO –IF–

(UNBALANCED)

LO –RF

3dB IF ATTENUATIONFULL POWER MODE

CASE TEMPERATURE (°C)–45

G C (d

B), N

F (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

25

23

13

21

19

17

15

11

9

745 75

5566 G36

10515–15

3dB IF ATTENUATIONFULL POWER MODE

NF

GC

IIP3

INPUT P1dB

Page 12: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

125566f

For more information www.linear.com/LTC5566

Typical perForMance characTerisTics Test circuit shown in Figure 1. PRF = –8dBm/Tone, ∆f = 2MHz, PLO = 0dBm, VCC = 3.3V, VDD = 3.3V, TC = 25°C, unless otherwise noted.

Band 3: RF = 850MHz, IF = 153MHz, High Side LO

Conv Gain and IIP3 vs RF Frequency0dB, 6dB and 12dB IF Attenuation

SSB NF vs RF Frequency 0dB, 6dB and 12dB IF Attenuation

Conv Gain vs IF Frequency and Attenuation, Swept RF/Fixed LO

850MHz Conv Gain, IIP3 and SSB NFvs LO Power and Case Temperature

850MHz Conv Gain, IIP3 and SSB NF vs IF Attenuation

850MHz RF Input and IF Output P1dB vs IF Attenuation

RF Isolation vs RF Frequency LO Leakage vs LO Frequency 850MHz Conv Gain, IIP3, NF andRF Input P1dB vs Temperature

RF FREQUENCY (MHz)700

G C (d

B), I

IP3

(dBm

)

30

27

21

15

24

18

12

9

6

3

0

–31000 1100 1200

5566 G37

1300900800

GC0dB

12dB

FULL POWER MODE

12dB

IIP3

6dB

0dB

6dB

RF FREQUENCY (MHz)700

SSB

NF (d

B)

22

20

21

15

18

19

17

16

13

14

121000 1100

5566 G38

13001200900800

6dB

12dB

FULL POWER MODE

0dB

IF FREQUENCY (MHz)50

CONV

GAI

N (d

B)

13

11

1

9

7

5

3

–1

–7

–3

–5

150 200 250 300

5566 G39

100

RF = 750MHz TO 1GHzLO = 1050MHzFULL POWER MODE

3dB

6dB

9dB

12dB

15dB

0dB

LO INPUT POWER (dBm)–6

G C (d

B), I

IP3

(dBm

)

25

21

23

11

19

17

15

13

9

70 2 4

5566 G40

6–2–4

GC

NF

IIP3 TC = –40°CTC = 25°CTC = 85°C

3dB IF ATTENUATIONFULL POWER MODE

IF ATTENUATION (dB)0

G C (d

B), I

IP3

(dBm

), NF

(dB)

28

24

8

20

16

12

4

–4

0

6 8 10 12 14

5566 G41

1642

GC

FULL POWERREDUCED POWER

NF

IIP3

IF ATTENUATION (dB)0

P1dB

(dBm

)

18

16

14

12

10

8

4

6

6 9 12

5566 G42

153

FULL POWERREDUCED POWER

IFOUTP1dB

RFINP1dB

RF FREQUENCY (MHz)700

ISOL

ATIO

N (d

B)

80

40

70

60

50

30

201000 1100 1200 1300

5566 G43

900800

RF –IF+ OR RF –IF–

(UNBALANCED)

CHANNEL ISOLATION

RF –LO3dB IF ATTENUATIONFULL POWER MODE

LO FREQUENCY (MHz)400

LO L

EAKA

GE (d

Bm)

–20

–60

–30

–40

–50

–80

–70

–901000 1200 1400 1600

5566 G44

800600

LO –IF+ OR LO –IF–

(UNBALANCED)

LO –RF

3dB IF ATTENUATIONFULL POWER MODE

CASE TEMPERATURE (°C)–45

G C (d

B), N

F (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

25

23

13

21

19

17

15

11

9

745 75

5566 G45

10515–15

NF

IIP3

INPUT P1dB

GC

3dB IF ATTENUATIONFULL POWER MODE

Page 13: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

135566f

For more information www.linear.com/LTC5566

Typical perForMance characTerisTics Test circuit shown in Figure 1. PRF = –8dBm/Tone, ∆f = 2MHz, PLO = 0dBm, VCC = 3.3V, VDD = 3.3V, TC = 25°C, unless otherwise noted.

Band 4: RF = 450MHz, IF = 153MHz, High Side LO

Conv Gain and IIP3 vs RF Frequency 0dB, 6dB and 12dB IF Attenuation

SSB NF vs RF Frequency 0dB, 6dB and 12dB IF Attenuation

Conv Gain vs IF Frequency and IF Attenuation, Swept RF/Fixed LO

450MHz Conv Gain, IIP3 and SSB NFvs LO Power and Case Temperature

450MHz Conv Gain, IIP3 and SSB NF vs IF Attenuation

450MHz RF Input and IF Output P1dB vs IF Attenuation

RF Isolation vs RF Frequency LO Leakage vs LO Frequency 450MHz Conv Gain, IIP3, NF andRF Input P1dB vs Temperature

RF FREQUENCY (MHz)370

G C (d

B), I

IP3

(dBm

)

27

21

15

24

18

12

9

6

3

0

–3430 450 470 490 510

5566 G46

530410390

GC 0dB

12dB

FULL POWER MODE

12dB

IIP3

0dB

6dB

6dB

RF FREQUENCY (MHz)370

SSB

NF (d

B)

22

20

21

15

18

19

17

16

13

14

12430 450

5566 G47

530470 490 510410390

6dB

12dB

FULL POWER MODE

0dB RF = 390MHz TO 510MHzLO = 600MHz, FULL POWER MODE

15dB

12dB

9dB

6dB

3dB

0dB

IF FREQUENCY (MHz)90 110 130 150 170 190 210

–7

–5

–3

–1

1

3

5

7

9

11

13

CONV

GAI

N (d

B)

5566 G48

LO INPUT POWER (dBm)–6

G C (d

B), I

IP3

(dBm

)

