application of guanidine and its salts in multicomponent reactions · guanidine, also called...

27
Turk J Chem (2014) 38: 345 – 371 c T ¨ UB ˙ ITAK doi:10.3906/kim-1307-38 Turkish Journal of Chemistry http://journals.tubitak.gov.tr/chem/ Research Article Application of guanidine and its salts in multicomponent reactions Mahshid RAHIMIFARD, Ghodsi MOHAMMADI ZIARANI * , Boshra MALEKZADEH LASHKARIANI Department of Chemistry, Alzahra University, Tehran, Iran Received: 15.07.2013 Accepted: 21.11.2013 Published Online: 14.04.2014 Printed: 12.05.2014 Abstract: This review gives an overview of the application of guanidine and its salts in multicomponent reactions. It can act as a catalyst or solvent for multicomponent reactions or as a reagent for synthesis of substituted diazines, triazines, and macroheterocycles by multicomponent reactions. Key words: Guanidine, guanidinium salt, multicomponent reaction, pyrimidine, pyrimidinone, triazine 1. Introduction Guanidine, also called carbamidine, is a strongly alkaline and water-soluble compound that plays a key role in numerous biological activities. The guanidine group defines chemical and physicochemical properties of many compounds of medical interest. 1 Trimethoprim 2 1, sulfadiazine 3 2, and Gleevec (imatinib mesilate) 4 3 are examples of pharmaceutically important guanidine-containing heterocycles (Figure). In peptides, residue of arginine has a guanidine structure in the protonated form as guanidinium ion, which functions as an efficient identification moiety of anionic substrates such as carboxylate, nitronate, and phosphate functionalities. 5 The guanidinium ion is also involved in many enzymatic transformations, because it can orient specific substrates based on their electronic characteristic and it is able to form a transition state assembly with the substrates to reduce the activation energy or to stabilize anionic intermediates. 6 Me O Me O OMe N N NH 2 NH 2 H 2 N S H N O O N N N N N HN Me H N O N N Me 1 2 3 Figure. Typical compounds containing a guanidine substructure. Multicomponent reactions are of increasing importance in organic and medicinal chemistry because this kind of reaction provides a powerful tool for the 1-pot synthesis of small heterocycles and complex compounds. 7,8 * Correspondence: [email protected] 345

Upload: others

Post on 08-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Turk J Chem

    (2014) 38: 345 – 371

    c⃝ TÜBİTAKdoi:10.3906/kim-1307-38

    Turkish Journal of Chemistry

    http :// journa l s . tub i tak .gov . t r/chem/

    Research Article

    Application of guanidine and its salts in multicomponent reactions

    Mahshid RAHIMIFARD, Ghodsi MOHAMMADI ZIARANI∗, Boshra MALEKZADEH LASHKARIANIDepartment of Chemistry, Alzahra University, Tehran, Iran

    Received: 15.07.2013 • Accepted: 21.11.2013 • Published Online: 14.04.2014 • Printed: 12.05.2014

    Abstract:This review gives an overview of the application of guanidine and its salts in multicomponent reactions. It can

    act as a catalyst or solvent for multicomponent reactions or as a reagent for synthesis of substituted diazines, triazines,

    and macroheterocycles by multicomponent reactions.

    Key words: Guanidine, guanidinium salt, multicomponent reaction, pyrimidine, pyrimidinone, triazine

    1. Introduction

    Guanidine, also called carbamidine, is a strongly alkaline and water-soluble compound that plays a key role in

    numerous biological activities. The guanidine group defines chemical and physicochemical properties of many

    compounds of medical interest.1 Trimethoprim2 1, sulfadiazine3 2, and Gleevec (imatinib mesilate)4 3 are

    examples of pharmaceutically important guanidine-containing heterocycles (Figure). In peptides, residue of

    arginine has a guanidine structure in the protonated form as guanidinium ion, which functions as an efficient

    identification moiety of anionic substrates such as carboxylate, nitronate, and phosphate functionalities.5 The

    guanidinium ion is also involved in many enzymatic transformations, because it can orient specific substrates

    based on their electronic characteristic and it is able to form a transition state assembly with the substrates to

    reduce the activation energy or to stabilize anionic intermediates.6

    MeO

    MeO

    OMe

    N

    N

    NH2

    NH2

    H2N

    S

    HN

    OO N

    N

    N

    N N

    HN

    Me

    HN

    O

    N

    N

    Me

    1 2 3

    Figure. Typical compounds containing a guanidine substructure.

    Multicomponent reactions are of increasing importance in organic and medicinal chemistry because this

    kind of reaction provides a powerful tool for the 1-pot synthesis of small heterocycles and complex compounds.7,8

    ∗Correspondence: [email protected]

    345

  • RAHIMIFARD et al./Turk J Chem

    Using guanidine and its salt as reagent in multicomponent reactions usually leads to the formation of guanidine-

    containing heterocycles, which are a very important class of therapeutic agents, and they are suitable for the

    treatment of a wide spectrum of diseases.1,9−11 Guanidinium salts are also environmentally friendly catalysts

    for some multicomponent reactions.12,13 This review covers the application of guanidine and its salts from these

    points of view.

    2. Guanidine as a reagent

    2.1. Synthesis of 2-aminopyrimidine compounds

    2.1.1. Synthesis of 4,6-diaryl compounds

    One-pot synthesis of 2-amino-4,6-diarylpyrimidine 7 by multicomponent reaction of aromatic aldehydes 4,

    acetophenones 5, and guanidinium carbonate 6 in the presence of sodium hydroxide under solvent-free conditions

    was reported by Zhuang et al. (Scheme 1).14

    CO32-

    6

    H2N NH2

    NH2

    2

    70 °C, 25 min

    O

    H

    R1

    O

    Me

    R2 N

    N

    7

    NH2

    R2

    R1

    4 5

    R1 = H, 4-Me, 4-F, 4-Cl,

    4-Br, 2-Cl, 2,4-Cl2, 4-MeO

    R2 = H, 4-Cl, 4-MeO

    + +

    88-96%

    NaOH

    Scheme 1

    4,6-Diaryl amino pyrimidines 7 were also synthesized by 3-component condensation of aromatic alde-

    hydes 4, acetophenones 5, and guanidinium chloride 8 in PEG-400 in the presence of KOH. A series of

    new dioxothiazolidin-5-yl)-N-(4,6-diphenylpyrimidin-2-yl) acetamides 10 has been prepared by condensing 2,4-

    thiazolidinedione acetic acid 9 with diaryl amino pyrimidines 7 in DMF using N,N-dicyclohexylcarbodimide

    (DCC) at room temperature (Scheme 2).15

    Pyridylpyrimidine is a N,N’-chelating ligand that has 4 N-donors and can act as a neutral mono- or

    bidentate ligand and an anionic tridentate ligand. An easy and highly efficient 1-pot reaction for the preparation

    of 4-aryl-6-(pyridin-2-yl)pyrimidin-2-amine 12 via the reaction of different aromatic aldehydes 4, acetylpyridine

    11, and guanidinium carbonate 6 in the presence of NaOH under solvent-free conditions was reported by Tao

    et al. (Scheme 3).16

    Rong et al. reported a mild protocol for the synthesis of 4-naphthylpyrimidin-2-amine derivatives 14 (or

    16) by the reaction of aromatic aldehydes 4 (or 1-naphthaldehyde 15), 2-acetylnaphthalene 13 (or acetophenones

    5) with guanidinium carbonate 6 in the presence of sodium hydroxide under solvent-free conditions (Schemes

    4 and 5).17

    346

  • RAHIMIFARD et al./Turk J Chem

    Cl

    8

    H2N NH2

    NH2

    r.t., 10 h

    O

    H

    R1

    O

    Me

    R2 N

    N

    7

    NH2

    R2

    R1

    4 5

    R1 = 4-Me, 4-MeO,4-F, 2-Cl, 4-Cl, 4-Br

    R2 = H, 4-OH, 4-MeO

    + +

    82-89%

    Aq. PEG-400, KOH

    DCC, DMFr.t. 7 h

    S

    HNO

    HO

    O

    O

    9

    N

    N

    10

    NH

    R2

    R1O S

    NH

    O

    O

    71-78%

    Scheme 2

    CO32-

    6

    H2N NH2

    NH2

    2

    O

    H

    R

    N

    O

    Me

    N

    N

    12

    NH2N

    R

    4 11

    R = 2-F, 3-F, 4-F, 4-Cl, 2,4-Cl2, 3,4-Cl2, 2-Br, 4-Br, 4-Me,

    3,4-Me2, 3-MeO, 4-MeO, 3,4-(MeO)2, 3,4,5-(MeO)3

    70 °C, 45 min

    NaOH++

    89-96%

    Scheme 3

    Eynde et al. described the synthesis of ethyl 2-amino-4-aryl-1,4-dihydro-6-phenylpyrimidine-5-carboxylates

    18 from 1-pot cyclocondensation of arylaldehydes 4, ethyl benzoylacetate 17, and guanidinium chloride 8. This

    amino-dihydropyrimidines can readily react under microwave irradiation and solvent-free conditions, with 3-

    formylchromone 19 or diethyl(ethoxymethylene)malonate 20 to yield novel pyrimido[1,2-a ]pyrimidines 21 or

    22, respectively (Scheme 6).18

    347

  • RAHIMIFARD et al./Turk J Chem

    CO32-

    6

    H2N NH2

    NH2

    2

    O

    Me

    N

    N

    14

    NH24 13

    R = 4-Me, 4-MeO, 3,4-(MeO)2, 4-F, 4-Br, 4-Cl, 2,4-Cl2, 3,4-Cl2

    NaOH

    70 °C, 30 min

    H

    O

    R

    R

    ++

    81-91%

    Scheme 4

    CO32-

    6

    H2N NH2

    NH2

    2

    O

    Me

    RN

    N

    16

    NH2

    R15 5

    R = H, 4-Me, 4-MeO, 2,4-Me2, 3-Cl, 2,4-Cl2

    O H

    NaOH

    70 °C, 30 min+ +

    81-91%

    Scheme 5

    H2N NH2

    NH2

    Ar

    O

    H

    O

    4

    Ar = Ph, 4-MePh, 4-MeOPh, 4-ClPh, 2-thienyl

    +

    CO2Et

    +

    NH

    N

    NH2Ph

    EtO2C

    HArN

    N

    N

    O

    OHHAr

    EtO2C

    Ph

    NaHCO3/DMF

    Cl

    OO

    O

    H

    70 °C, 3 h

    EtO H

    CO2EtEtO2CN

    N

    NH

    HAr

    EtO2C

    Ph H

    O

    CO2Et

    75-85%

    17 8 18

    19

    20

    21

    22

    Scheme 6

    2.1.2. Synthesis of pyrimidine-fused ring systems

    Spring et al. used a branching synthetic strategy to generate structurally diverse scaffolds such as pyrimido[1,2-

    a ]pyrimidine that developed numerous biologically active compounds. Reaction of β -keto-ester 23, thiophene-