25

21

23

11

19

17

15

13

9

70 2 4

5566 G49

6–2–4

GC

NF

IIP3

TC = –40°CTC = 25°CTC = 85°C

3dB IF ATTENUATIONFULL POWER MODE

IF ATTENUATION (dB)0

G C (d

B), I

IP3

(dBm

), NF

(dB)

28

24

8

20

16

12

4

–4

0

6 8 10 12 14

5566 G50

1642

GC

FULL POWERREDUCED POWER

NF

IIP3

IF ATTENUATION (dB)0

P1dB

(dBm

)

18

16

14

12

10

8

4

6

4 8 12

5566 G51

16

FULL POWERREDUCED POWER

IFOUTP1dB

RFINP1dB

RF FREQUENCY (MHz)370

ISOL

ATIO

N (d

B)

40

70

60

50

30

20450 470 490 510 530

5566 G52

410 430390

RF –IF+ OR RF –IF–

(UNBALANCED)

CHANNEL ISOLATION

RF –LO

3dB IF ATTENUATIONFULL POWER MODE

LO FREQUENCY (MHz)200

LO L

EAKA

GE (d

Bm)

–20

–60

–30

–40

–50

–80

–70

–90500 600 700 800

5566 G53

400300

LO –IF+ OR LO –IF–

(UNBALANCED)

LO –RF

3dB IF ATTENUATIONFULL POWER MODE

CASE TEMPERATURE (°C)–45

G C (d

B), N

F (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

25

23

13

21

19

17

15

11

9

745 75

5566 G54

10515–15

INPUT P1dBGC

IIP3

NF

3dB IF ATTENUATIONFULL POWER MODE

Page 14: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

145566f

For more information www.linear.com/LTC5566

pin FuncTionsGND (Pins 1, 8, 16, 25, Exposed Pad Pin 33): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad provides both electri-cal ground contact and thermal contact to the printed circuit board.

RF1, RF2 (Pins 2, 7): Single-Ended RF Inputs for Channels 1 and 2, Respectively. These pins are internally biased to VCC/2 when VCC is applied. Therefore, a series DC-blocking capacitor must be used. The internal matching capacitance may be adjusted in four discrete steps using the T0 and T1 control pins, or via the SPI interface.

CSB (Pin 3): Serial Port Chip Select. This CMOS input activates the SPI inputs when driven low. When driven high, the inputs are deactivated. See the Applications section for more details.

CLK (Pin 4): Serial Port Clock. This CMOS input clocks serial port input data on its rising edge. See the Applica-tions section for more details.

SDI (Pin 5): Serial Port Data Input. This CMOS input is used to load serial data into the 16-bit register. See the Applications section for more details.

SDO (Pin 6): Serial Port Data Output. This CMOS three-state output presents data from the serial port during a communication burst. Optionally, attach a resistor of >200k to GND to prevent a floating output. See the Applications section for more details.

T0, T1 (Pins 9, 32): 2-Bit RF Input Tuning Control Pins. A CMOS logic high will enable the respective bit for both channels when the PS pin is high. These pins have internal 167k pull-down resistors. The RF input tuning may also be controlled through the serial port when PS is low. For serial control only, these pins should be grounded.

MO2–, MO2+, MO1+, MO1– (Pins 10, 11, 30, 31): Open-Collector Differential IF Outputs for Mixer 2 and Mixer 1, Respectively. These pins must be connected to VCC through pull-up inductors. Typical DC current is 27mA into each pin.

VCC2, VCC1 (Pins 12, 29): Power Supply Pins for Channels 2 and 1, Respectively. These pins must be connected to a regulated 3.3V supply, with a bypass capacitor located close to the pins. Typical DC current consumption is 41mA into each pin.

EN2, EN1 (Pins 13, 28): Enable Control Pins for Channels 2 and 1, Respectively. A CMOS logic high will enable each channel. These pins have internal 330k pull-down resistors, so if unconnected, both channels are shutdown.

AI2+, AI2–, AI1–, AI1+ (Pins 14, 15, 26, 27): Differential IF Attenuator Inputs for Channel 2 and Channel 1, Re-spectively. These pins are internally biased to VCC/2 when VCC is applied. Therefore, a series DC-blocking capacitor must be used.

IF2+, IF2–, IF1–, IF1+ (Pins 17, 18, 23, 24): Open-Collector Differential IF Buffer Outputs for Channel 2 and Channel 1, Respectively. These pins must be connected to VCC through pull-up inductors. Typical DC current is 48mA into each pin.

PS (Pin 19): Parallel Select Pin for RF Input Tuning. A CMOS logic high will enable parallel control using the T1 and T0 pins. A CMOS logic low allows the SPI port to set the tuning for each channel independently, while ignoring the voltage on the T1 and T0 pins. This pin has an internal 330k pull-down resistor.

LO–, LO+ (Pins 20, 21): Differential Local Oscillator In-put. These pins are internally connected to ESD diodes to ground. Therefore, series DC-blocking capacitors must be used if the LO source has a DC voltage present. Single-ended or differential drive may be used. Each pin is internally matched to 50Ω, even when the mixers are disabled.

VDD (Pin 22): Power Supply Pin for Serial Interface Logic. This pin must be connected to a regulated 1.8V to 3.3V supply. Typical DC current consumption is less than 1mA with CSB low and the clock running at 10MHz. When idle, typical current consumption is less than 500μA. The sup-ply voltage on this pin defines the logic levels for the SPI inputs (CSB, CLK and SDI), the SDO output, and the PS pin.