    348

  • RAHIMIFARD et al./Turk J Chem

    2-carboxaldehyde 24, and guanidinium carbonate 6 followed by reaction with 3-formylchromone 19 led to the

    formation of pyrimido[1,2-a ]pyrimidine 25 (Scheme 7).19

    N

    N

    N

    S

    O

    Ph

    O

    OC6F13

    OH

    O

    OC6F13

    OPh

    CO32-

    6

    H2N NH2

    NH2

    2

    S

    CHO

    23 24

    19

    25

    + +

    43%

    OO

    H

    O

    Scheme 7

    The heterocyclic pyrido[2,3-d ]pyrimidines ring system represents several biological activities. Some ana-

    logues have been found to act as antitumor agents inhibiting dihydrofolate reductases or tyrosine kinases,20−22

    while others are known antiviral agents.23 A simple and rapid multicomponent reaction providing multifunc-

    tionalized pyrido[2,3-d ]pyrimidines 29 in a microwave-assisted 1-pot cyclocondensation of α ,β -unsaturated

    esters 26, malononitrile 27, or methyl cyanoacetate 28 and guanidinium carbonate 6 was reported by Borrell

    et al. (Scheme 8).24,25

    CO32-

    6

    H2N NH2

    NH2

    2 N

    N

    29

    NH2

    26 27, X = CN28, X = CO2Me

    R1 = H, Me

    R2 = H, Me, Ph

    MW, 140 °C, 10 min

    NaOMe/MeOH

    NH

    O

    R1

    R2 Y

    X

    CN

    R2

    R1 CO2Me

    X = CN, Y = NH2X = CO2Me, Y = OH

    + +

    Scheme 8

    Use of guanidinium carbonate in the synthesis of pyrido[2,3-d ]pyrimidines was previously described by

    Borrell et al. in 2 manners. In the first method, pyrido[2,3-d ]pyrimidines were synthesized by treatment

    of isolated pyridones with guanidinium carbonate,26,27 and the second method based on the reaction of

    guanidinium carbonate with isolated Michael adduct of acrylate and cyano-compounds.28−30

    Galve et al. have developed a protocol for the synthesis of 2-arylamino substituted 4-amino-5,6-

    dihydropyrido[2,3-d ]pyrimidin-7(8H)-ones 33 from treatment of pyridones 30 (synthesized from α ,β -unsaturated

    esters 26 and malononitrile 27) with the aryl guanidines 31 to form 3-aryl substituted pyridopyrimidines 32,

    which underwent Dimroth rearrangement by NaOMe/MeOH. The overall yields of such a 3-step protocol are in

    general higher than those of the multicomponent reaction between an α ,β -unsaturated ester 26, malononitrile

    27, and an aryl guanidine 31 (Scheme 9).31

    349

  • RAHIMIFARD et al./Turk J Chem

    H2N NHR3

    NH

    N

    N

    NH2

    R1 = H, Me, 2,6-Cl2PhR2 = H, Me

    R3 = Ph, 4-ClPh

    NaOMe/MeOH

    NH

    O

    R1

    R2 NH

    CN

    CN

    R2

    R1 CO2Me

    R3

    1,4-dioxaneNH

    O

    R1

    R2

    OMe

    CN

    NaOMe/MeOH

    H2N NHR3

    NH

    N

    N

    NHR3NH

    O

    R1

    R2 NH226

    27 30

    31

    32

    33

    31

    MW, 140 °C10 min

    Scheme 9

    Jin et al. reported glycosylation of the pyrido[2,3-d ]pyrimidine ring in the synthesis of the guanosine

    analogue system. Pyrido[2,3-d ]pyrimidine ring system 35 has been synthesized by condensation of methyl

    acrylate 34 with methyl cyanoacetate 28 and guanidinium carbonate 6 in the presence of sodium methoxide.

    Dehydrogenation, glycosylation, and deprotection of pyrido[2,3-d ]pyrimidine ring gave the desired guanosine

    analogue 36 (Scheme 10).32

    CO32-

    6

    H2N NH2

    NH2

    2N

    NH

    35

    NH2

    34

    Reflux, 36 h

    NaOMe/MeOH

    NH

    OCO2Me

    CNCO2Me

    28

    O

    N

    NH

    NH2NO

    O

    O

    HO OH

    OH

    36

    + +

    55%

    Scheme 10

    An environmentally friendly method for the synthesis of pyrimidine-fused ring systems 39 or 40 by the

    1-pot condensation of aromatic aldehydes 4, guanidinium carbonate 6, and cyclic ketones 37 or 38, respectively,

    in the presence of NaOH under solvent-free conditions was reported by Rong et al. (Scheme 11).33

    2-Amino-4-benzylaminoindeno[2,1-d ]pyrimidin-5-one 43 was synthesized by condensation of α -oxoketene

    dithioacetal 41,34 aniline 42, and guanidinium carbonate 6 by Tominaga et al. (Scheme 12).35

    350

  • RAHIMIFARD et al./Turk J Chem

    CO32-

    6

    H2N NH2

    NH2

    2

    O

    H

    R

    N

    N

    39

    NH2

    4

    R = H, 4-Me, 4-MeO, 3,4-Me2, 3,4-

    (MeO)2, 4-Br, 4-Cl, 3-Cl, 3,4-Cl2, 4-F

    O

    n = 0,1

    NaOH, 70 °C,15 min

    O

    n = 0,1

    NaOH, 70 °C,15 min

    R

    N

    N

    40

    NH2

    R

    R

    n

    n

    37

    38

    +

    90-98%

    90-97%

    Scheme 11

    N

    N

    NH2

    MeS

    MeS HN

    CO32-

    H2N NH2

    NH2

    2

    NH2O

    O

    OPyridine

    Reflux

    41 42 6 43

    + +

    92%

    Scheme 12

    The synthesis of 4-phenyl-5H -pyrimido[5,4-b ]indol-2-amine 45 via a multicomponent reaction between

    1-acetylindolin-3-one 44, benzaldehyde 4, and guanidinium chloride 8 (Scheme 13) and its antagonist activity

    of A2A adenosine receptor were studied by Matasi et al.36

    H2N NH2

    NH2+ +

    NaOHH

    O

    N

    O

    MeO

    Cl

    N

    N

    NH2

    HN

    EtOH

    44

    4 8

    45

    Scheme 13

    351

  • RAHIMIFARD et al./Turk J Chem

    Meshram et al. synthesized new spiro[indenopyrimidine] derivatives 51 and 52, and spiro[pyrimidodiazine]

    derivatives 53 and 54 by a simple 1-pot 3-component reaction involving cyclic ketones 49 and 50, guanidine

    46, and 1,3-dione 47 and 48 in the presence of HCl (10% mmol) in ethanol at reflux (Scheme 14).37

    H2N NH2

    NH

    N

    NH

    NH2

    O

    HN

    O

    NH

    O

    O

    O

    O

    O

    N

    NH

    NH2

    OO

    O

    O

    O

    N

    NH

    NH2

    O

    O

    3 h, 75%

    5 h, 84%

    HN NH

    O

    O O

    NHHN

    O

    O

    N

    NH

    NH2HN

    O

    NHHN

    O

    O

    NH

    O

    O

    O

    O

    O

    3 h, 78%

    3 h, 82%

    HCl/EtOH HCl/EtOH

    Reflux Reflux

    49 49

    5050

    4847

    46

    51

    52

    53

    54

    Scheme 14

    The synthesis of thiosugar-fused bicyclic pyrimidines 57 and 58 with high cis diastereoselectivity at

    the ring junction has been developed by Yadav et al. using unprotected aldoses 55, 2-methyl-2-phenyl-1,3-

    oxathiolan-5-one 56, and guanidine 46 by a nanoclay catalyst under solvent-free MW irradiation conditions

    (Scheme 15).38

    H2N NH2

    NH+

    S

    OO

    Me

    Ph

    CHO

    (CHOH)n

    CH2OH

    +MW, K-10 clay

    80 °C, 7-12 min

    S

    N NH

    OH

    OH

    H

    H

    O

    NH2

    OH

    S

    N NH

    OH

    H

    H

    O

    NH2

    OH

    OHHO

    n = 3

    n = 4n = 3, D-xylose

    n = 4, D-glucose

    55 56 46

    57

    58

    93%

    89%

    Scheme 15

    352

  • RAHIMIFARD et al./Turk J Chem

    Yadav et al. also reported the above 3-component reactions using 2-phenyloxazol-5(4H)-one 59 instead

    of 2-methyl-2-phenyl-1,3-oxathiolan-5-one 56 in the same conditions for synthesis of fused pyrimidines 60 and

    61 (Scheme 16).39

    H2N NH2

    NH+

    N

    OO

    Ph

    CHO

    (CHOH)n

    CH2OH

    +MW, K-10 clay

    80 °C, 10-12 min

    N N

    O

    NH2

    N N

    O

    NH2

    n = 3

    n = 4n = 3, D-xylose

    n = 4, D-glucose

    55 46

    OH

    OHH

    H

    H

    HPhCOHN

    PhCOHN

    OH

    OH

    OH

    OH

    OH

    79%

    89%

    59

    60

    61

    Scheme 16

    A facile 1-pot synthesis of pyrazolo[3,4-d ]pyrimidines 64 by 3-component condensation of 5-chloro-

    3-methyl-1-phenyl-1H -pyrazole-4-carbaldehyde 62, 3-methyl-1-(4-aryl)-5-pyrazolone 63, and guanidine hy-

    drochloride 8 (Scheme 17) and their antibacterial activity against Mycobacterium tuberculosis H37Rv was

    reported by Trivedi et al.40

    H2N NH2

    NH2+ +

    Cl

    N

    N

    NH2

    EtOH

    62

    63 8

    64

    CHO

    NN

    ClMe

    N

    N

    Me

    R

    O

    NN

    ClMe

    N

    N

    Me

    R

    Reflux, 3h

    56-71%

    R = Ph, 2-ClPh, 3-ClPh, 4-MePh, 3-SO3HPh,

    4-SO3HPh, 2-Cl-5-SO3HPh, 2,5-Cl2-4-SO3HPh

    Scheme 17

    2.1.3. Synthesis of 5-carbonitrile compounds

    A simple and efficient method for the 1-pot 3-component reaction of aromatic aldehydes 4, methyl cyanoacetate

    28, and guanidinium carbonate 6 in the synthesis of 2-amino-4-aryl-1,6-dihydro-6-oxopyrimidine-5-carbonitriles

    65 was reported by Bararjanian et al. (Scheme 18). They also attempted a 1-pot, 4-component condensation

    reaction of aromatic aldehydes 4, methyl cyanoacetate 28, guanidinium chloride 8, and piperidine 66, in

    353

  • RAHIMIFARD et al./Turk J Chem

    which piperidine acts both as a base and reagent (Scheme 19). The 1H NMR data indicated the formation of

    zwitterionic product structures 67.41

    NH

    NCO32-

    Reflux, 3 h

    MeOH

    4 26 6

    65

    NC

    H2N NH2

    NH2

    CO2Me

    CN

    2 NH2

    H

    O

    R O

    R

    R = H, 4-Br, 4-Cl, 4-NC, 4-

    Me, 3-OH, 4-OH, 3-NO2, 4-

    NO2, 2,3-Cl2

    + +

    36-62%

    Scheme 18

    N

    N

    Cl

    Reflux

    MeOH

    4 28 8

    67

    H2N NH2

    NH2

    CO2Me

    CNO

    H

    O

    RN

    R

    R = H, 4-Br, 4-Cl, 4-Me, 4-F3C

    + +

    43-62%

    +NH

    NC

    H

    H

    N

    N

    O

    N

    RCN

    H

    H

    H

    H

    NH

    66

    Scheme 19

    Rong et al. also reported an efficient and facile synthesis of 2-amino-4-aryl-1,6-dihydro-6-oxopyrimidine-