Page 15: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

155566f

For more information www.linear.com/LTC5566

block DiagraM

RF

5566 BD

IF1+

IF1–

VDD

VDD

LO+

LO–

PS

GND

VCC1MO1–T1LTC5566 MO1+ EN1 AI1+ AI1–

VCC2MO2–T0 MO2+ EN2 AI2+ AI2– GNDGND(EXPOSED PAD)

GND2730 28 26 25293132

1411 13 15 1612109

RF1

CSB

CLK

SDI

SDO

RF2

GND

1

2

24

23

22

21

20

19

18

17

3

4

5

6

7

8

33

IF

SPI

BIAS

CH 1 ATTCONTROL

IF2–

IF2+IFBIAS

RF

LO

LO

5

CH 2 ATTCONTROL

5

POR

Page 16: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

165566f

For more information www.linear.com/LTC5566

TesT circuiT

Figure 1. Test Circuit Schematic with 100Ω Matched Differential IF Outputs

RF INPUT TUNING AND EXTERNAL MATCHING

RF BANDRF FREQUENCY

RANGE (Hz)

PARALLEL TUNE (PS = HIGH)

SERIAL TUNE (VIA SPI) (PS = LOW)

C1, C2 L9, L10T1 T0 RT1[1:0], RT2[1:0]B0 3.1G TO 5.1G 0 0 0

4.3pF—B1 1.8G TO 4.4G 0 1 1

B2 1.3G TO 3.9G 1 0 2

B3 0.7G TO 1.3G 1 1 3 8.2nH

B4 0.39G TO 0.53G 1 1 3 12pF 10nH

REF DES VALUE SIZE VENDOR REF DES VALUE SIZE VENDORC18, C19 1µF 0603 Murata 50V X5R C17 0.3pF 0201 Murata 25V NPO

C1, C2 See Table 0402 Murata 50V NPO L1 TO L4, L11 TO L14 680nH 0603 Coilcraft 0603AF

C3, C4 2.2pF 0402 Murata 50V NPO L5 TO L8 47nH 0402 Coilcraft 0402HP

C5 TO C8 1nF 0201 Murata 50V NPO L9, L10 See Table 0402 Coilcraft 0402HP

C9 TO C16 10nF 0402 Murata 50V X7R L15 TO L18 33nH 0402 Coilcraft 0402HP

RF1(50Ω)

C1

L9

SPI BUS

5577 TA02a

SDI

CLK

T0

VCC2

VCC

AI2–AI2+ GND

33GND

3

5

RF1

CSB

1 GND

7

4

6

2

8

22

20

24

18

21

19

23

17

RF2

SDO

GND

119 13 151210 14 16

T0 MO2– MO2+ EN2

EN2

IF1+

IF1–

VDD

LO+

LO–

PS PS

IF2–

IF2+

VCC1

VCC

T1

T1

MO1– MO1+ EN1

EN1

GNDAI1–AI1+32 2830 2631 2729 25

IF1(100ΩDIFFERENTIAL)

RF2(50Ω)

C2

L10

L11 L13

L17

L15

L5

C9

C11C3

C8L8 L6

L2 L4

C6

C14

LO(50Ω)

C4

C15VCC

VCC

VDD (3.3V)

C16

L7

L3L1

L12 L14

IF2(100ΩDIFFERENTIAL)L16

L18C12

C10

C5

C7

C13

VCC(3.3V)

C19

C17

C18

FR4

TOP

GND

DC

BOTTOM

0.062˝

0.012˝

0.016˝ FR4

RO4003C

DC2460A EVALUATIONBOARD LAYERS

Page 17: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

175566f

For more information www.linear.com/LTC5566

Introduction

The LTC5566 incorporates two identical RF-to-IF down-conversion mixers driven by a common LO input. The symmetry of the IC assures that both mixers are driven with an amplitude- and phase-coherent LO. Each chan-nel includes an IF DVGA (digital variable gain amplifier) consisting of a programmable 15.5dB range digital IF attenuator with 0.5dB steps, and a fixed-gain IF buffer amplifier. The cascaded RF-to-IF conversion gain ranges from 12dB at maximum IF gain, to –3.5dB at minimum IF gain. The IF frequency response is flat within 1dB from 40MHz to 300MHz, and may be modified by adjusting the values of the external pull-up inductors.

The RF inputs have programmable impedance tuning which may be controlled via the SPI or dedicated control lines. Each channel can be programmed to a reduced power mode via the SPI, resulting in a 22% power savings, with reduced linearity performance. The test circuit schematic in Figure 1 shows the external components used to char-acterize the IC. The evaluation board is shown in Figure 2.

RF Inputs

A block diagram of the channel 1 RF input is shown in Figure 3 (channel 2 is identical and not shown). Each RF input includes programmable 2-bit RF frequency tuning, followed by an integrated transformer and a differential RF buffer amplifier. The transformer’s primary winding is biased at 1.65VDC, and therefore requires an external DC-blocking capacitor.

The RF input impedance match for each channel is tuned to one of three overlapping frequency bands ranging from 1.3GHz to 5GHz, by programming the RT1[1:0] and RT2[1:0] bits (two bits for each channel). Series matching capacitor, C1, is fixed at 4.3pF for these three bands. For RF frequencies below 1.3GHz, the fourth (lowest frequency) tuning band is used in conjunction with shunt inductor L9.

Figure 3. RF Input Block Diagram

Figure 2. Evaluation Board

applicaTions inForMaTion

5566 F03

PARTUNE

INPUTS

VCC1

MUXSEL

1 0 1 0

MUXSEL

1 0 1 0VCC2

330k

9

32T1

T0

TO CH 2

VCC1

C1RF1

(50Ω)RF1

L9

RFBUFFER

LTC5566CHANNEL 1

RF TUNE

1.65VDC

SERIALTUNEINPUTS

RT1[1:0]

RT2[1:0]

VDD

0 = SER1 = PAR

2

19PS

Page 18: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

185566f

For more information www.linear.com/LTC5566

applicaTions inForMaTionFigure 1 summarizes the RF tuning and external matching for all frequency bands. The RF input return loss for each band is shown in Figure 4.

As shown in Figure 3, the RF input tuning may also be controlled by the parallel control lines T0 and T1 when the PS (parallel select) control line is high. The tuning bits for this method are also summarized in Figure 1, where T0 is the LSB. When using parallel tuning control, both chan-nels are tuned to the same band simultaneously and the SPI tuning bits are ignored. The T0 and T1 control lines have internal 167k pull-down resistors and the PS pin has an internal 330k pull-down resistor. All three pins will be pulled low if left floating, allowing the SPI to control the RF tuning, although it is recommended to ground these pins if SPI control is used.

Figure 4. RF Input Return Loss for Each Band

LO Input

A simplified schematic of the LO input is shown in Figure 5. As shown, each mixer has its own LO amplifier. A dif-ferential input is provided although the IC is characterized and production-tested with single-ended drive. Differential LO drive improves performance slightly, and is recom-mended if available. Each LO input is internally matched to 50Ω from 150MHz to 3.8GHz, requiring no external components. Adding shunt capacitor C17(0.3pF), extends the LO input match up to 6GHz. ESD protection diodes on

Figure 5. LO Input Schematic

Figure 6. LO Input Return Loss

each input limit the peak voltage swing to approximately ±700mV (+7dBm), although higher LO drive, up to 10dBm will not damage the input. An external DC-blocking capacitor is only needed if the LO source has DC voltage present. The measured LO input return loss is shown in Figure 6, with and without C17.

RF FREQUENCY (GHz)0.3

RETU

RN L

OSS

(dB)

–5

0

–10

–35

–30

–25

–20

–15

2.31.3 3.8 4.3 4.8

5566 F04

5.31.80.8 2.8 3.3

B4

B3

B2B0B1

TC = 25°C

5566 F05

CH 1 MIX

LO–

LO+

LO(0dBm)

C170.3pF

DCBLOCK

CH 2 MIX

21

20

LO FREQUENCY (GHz)0

RETU

RN L

OSS

(dB)

–5

0

–10

–20

–15

2 5 6

5566 F06

71 3 4

NO EXT MATCH

WITH C17(0.3pF)

Page 19: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

195566f

For more information www.linear.com/LTC5566

applicaTions inForMaTionIF Outputs

A simplified IF output schematic for channel 1, with external matching components is shown in Figure 7 (channel 2 is identical, and not shown). The final output stage is differ-ential, open-collector with integrated matching resistors, capacitors and ESD protection diodes. Each output pin must be biased at the supply voltage (VCC) using external chokes (L11 and L13). Each pin draws approximately 48mA of DC supply current (96mA total). Therefore, inductors with low DC resistance (<1Ω), are required for the highest output IP3 and P1dB.

The integrated output resistors set the differential output resistance at 206Ω. C3, L15 and L17 form a 2:1 imped-ance transformer which transforms the output to 100Ω differential. If a 200Ω output is desired, C3 is not used and the values of L15 and L17 are reduced to the values shown in Table 1. C9 and C11 are DC-blocking capacitors, which may be omitted if the following stage is already DC-blocked.

The standard evaluation board is built with 100Ω differ-ential IF outputs, but also has pads which allow the use of IF transformers to provide 50Ω single-ended outputs. To implement this, it is recommended to use the 200Ω matching shown in Table 1 and 4:1 IF transformers. Figure 16 shows the circuit schematic and measured performance using this approach.

Table 1. IF Output Matching Element ValuesDIFFERENTIAL

ZOUT

C3 L15, L17 9dB RETURN LOSS BANDWIDTH

200Ω* — 15nH 30MHz to 440MHz

100Ω

3.9pF 47nH 70MHz to 242MHz

2.2pF 33nH 87MHz to 352MHz

1.5pF 24nH 105MHz to 450MHz

*200Ω differential output return loss measured with 4:1 transformer on evaluation board.

The differential IF output impedance vs frequency is listed in Table 2. The impedances are at the package pins with no external components. Measured IF output return losses vs frequency for 100Ω differential matching is shown in Figure 8.

Table 2. Differential IF Output Impedance vs FrequencyIF FREQUENCY (MHz) DIFFERENTIAL IMPEDANCE (RIF || CIF)

10 210 || 1.10pF

50 209 || 1.09pF

100 209 || 1.04pF

150 208 || 0.97pF

200 207 || 0.94pF

300 206 || 0.92pF

400 203 || 0.93pF

500 200 || 0.91pF

600 196 || 0.91pF

700 192 || 0.91pF

800 186 || 0.91pF

900 179 || 0.90pF

1000 172 || 0.89pF

Figure 7. IF Output Schematic

Figure 8. IF Output Return Loss (100Ω Differential Matching)

+

5566 F07

IF1+

L11 L13

L15 C9

C3 IF1OUT

C11L17IF1–

VCC

VCC

VCC

24

23

IF FREQUENCY (MHz)50

DIFF

EREN

TIAL

RET

URN

LOSS

(dB)

–10

–5

0

–20

–25

–15

–40

–35

–30

350 450

5566 F08

550150 250

1.5pF/24nH2.2pF/33nH3.9pF/47nH

ZO = 100Ω

Page 20: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

205566f

For more information www.linear.com/LTC5566

applicaTions inForMaTionMixer Output to IF DVGA Interface

The mixer’s 300Ω differential output impedance matches the IF DVGA’s 300Ω differential input impedance, even over normal process variation due to the monolithic imple-mentation. This assures minimal and repeatable DNL and INL over the full IF attenuation range. Furthermore, the mixer output and DVGA input include integrated matched capacitors, which simplify the realization of a lowpass filter between the mixer and DVGA. This filter attenuates undesired high frequency mixing products and LO leakage before entering the DVGA.

A simplified schematic of the interface for channel 1 is shown in Figure 9 (channel 2 is identical and not shown). L5 and L7 connect the mixer output to the DVGA input, while forming a 650MHz 3rd-order, 0.2dB ripple Cheby-shev lowpass filter. L1 and L3 supply DC current to the mixer and C5 and C7 are DC-blocking capacitors.

Figure 9. Mixer to IF DVGA Interface

Figure 11. 3rd-Order Bandpass Filter Realization

It’s also possible to implement a bandpass filter between the mixer and DVGA. An example is shown in Figure 11, where a 3rd-order bandpass filter is realized by changing the values of the reactive components and adding C21, C23 and L19. Figure 19 shows measured conversion gain vs IF output frequency using this bandpass topology.

Figure 10. Equivalent Lowpass Filter Schematic

An equivalent AC schematic of the lowpass filter is shown in Figure 10, where the mixer output and DVGA input are modeled as 300Ω in parallel with 1pF. The mixer supply chokes and series DC blocking capacitors are ignored in this schematic.