    5-carbonitriles 65 by the reaction of aromatic aldehydes 4, ethyl cyanoacetate 68, and guanidinium carbonate

    6 in the presence of sodium hydroxide and potassium carbonate as catalyst under solvent-free conditions at 70◦C (Scheme 20).42

    NH

    NCO32-

    70 °C, 20-30 min

    NaOH/K2CO3

    4 68 6

    65

    NC

    H2N NH2

    NH2

    CO2Et

    CN

    2 NH2

    H

    O

    R O

    R

    R= H, 4-Me, 3,4-(Me)2, 4-MeO, 3,4-(MeO)2,

    4-F, 3-Cl, 4-Cl, 2,4-Cl2, 3,4-Cl2, 4-Br

    + +

    86-93%

    Scheme 20

    Bhatewara et al. reported a simple and efficient method for synthesis of 2-amino-6-oxo-4-aryl-1,4,5,6-

    tetrahydropyrimidine-5-carbonitriles 70 via 3-component condensation of aldehydes 4, ethyl cyanoacetate 68,

    354

  • RAHIMIFARD et al./Turk J Chem

    and guanidinium nitrate 69 using piperidine as a catalyst (Scheme 21).43 They also reported a simple protocol

    for preparation of 2-amino-6-aryl-4-oxo-1,4,5,6-tetrahydropyrimidine-5-carbonitriles 71 using the same reactants

    and catalyst in solvent-free conditions under microwave irradiation (Scheme 22).44

    NH

    N

    Ar

    NO3-

    H2O, 60-70 °C

    4 68 69 70

    NC

    H2N NH2

    NH2

    CO2Et

    CN

    NH2H

    O

    O

    Ar = Ph, 4-MeOPh, 3,4-(MeO)2Ph, 4-NO2Ph, 2-pyrrolyl,

    2-furyl, 3-indolyl, N-methyl-2-pyrrolyl

    + +

    83-95%

    NH

    Ar

    Scheme 21

    N

    NH

    Ar

    NO3-

    MW, 600 WSolvent free

    4 68 69 71

    NC

    H2N NH2

    NH2

    CO2Et

    CN

    NH2H

    O

    O

    Ar = Ph, 4-MeOPh, 3,4-(MeO)2Ph, 4-NO2Ph, 2-pyrrolyl,

    2-furyl, 3-indolyl, N-methyl-2-pyrrolyl

    + +

    79-93%

    NH

    Ar

    Scheme 22

    Anbhule and co-workers have developed a simple and efficient approach toward 1-step synthesis of 2-

    amino-5-cyano-6-hydroxy-4-aryl pyrimidines 72 using condensation of aromatic aldehydes 4, ethyl cyanoacetate

    68, and guanidinium chloride 8 in alkaline ethanol (Scheme 23). The antibacterial study of synthesized

    compounds showed good to excellent activity against tested gram-positive and gram-negative bacteria.45

    N

    N

    Ar

    Reflux, 1-3 h

    NaOH/EtOH

    4 68

    NC

    H2N NH2

    NH2

    CO2Et

    CN

    NH2Ar H

    O

    HO

    Ar = Ph, PhCH=CH, 3-NO2Ph, 3,4-(MeO)2Ph, 4-(Me)2NPh, 4-MeOPh,

    4-OHPh, 3-ClPh, 2-NO2Ph, 3,4,5-(MeO)3Ph, 2-ClPh, 2-thionyl

    Cl+ +

    8 72

    79-95%

    Scheme 23

    Val et al. reported a convergent and robust approach for synthesis of 2-aminopyrimidine-5-carbonitriles

    76 from 3-component condensation of N -substituted guanidines 75, α -cyanoketones 74, and the corresponding

    355

  • RAHIMIFARD et al./Turk J Chem

    aldehydes 4 (or dimethyl acetals 73) in the presence of DMF at 120 ◦C under microwave irradiation (Scheme

    24).46

    N

    N

    R1 (or R2)

    Na2CO3, DMF

    4

    74

    NC

    H2N N

    NH

    N

    R1 H

    O

    R1 = Ph, 4-MePh, 3-FPh, 4-FPh, 3-OHPh, 4-OHPh, 2-MeOPh,

    4-MeOPh, 3-thionyl, 3-pyridyl, 3-ClPh, 3,5-Cl2Ph, cyclohexyl

    + +

    75 7634-86%

    or

    R2 OMe

    OMe

    R2 = Me, Et

    73

    R3

    R4

    O

    NC

    X

    X = H, 3-Cl, 4-OMeR3 = H, Me, Et, Ph R4 = H, Me

    MW, 120 °C45-60 min

    X

    R3

    R4

    Scheme 24

    The synthesis of 2,6-bis(2-amino-5-cyano-6-phenylpyrimidin-4-yl)pyridine 78 was developed by the re-

    action of 2-benzylidene-3-oxopropanenitrile 77 and 2 guanidine 46 molecules in the presence of anhydrous

    potassium carbonate (Scheme 25).47

    N

    OO

    CN

    Ph

    CN

    PhK2CO3, EtOH

    Reflux, 10 hH2N

    NH

    NH2+ 2

    N

    NN

    CN

    Ph

    CN

    Ph

    N

    NH2

    N

    NH2

    72%

    77

    46

    78

    Scheme 25

    2.1.3.1. Synthesis of 6-amino compounds

    Rong and co-workers presented an environmentally friendly and mild method for synthesis of 2,6-diamino-