IF DVGA Phase vs IF Attenuation

Ideally, the phase of the IF output would be constant over the full IF attenuation range. Practically, there is some phase shift due to circuit parasitics in the attenuator. The LTC5566’s IF DVGA is optimized for the lowest possible phase variation (or phase error) over the full IF attenuation range. Phase error vs IF attenuation for the complete IF section is listed in Table 3.

Table 3. IF Phase Error vs IF AttenuationATT (dB) 150MHz 250MHz 350MHz

0 REF REF REF

3 –1.1° –1.4° –3.0°

6 –1.6° –2.1° –4.2°

9 –2.0° –2.8° –5.1°

12 –2.2° –3.2° –5.3°

15 –2.4° –3.0° –5.5°

5566 F11

MO1–

MIXER OUT DVGA IN

MO1+

AI1–

AI1+

1pF1pF

RL300Ω

RS300Ω

VCC

31 26

30 27

L5

L19

L7

C21

C5

L1

L3

C7

C23

5566 F09

MO1–

MIX OUT(CH 1)

IF ATT IN(CH 1)

MO1+ AI1+ AI1–

VCC VCC

VCC

150Ω

2pF 2pF

150Ω

VCC

31 30

1.65V

VCC

150Ω

2pF 2pF

150Ω

27 26

C5, 1nF L5, 47nH

L3680nH

L1680nH

C7, 1nF L7, 47nH

27mA27mA

5566 F10

MO1–

MO1+

AI1–

AI1+

1pF1pF

RL300Ω

RS300Ω

31 26

30 27

L5, 47nH

L7, 47nH

Page 21: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

215566f

For more information www.linear.com/LTC5566

applicaTions inForMaTionDownconverter Performance vs IF Attenuation

RF-IF conversion gain, IIP3, OIP3 and noise figure over the full 15.5dB attenuation range is shown in Figure 12. The same data is listed in Table 4 with the INL and DNL at each attenuator setting.

Table 4. Conversion Gain, IIP3, OIP3 and SSB NF vs IF Attenuation (RF = 2.6GHz, IF = 153MHz, High Side LO)

A (dB)

IF1[4:0] IF2[4:0]

GC (dB)

IIP3 (dBm)

OIP3 (dBm)

NF (dB)

DNL (dB)

INL (dB)

0 0 11.84 23.2 35.0 13.3 — —

0.5 1 11.32 23.3 34.6 13.4 0.03 0.03

1.0 2 10.75 23.4 34.2 13.6 0.07 0.09

1.5 3 10.24 23.6 33.8 13.7 0.01 0.10

2.0 4 9.75 24.0 33.8 13.8 –0.01 0.09

2.5 5 9.24 24.2 33.5 13.9 0.01 0.10

3.0 6 8.75 24.6 33.4 14.1 –0.01 0.09

3.5 7 8.24 24.9 33.2 14.2 0.01 0.11

4.0 8 7.75 25.1 32.8 14.4 –0.01 0.10

4.5 9 7.24 25.5 32.8 14.6 0.01 0.11

5.0 10 6.75 25.7 32.4 14.8 –0.01 0.10

5.5 11 6.23 25.9 32.1 15.0 0.01 0.11

6.0 12 5.75 26.1 31.8 15.3 –0.01 0.10

6.5 13 5.23 26.5 31.7 15.5 0.01 0.11

7.0 14 4.74 26.4 31.1 15.7 –0.01 0.10

7.5 15 4.22 26.9 31.1 15.9 0.03 0.13

8.0 16 3.73 26.7 30.4 16.2 –0.02 0.11

8.5 17 3.21 27.1 30.4 16.5 0.02 0.14

9.0 18 2.73 26.9 29.6 16.9 –0.02 0.12

9.5 19 2.20 27.4 29.6 17.2 0.03 0.14

10.0 20 1.72 27.1 28.8 17.5 –0.02 0.13

10.5 21 1.20 27.6 28.8 17.8 0.02 0.15

11.0 22 0.71 27.3 28.0 18.2 –0.01 0.14

11.5 23 0.18 27.5 27.7 18.6 0.02 0.16

12.0 24 –0.31 27.6 27.3 19.0 –0.01 0.15

12.5 25 –0.84 27.8 27.0 19.4 0.03 0.18

13.0 26 –1.33 27.3 26.0 19.8 –0.02 0.17

13.5 27 –1.85 27.9 26.1 20.2 0.03 0.19

14.0 28 –2.35 28.0 25.7 20.7 0.00 0.19

14.5 29 –2.87 28.2 25.3 21.1 0.02 0.21

15.0 30 –3.36 28.0 24.6 21.5 0.00 0.20

15.5 31 –3.89 28.1 24.2 22.0 0.03 0.23

Individual Stage Performance

The LTC5566 is characterized, specified and production-tested as a complete downconverter, from the RF inputs to the final IF outputs. For some applications, it may be preferred to insert a higher selectivity IF filter between the mixer and IF DVGA. To help with system performance calculations, the nominal performance of the mixer is shown in Table 5 and the IF DVGA performance is listed in Table 6. This information is provided for reference only as these blocks are not production-tested independently.

Table 5. Mixer Power Conversion Gain, IIP3 and SSB NF (RF = 2.6GHz, IF = 153MHz, High Side LO, Band 1 RF Tune)

FULL PWR MODE REDUCED PWR MODE

GP (dB) IIP3 (dBm) NF (dB) GP (dB) IIP3 (dBm) NF (dB)

–0.5 28.0 12.2 –0.7 23.0 11.8

Table 6. IF DVGA Power Gain, OIP3 and SSB NF (153MHz)

IF ATT (dB)

FULL PWR MODE REDUCED PWR MODE

GAIN (dB)

OIP3 (dBm)

NF (dB)

GAIN (dB)

OIP3 (dBm)

NF (dB)

0 12.0 36.4 5.7 11.8 33.2 5.6

3 9.0 35.7 9.3 8.8 33.0 9.3

6 6.0 35.7 12.3 5.8 33.1 12.3

9 3.0 35.7 15.4 2.8 32.9 15.3

12 0.0 35.4 18.4 –0.2 32.9 18.4

15 –3.0 35.0 21.4 –3.2 32.7 21.4

Figure 12. Downconverter RF-IF Conversion Gain, IIP3, OIP3 and Noise Figure vs IF Attenuation.

IF ATTENUATION (dB)0

G C (d

B), N

F (d

B), I

IP3

(dBm

), OI

P3 (d

Bm)

36

6

30

24

18

12

0

–610 12 14

5566 F12

168642

GC

NF

OIP3

IIP3

RF = 2.6GHzIF = 153MHzHIGH SIDE LOTC = 25°CFULL POWER MODE

Page 22: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

225566f

For more information www.linear.com/LTC5566

applicaTions inForMaTionEnable Inputs

Figure 13 shows a schematic of the Channel 1 enable in-terface. Channel 2 is identical and not shown. As shown, the positive ESD diodes for EN1 are connected to VCC1. The positive ESD diodes for channel 2 are connected to VCC2 (not shown). To enable a channel, the applied volt-age must be greater than 1.4V. An applied voltage less than 0.5V will disable the channel. If the enable function is not needed, the enable pin can be connected directly to the adjacent VCC pin. If left floating, the internal 330kΩ pull-down resistor will disable the channel.

The voltage on the enable pins should never exceed VCC by more than 0.3V, otherwise supply current may be sourced through the upper ESD diodes. Under no circumstances should voltage be applied to the enable pins before supply voltage is applied to the VCC pins. If this occurs, damage to the IC may result.

SPI DESCRIPTION

IF DVGA attenuator control, RF input tuning and reduced power mode for each downconverter channel is pro-grammed through the 3-wire SPI consisting of CSB, CLK and SDI. A fourth pin, SDO, is a serial output available to read out the contents of the registers. The SDO pin may also be used to daisy-chain multiple SPI interfaces on a single bus. For example, in an 8-channel MIMO receiver application, all four LTC5566 dual downconverters can be programmed with a single, 64-bit load, while sharing a common CSB line.

A block diagram of the SPI is shown in Figure 14. As shown, it is a 16-bit double-buffered FIFO slave architecture, with 8-bits for each channel. Logic levels for the digital inputs and SDO output are 1.8V to 3.3V CMOS compatible, de-termined by the supply voltage on the VDD pin. An internal POR (power-on-reset) connected to the VDD pin, resets all 16 bits to logic 0 at power-up, or when VDD drops below 0.9V and then rises back above 1.2V. The POR requires approximately 100μs to reset the registers.

SPI PROGRAMMING

Data transfers to the part are accomplished by first tak-ing CSB low to enable the port. Then, serial input data on SDI is captured on the rising edge of CLK and shifted into a 16-bit shift register, MSB first. Serial data from the registers is driven out to SDO on the clock’s falling edge. The communication burst is terminated by taking CSB high. The rising edge on CSB will then latch the shift-register’s contents into a 16-bit buffer D-latch. The buffer latch prevents the downconverter’s gain, RF input tuning and power mode from changing while data is loaded. See Figure 15 for timing details.

When CSB is high, the clock and data inputs are internally gated off, minimizing current consumption when not se-lected, and the SDO output is high impedance. However, it is recommended that the serial interface signals should remain idle between data transfers to avoid digital noise coupling into the RF signal paths.

Figure 13. Channel 1 Enable Pin Interface

Supply Voltage Ramping

Fast ramping of the supply can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply voltage transient that exceeds the maximum rating. A supply voltage ramp time greater than 1ms is recommended.

5566 F13

VCC1 EN1

250Ω

330k

29 28

CH 1BIAS

Page 23: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

235566f

For more information www.linear.com/LTC5566

applicaTions inForMaTion

Figure 14. SPI Block Diagram

Figure 15. SPI Timing Diagram

5566 F14

SDI

CLK

CSB

(LSB)D0D1

VDD

(MSB)D15

DQDQDQDQ

RB

SDO

16-BIT LATCH

POR

D[7:0](CH 1)

D[15:8](CH 2)

RBRBRBRB

• • •

D0D15

5566 F15

CLK

SDI

tENABLE tDELAY

tRISE,FALL

tHOLD

tDISABLE

tHOLD(CSB)

tSETUP

tSETUP(CSB)

SDO

CSB

Page 24: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

245566f

For more information www.linear.com/LTC5566

A memory map of the register contents is shown in Table 7, with detailed bit descriptions in Table 8. Each register’s default power-up value is also shown in Table 8, which is:

• 0dB IF attenuation (maximum gain)

• Full power mode

• RF inputs tuned to band 0 (highest frequency)

Table 7. Serial Port Register Contents

CHANNEL 2 (8 bits)

MSB D15 D14 D13 D12 D11 D10 D9 D8

RP2 RT2[1] RT2[0] IF2[4] IF2[3] IF2[2] IF2[1] IF2[0]

CHANNEL 1 (8 bits)

D7 D6 D5 D4 D3 D2 D1LSB D0

RP1 RT1[1] RT1[0] IF1[4] IF1[3] IF1[2] IF1[1] IF1[0]

Table 8. Serial Port Register Bit Field SummaryBITS DESCRIPTION DEFAULT

IF1[4:0] Ch. 1 IF Attenuator Control 00000 (Max Gain)

RT1[1:0] Ch. 1 RF Tuning 00 (Band 0)

RP1 Ch. 1 Reduced Power 0 (Full Power)

IF2[4:0] Ch. 2 IF Attenuator Control 00000 (Max Gain)

RT2[1:0] Ch. 2 RF Tuning 00 (Band 0)

RP2 Ch. 2 Reduced Power 0 (Full Power)

Spurious Output Levels

Spurious output levels vs harmonics of the RF and LO are tabulated in Table 9. The spur levels were measured using the test circuit shown in Figure 1, with an RF input power of –6dBm and 6dB of IF attenuation. Table 9a shows the relative spur levels in full power mode and Tables 9b shows the relative spur levels in reduced power mode. The mixer spur levels are insensitive to the IF attenuation setting.