    4-arylpyrimidine-5-carbonitrile derivatives 79 via 1-pot cyclocondensation reaction of aromatic aldehydes 4,

    malononitrile 27, and guanidinium carbonate 6 using sodium hydroxide as catalyst at 70 ◦C in solvent-free

    conditions (Scheme 26).48

    N

    NCO3

    2-

    70 °C

    NaOH

    4 27 679

    NC

    H2N NH2

    NH2

    CN

    CN

    2 NH2

    H

    O

    RH2N

    R

    R = H, 4-Me, 4-F, 4-Cl, 3-Cl, 4-Br, 3,4-Cl2, 4-MeO, 3,4-(Me)2

    + +

    80-92%

    Scheme 26

    356

  • RAHIMIFARD et al./Turk J Chem

    Hekmatshoar et al. also reported an efficient and facile synthesis of 2-amino-4-aryl-1,6-dihydro-6-

    oxopyrimidine-5-carbonitriles 79 by the reaction of aromatic aldehydes 4, malonitrile 27, and guanidinium car-

    bonate 6 in the presence of ZnO nanoparticles in water.49 A method using granulated copper oxide nanocatalyst

    as a mild and efficient reusable catalyst for the 1-pot synthesis of 2-amino-4-aryl-1,6-dihydro-6-oxopyrimidine-

    5-carbonitriles 79 under aqueous conditions was also reported by Ahmadi and coworkers by the reaction of

    aromatic aldehydes 4, malonitrile 27, and guanidinium carbonate 6.50

    Furthermore, another 1-pot synthesis of 2,4-diamino-6-arylpyrimidine-5-carbonitriles 79 was reported by

    Deshmukh et al. via condensation of aromatic aldehydes 4, malononitrile 27, and guanidinium chloride 8 in

    aqueous medium using tetrabutyl ammonium bromide (TBAB) and potassium carbonate (Scheme 27).51

    N

    N

    Ar

    Reflux, 3-4 h

    4 27 8 79

    NC

    H2N NH2

    NH2

    CN

    CN

    NH2

    Ar H

    O

    H2N

    + +

    63-75%

    Cl

    TBABK2CO3/H2O

    Ar = Ph, PhCH=CH, 3,4-(MeO)2Ph, 4-(Me)2NPh,

    4-MeOPh, 4-OHPh, 2-OHPh, 3-ClPh

    Scheme 27

    2,6-Diamino-4-arylpyrimidine-5-carbonitriles 79 were also synthesized by 3-component reaction of mal-

    ononitrile 27, aldehydes 4, and guanidinium chloride 8 in water at reflux or under microwave heating, in the

    presence of sodium acetate.52 Sheibani and co-workers reported another method for synthesis of this class of

    compounds using high-surface-area MgO as a highly effective heterogeneous base catalyst.53 Moreover, an ef-

    ficient 1-pot synthesis of 2,6-diamino-4-arylpyrimidine-5-carbonitriles 79 has been achieved in excellent yields

    by the condensation of malononitrile 27, aldehydes 4, and guanidinium chloride 8 using ionic liquid under

    controlled microwave irradiation (100 W) at 60 ◦C.54

    One-pot synthesis of 6-alkylamino-2,4-diaminopyrimidines 82 using ketene dithioacetals 80,55−56 alkyl

    amines 81, and excess guanidinium carbonate 6 was developed under reflux conditions in pyridine (Scheme

    28).35

    CO32-

    H2N NH2

    NH2

    2N

    N

    NH2

    6

    X

    CNMeS

    MeS

    HNR1R2

    Y

    X

    R2N

    X = CN, Y = NH2X = SO2Ph, Y = NH2X = CO2Me, Y = OH

    HNR1R2 = HNCH2Ph, HNCH(Me)Ph,

    OHN HN,

    Pyridine

    Reflux

    81 8280

    + +

    70-94%

    Scheme 28

    357

  • RAHIMIFARD et al./Turk J Chem

    The reaction of aniline derivatives 42 with ketene dithioacetal 80 gave intermediates 83, which were

    reacted with guanidinium carbonate 6 to provide 6-arylamino-2,4-diaminopyrimidines 84 (Scheme 29).35

    N

    N

    NH2CN

    CNMeS

    MeS

    NH2NC

    NH

    Pyridine, Reflux

    CO32-

    H2N NH2

    NH2

    2

    CN

    CNMeS

    NHR

    NH2R

    R

    R = H, 2-MeO, 3-MeO, 4-MeO, 4-Cl

    80

    42

    83 84

    6

    63-90%

    Scheme 29

    2.1.3.2. Synthesis of spiro compounds

    Ramezanpour et al. developed an efficient protocol for the synthesis of various spiro-2-amino pyrimidinones 86

    via a 3-component reaction of N-substituted piperidinones 85, guanidinium carbonate 6, and alkyl cyanoacetates