The spur frequencies can be calculated using the follow-ing equation:

fSPUR = (M • fRF) – (N • fLO)

Table 9. IF Output Spur Levels (dBc). (RF = 2.6GHz, PRF = –6dBm, IF = 153MHz, High Side LO, PLO = 0dBm, 6dB IF Attenuation, TC = 25°C) Table 9a. Full Power Mode

N

0 1 2 3 4 5 6 7

M

0 –52 * * –80 –79 –79 *1 * 0 * * * * –80 –80

2 * * –68 * * * * –80

3 * * * –77 * * * *4 * * * * * * * *5 * * * * * * * *6 –80 * * * * * * *7 * –80 * * * * * *

*Less than –80dBc

Table 9b. Reduced Power ModeN

0 1 2 3 4 5 6 7

M

0 –52 * * –80 –79 –78 *1 * 0 * * * * –80 –80

2 * * –68 * * * * –79

3 * * * –72 * * * *4 * * * * * * * *5 * * * * * * * *6 –79 * * * * * * *7 * –80 * * * * * *

*Less than –80dBc

RF and LO Port S-Parameters

S11 vs frequency for the RF and LO port are listed in Table 10. Data is shown for all four RF tuning states. The data is referenced to the IC pin with no external matching.

applicaTions inForMaTion

Page 25: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

255566f

For more information www.linear.com/LTC5566

applicaTions inForMaTionTable 10. RF and LO Port S11

RF INPUT LO INPUT (SINGLE-ENDED)RT = 00 RT = 01 RT = 10 RT = 11

FREQ (MHz) MAG ANGLE (°) MAG ANGLE (°) MAG ANGLE (°) MAG ANGLE (°) MAG ANGLE (°)

200 0.77 –160.1 0.77 –160.1 0.77 –160.1 0.77 –160.1 0.29 –61.1

300 0.72 179 0.71 178 0.72 178 0.71 178 0.21 –63.5

400 0.68 167 0.65 167 0.67 167 0.66 167 0.18 –65.2

500 0.64 160 0.61 160 0.63 160 0.62 160 0.17 –66.2

600 0.61 154 0.57 155 0.60 154 0.59 155 0.16 –68.7

700 0.60 149 0.55 150 0.58 149 0.56 150 0.16 –71.8

800 0.58 146 0.52 147 0.56 146 0.54 146 0.16 –75.0

900 0.57 142 0.49 144 0.54 142 0.52 143 0.16 –77.9

1000 0.56 139 0.47 142 0.53 139 0.50 140 0.16 –81.3

1500 0.51 124 0.36 136 0.46 126 0.40 130 0.16 –102.8

2000 0.46 110 0.26 143 0.37 113 0.29 124 0.19 –128.6

2500 0.39 91.5 0.24 165 0.26 100 0.19 133 0.24 –142.9

3000 0.32 68.7 0.31 172 0.14 89 0.17 160 0.26 –154.6

3500 0.24 40.0 0.38 167 0.04 119 0.23 172 0.28 –175.1

4000 0.11 –3.0 0.47 158 0.15 –174 0.34 168 0.35 165.4

4500 0.11 –139 0.54 148 0.30 174 0.45 157 0.42 156.9

5000 0.29 173 0.58 139 0.43 158 0.52 147 0.42 147.3

5500 0.40 153 0.61 135 0.50 147 0.57 141 0.43 127.5

5800 0.46 137 0.65 129 0.55 137 0.61 133 0.45 115.0

6000 0.48 128 0.66 125 0.56 130 0.62 129 0.47 108.8

Figure 16. Test Circuit and Measured Conversion Gain Using 200Ω Output Matching with a 4:1 IF Transformer to Realize a 50Ω Single-Ended IF Output

RF to IF Conv Gain vs IF Frequency 200Ω Output with 4:1 Transformer

5566 F16a

½ LTC5566

680nH

VCC

680nH

MO1+MO1– AI1–AI1+

LO

IF1+

IF1–

RF1RF1(50Ω)

RF1(50Ω)

4.3pF

1nF

1nF

47nH

47nH

IF

680nH

15nH

15nH

VCC

680nH

10nF

10nF

4:1

RF = 2.4GHz TO 2.7GHzLO = 2.75GHzBAND 1

0dB

3dB

6dB

9dB

12dB

15dB

IF OUTPUT FREQUENCY (MHz)

50 100 150 200 250 300 350–8

–6

–4

–2

0

2

4

6

8

10

12

CONV

GAI

N (d

B)

5566 F16b

Page 26: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

265566f

For more information www.linear.com/LTC5566

Typical applicaTions

Figure 18. Measured Performance Using 5.8GHz RF Input Matching

Conv Gain, IIP3 and NF vs LO Power

Conv Gain vs IF Frequency and IF AttenuationSwept RF / Fixed LO

Conv Gain and IIP3 vs RF Frequency0dB, 6dB and 12dB IF Attenuation

Figure 17. 5.8GHz Input Matching

5.8GHz RF Application

The LTC5566’s RF inputs are optimized for operation up to 5GHz, but may be used up to 6GHz with degraded performance. Figure 17 shows an example where the RF input is matched for 5.8GHz operation. The RF tuning bits are set to RT1[1:0] = 00 for the lowest internal capacitance (i.e. highest frequency operation). The measured performance is summarized in Figure 18.

5566 F17

LTC5566(CHANNEL 1 SHOWN)

RF1

0.15pF

RF 5.8GHz(50Ω)

0.55pF

2

RF FREQUENCY (MHz)5650

G C (d

B), I

IP3

(dBm

)

35

25

30

0

20

15

10

5

–5

–105800 5850 5900

5566 F18a

595057505700

GC

0dB

IIP3

0dB IF ATTENUATION6dB12dB

IF = 153MHzLOW SIDE LOPLO = 0dBmFULL POWER MODE

12dB

6dB

LO INPUT POWER (dBm)–6

CONV

ERSI

ON G

AIN

(dB)

5

4

3

2

1

0

IIP3 (dBm), NF (dB)

30

28

26

24

22

202 4

5566 F18b

60–2–4

GC

NF

IIP3

RF = 5.8GHzIF = 153MHzLOW SIDE LO3dB IF ATTENUATIONFULL POWER MODE

IF FREQUENCY (MHz)50

CONV

ERSI

ON G

AIN

(dB)

5

3

–7

1

–1

–3

–5

–9

–15

–11

–13

150 200 250 300

5566 F18c

350100

0dB

RF = 5.65GHz TO 5.95GHzLO = 5.6GHz, PLO = 0dBm

3dB

6dB

9dB

12dB

15dB

Page 27: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

275566f

For more information www.linear.com/LTC5566

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

package DescripTionPlease refer to http://www.linear.com/product/LTC5566#packaging for the most recent package drawings.

5.00 ±0.10(4 SIDES)

NOTE:1. DRAWING PROPOSED TO BE A JEDEC PACKAGE OUTLINE M0-220 VARIATION WHHD-(X) (TO BE APPROVED)2. DRAWING NOT TO SCALE3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE5. EXPOSED PAD SHALL BE SOLDER PLATED6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

PIN 1TOP MARK(NOTE 6)

0.40 ±0.10

31

1

2

32

BOTTOM VIEW—EXPOSED PAD

3.50 REF(4-SIDES)

3.45 ±0.10

3.45 ±0.10

0.75 ±0.05 R = 0.115TYP

0.25 ±0.05(UH32) QFN 0406 REV D

0.50 BSC

0.200 REF

0.00 – 0.05

0.70 ±0.05

3.50 REF(4 SIDES)

4.10 ±0.05

5.50 ±0.05

0.25 ±0.05

PACKAGE OUTLINE

0.50 BSC

RECOMMENDED SOLDER PAD LAYOUTAPPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

PIN 1 NOTCH R = 0.30 TYPOR 0.35 × 45° CHAMFERR = 0.05

TYP

3.45 ±0.05

3.45 ±0.05

UH Package32-Lead Plastic QFN (5mm × 5mm)

(Reference LTC DWG # 05-08-1693 Rev D)

Page 28: applicaTions Typical applicaTion · 2020. 2. 1. · The LTC®5566 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting

LTC5566

285566f

For more information www.linear.com/LTC5566 LINEAR TECHNOLOGY CORPORATION 2017

LT 0117 • PRINTED IN USALinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com/LTC5566

relaTeD parTs

Typical applicaTion

PART NUMBER DESCRIPTION COMMENTSInfrastructureLTC5569 300MHz to 4GHz Dual Active Downconverting

Mixer2dB Gain, 26.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/180mA Supply

LTC6430 High Linearity Differential RF/IF Amplifier 51dBm OIP3 at 240MHz, 100Ω DifferentialLTC6409 10GHz GBW Differential Amplifier DC-Coupled, 48dBm OIP3 at 140MHz, 1.1nV/√Hz Input Noise DensityLTC6412 31dB Linear Analog VGA 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dBLTC5544 4GHz to 6GHz Downconverting Mixer Family 7.4dB Gain, >25dBm IIP3, 11.3dB NF, 3.3V/200mA SupplyLT5554 Ultralow Distortion IF Digital VGA 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain StepsLTC5576 3GHz to 8GHz Active Upconverting Mixer 25dBm OIP3, –0.6dB Gain, –154dBm/Hz Output Noise Floor, –36dBm LO LeakageLTC5548 2GHz to 14GHz Wideband Microwave Mixer Up- or Down-Conversion, 21.4dBm IIP3 at 9GHz, 0dBm LO Drive, IF Bandwidth DC to

6GHzLTC5549 2GHz to 14GHz Wideband Microwave Mixer Up- or Down-Conversion, 22.8dBm IIP3 at 12GHz, 0dBm LO Drive, Integrated Balun

with IF BW = 500MHz to 6GHzLTC5593 Dual 2.3GHz to 4.5GHz Downconverting Mixer 8.5dB Gain, 27.7dBm IIP3, 9.5dB Noise FigureRF PLL/Synthesizer with VCOLTC6946 Low Noise, Low Spurious Integer-N PLL with

Integrated VCO373MHz to 5.79GHz, –157dBc/Hz WB Phase Noise Floor, –100dBc/Hz Closed-Loop Phase Noise

LTC6948 Low Noise, Low Spurious Frac-N PLL with Integrated VCO

373MHz to 6.39GHz, –157dBc/Hz WB Phase Noise Floor, –274dBc/Hz Normalized In-Band 1/f Noise

ADCsLTC2145-14 14-Bit, 125Msps 1.8V Dual ADC 73.1dB SNR, 90dB SFDR, 95mW/Ch Power ConsumptionLTC2185 16-Bit, 125Msps 1.8V Dual ADC 76.8dB SNR, 90dB SFDR, 185mW/Channel Power ConsumptionLTC2158-14 14-Bit, 310Msps 1.8V Dual ADC, 1.25GHz Full-

Power Bandwidth68.8dB SNR, 88dB SFDR, 362mW/Ch Power Consumption, 1.32VP-P Input Range

Figure 19. Test Circuit and Measured Conversion Gain with 3rd-Order Bandpass Interstage Filter

5566 F19a

½ LTC5566 MO1+MO1– AI1–AI1+

LO

IF1+

IF1–

RF1RF1(50Ω)

4.3pF

L1, L3 = 91nHC5, C7 = 4.3pFC21, C23 = 3.3pFL5, L7, L19 = 180nH

3rd-ORDER CHEBYSHEV BPF0.2dB PASSBAND RIPPLEf0 = 190MHz, BW = 155MHz

680nH

VCC

680nH

2.2pFIF

33nH

33nH

10nF

IF1(100Ω DIFF)10nF

VCC

L5

L19

L7

L1

L3

C5

C7C21 C23RF = 3.465–3.965GHzLO = 3.435GHzIF = 30–530MHz0dB to 15dB IF ATTENBAND 0

RF = 3.55GHz

RF = 3.7GHz

0dB3dB6dB9dB12dB15dB

IF OUTPUT FREQUENCY (MHz)30 100 600

–42

–36

–30

–24

–18

–12

–6

0

6

12

CONV

GAI

N (d

B)

5566 F19

RF to IF Conv Gain vs IF Frequency with 190MHz BP Interstage Filter