    28 and 68 via domino Knoevenagel-cyclocondensation reaction (Scheme 30). This method has advantages such

    as high yields, neutral conditions, and short reaction times. This basic medium was suitable for deprotonation

    of alkyl cyanoacetates, which produced the desired alkene intermediate through Knoevenagel condensation on

    the reaction with carbonyl compound 85. Michael addition of free guanidine into alkene and then cyclization

    led to the synthesis of spiro-2-amino pyrimidinones 86 in good yields.57

    N NH

    N

    O

    R = Bn, CH2CH2Ph, PhCHMe

    CO32-

    NReflux, 20-90 min

    MeOH

    85 28, X = CO2Me

    68, X = CO2Et

    6 86

    NC

    H2N NH2

    NH2

    X

    CN

    O

    R2

    R

    NH2

    ++

    70-96%

    Scheme 30

    An efficient synthesis of spirocyclic 2-aminopyrimidinones 88 was achieved via a domino Michael addition–

    cyclocondensation reaction of a cyclic ketone 87, ethyl cyanoacetate 68, and guanidinium carbonate 6 in

    methanol (Scheme 31).58

    NH

    N

    O

    Reflux, 1-3 h

    MeOH

    87 68 6 88

    NC

    CO2Et

    CNO

    NH2XX

    CO32-

    H2N NH2

    NH2

    2

    X = CH2, (CH2)2, (CH2)3, MeN, S

    + +

    75-85%

    Scheme 31

    358

  • RAHIMIFARD et al./Turk J Chem

    2.1.4. Synthesis of 5-alkyl compounds

    Maddila et al. developed a simple and efficient approach for synthesis of 2-amino-6-aryl-5-methylpyrimidin-4-ol

    derivatives 90 by 3-component condensation of aldehydes 4, ethyl propionate 89, and guanidine hydrochloride

    8 using PEG-400 at 75 ◦C (Scheme 32).59

    N

    N

    R

    75 °C, 1.5-2 h

    4 89 8 90

    Me

    H2N NH2

    NH2

    NH2

    R H

    O

    HO

    + +

    85-92%

    ClPEG-400

    R = Ph, 2-ClPh, 3-ClPh, 3,4-(MeO)2Ph, 3,4,5-(MeO)3Ph,

    PhCH=CH, 2-NO2Ph, 3-NO2Ph, 4-MePh, 4-OHPh, Et, n-Pr

    CO2Et

    Me

    Scheme 32

    2.1.5. Synthesis of dihydropyrimidinone compounds

    Gorobets et al. developed 2 different protocols (conventional and microwave conditions) in the synthesis of 2-

    amino-5,6-dihydropyrimidin-4(3H)-ones 92. A multicomponent reaction between Meldrum’s acid 91, aliphatic

    or aromatic aldehydes 4, and guanidinium carbonate 6 provided easy access to dihydropyrimidinones (Scheme

    33). In comparison to the conventional heating method, microwave heating affords more advantages such as

    reduced reaction time, low cost, and simplicity in reaction progress, reduced pollution, and higher product

    purity.60

    CO32-

    6

    H2N NH2

    NH2

    2

    4 91

    R = CHMe2, CH2Ph, Ph, 4-MeOPh, 2-MeOPh, 2,5-(MeO)2Ph,

    3-MeO-4-CHF2OPh, 2-ClPh, 4-BrPh, 4-Me2NPh

    O O

    OO DMF

    R

    O

    H NH

    N

    NH2

    92

    O

    R

    120-130 °C or MW+ +

    21-55%

    Scheme 33

    There are 2 more methods for synthesis of the above 2-amino-5,6-dihydropyrimidin-4(3H)-ones 61.

    Mohammadnejad and co-workers reported a 3-component reaction of Meldrum’s acid 91, aromatic aldehyde

    4, and guanidinium carbonate 6 in reflux of ethanol that leads to formation of 2-amino-5,6-dihydropyrimidin-

    4(3H)-ones 92.61 Mirza-Aghayan and co-workers also developed another method for the synthesis of these

    compounds from the 1-pot cyclocondensation of Meldrum’s acid 91, aldehydes 4, and guanidinium carbonate

    6 using MCM-41 catalyst functionalized with 3-aminopropyltriethoxysilane (MCM-41-NH2) as an efficient

    nanocatalyst in DMF.62

    359

  • RAHIMIFARD et al./Turk J Chem

    2.2. Synthesis of 2-iminopyrimidine compounds

    2-Iminopyrimidines 94 were synthesized by Akbas et al. using 3-component cyclocondensation of arylaldehydes

    4, dibenzoylmethane 93, and guanidine 46 (Scheme 34). The electrochemical properties of the novel systems

    were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV).63

    H2N NH2

    NH

    Ph

    O

    ++Ph

    O

    R = H, 4-Cl, 3-NO2, 4-CN

    NaHCO3/DMF

    70 °C, 5 h

    H

    O

    NH

    NH

    NHPh

    Ph

    OH

    R

    R

    4 93 4694

    Scheme 34

    Multicomponent Biginelli reaction of 3-(aryl)-1-phenyl-1H -pyrazole-4-carbaldehydes 95,64 ethyl acetoac-

    etate 96, and guanidinium chloride 8 was reported by Shah et al. (Scheme 35). All synthesized dihydropyrim-

    idines 97 were evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv.65

    H2N NH2

    NH2

    EtO

    O

    + +Me

    O

    N N

    CHOR

    N N

    R

    NH

    NH

    NHMe

    EtO

    O

    R = F, Cl, Br, NO2, CH3

    ClEtOH

    Reflux, 9 h

    95

    96 8

    97

    Scheme 35

    4,5,6-Triphenyl-1,2,3,4-tetrahydropyrimidine derivatives 99 were synthesized by 1-pot reaction of 1-(4-

    (methylthio)phenyl)-2-phenylethanone 98, aromatic aldehydes 4, and guanidinium chloride 8 in the presence

    of potassium carbonate in ethanol (Scheme 36). In this reaction, at first chlorination of phenyl acetic acid by

    thionyl chloride yielded phenylacetyl chloride, which reacted with thioanisole in dichloromethane in the presence

    of AlCl3 to give 1-(4-(methylthio)phenyl)-2-phenylethanone 98. All the synthesized compounds were tested for

    their ability to inhibit cyclooxygenase-2 (COX-2).66

    360

  • RAHIMIFARD et al./Turk J Chem

    O

    SMe

    H

    O

    RH2N NH2

    NH2

    ++

    R

    K2CO3

    EtOH

    Cl

    NH

    NH

    SMe

    NH

    4 9899

    8

    R = H, 4-Me, 4-OH, 4-Cl, 2-NO2, 3-NO2,

    4-MeO, 3,4-(MeO)2, 2,5-(MeO)2

    Scheme 36

    A facile synthesis of novel trifluoromethyl derivatives of 4,4’-(1,4-phenylene)-bis(tetrahydro-pyrimidin-

    2(1H)-imine) 102 was reported by Azizian et al. via 1-pot 3-component condensation of terephthalaldehyde

    100 with guanidine 46 and fluorinated 1,3-dicarbonyl derivatives 101 using chlorotrimethylsilane (TMSCl) as

    catalyst (Scheme 37).67

    H2N NH2

    NH+ +

    OHC

    CHOF3C

    O O

    R

    TMSCl/MeCN

    r.t., 60 min

    HN NH

    NHHN

    HOH

    F3C

    CF3

    HOHOR

    NH

    O R

    NHR = Me, 2-thienyl

    100 101 46

    102

    80-82%

    Scheme 37

    Miri et al. reported a Biginelli condensation reaction of terephthalaldehyde 100, acetylacetone 103, and

    guanidine 46 using chlorotrimethylsilane under microwave irradiation for 1-pot synthesis of 4,4’-(1,4-phenylene)-

    bis(3,4-dihydropyrimidin-2(1H)-imine) 104 (Scheme 38). The cytotoxicity of this compound was evaluated on

    5 different human cancerous cell lines.68

    H2N NH2

    NH++

    OHC

    CHO

    O O

    Me 100 °C, 4 min

    HN NH

    NHHN

    NH

    NH

    Me

    Me

    Me O

    MeOTMSCl, MW

    Me

    100 103 46

    104

    85%

    Scheme 38

    Pyrimidine derivative 105, produced by condensation of 4-hydroxy benzaldehyde 4 with guanidine 46 and

    ethyl acetoacetate 96 (Scheme 39, A), has been condensed with acid chloride of phenyl substituted pyrazolone

    361

  • RAHIMIFARD et al./Turk J Chem

    carboxylic acid 107, which was synthesized by reaction of phenyl hydrazine 106 with ethyl acetoacetate 96 and

    then alkaline oxidation with KMnO4 /KOH (Scheme 39, B) to give compound 108 (Scheme 39, A+B).69

    O

    H

    H2N NH2

    NH

    +

    HN

    NH

    HN Me

    HO

    Me OEt

    O O

    OH

    O

    OEtCondensation

    Me

    EtO

    O

    O

    Condensation

    HNNH2

    +N

    HNO

    Me

    KMnO4/KOHN

    HNO

    O

    OH

    NHN

    O

    O

    Cl

    SO2Cl

    CondensationN

    NHN Me

    OH

    O

    OEt

    O

    O

    N NH

    O

    HN N

    O

    446

    96

    105

    106 96107

    108

    HN

    NH

    HN Me

    OH

    O

    OEt

    105

    NHN

    O

    O

    Cl

    +

    107

    A

    B

    A + B

    Scheme 39

    2.3. Synthesis of triazine compounds

    2,6-Diamino-3,6-dihydro-6-aryl-1,3,5-triazine 109 was synthesized by reaction of aromatic aldehydes 4 with 2 or

    more equivalents of guanidinium chloride 8 in the presence of sodium methoxide in methanol by Ujjinamatada

    et al. (Scheme 40). By this reaction, they have discovered a novel functional group transformation involving

    selective conversion of an ester group of imidazole ring 110 into the corresponding amide 111, while simul-

    taneously protecting the aldehyde group as dihydrotriazine (Scheme 41). In this transformation, alternative

    dihydrodiazepines 112 were not synthesized.70

    362

  • RAHIMIFARD et al./Turk J Chem

    H

    O

    R

    +

    H2N NH2

    NH2 NaOMe/MeOH

    Reflux, 12 h

    R

    N

    NHN

    NH2

    NH2

    R = H, 2,4-(MeO)2

    61-67%

    4 8 109

    2Cl

    Scheme 40

    H

    O

    +

    H2N NH2

    NH anhydrous EtOH

    Reflux, 15 h

    R = Ph, OCH2Ph

    61-66%

    O

    OEt

    N

    N

    O

    NH2

    N

    N

    N

    NHN

    NH2

    NH2

    R

    R

    N

    N

    R

    NH

    N

    O

    NH2

    HN

    NH

    NH2

    111

    112

    110 46

    2

    Scheme 41

    The respective compounds 111 and 112 have the same molecular formula, the same methine signal

    of either the dihydrotriazine or the dihydrodiazepine ring, and with tautomerization the same number of

    amino/imino groups exchangeable with D2O. In order to resolve this structural ambiguity, an unambiguous

    synthesis was performed of 1 of the 2 amide–triazines 111 by the reaction of amide–aldehyde 113 with excess

    guanidine 46 in methanol at reflux (Scheme 42).70

    H2N NH2

    NH

    Reflux, 15 h

    O

    NH2

    N

    N

    N

    NHN

    NH2

    NH2

    111

    46

    MeOH

    O

    NH2

    N

    N

    H

    OOPh O

    Ph

    113

    + 2

    Scheme 42

    363

  • RAHIMIFARD et al./Turk J Chem

    Gund et al. reported the isolation of a fully aromatic product s-triazine 114 in low yield from a complex

    mixture of products by the reaction of excess benzaldehyde 4 (used as a solvent) with guanidinium carbonate

    6 (Scheme 43).71

    O

    HCO3

    2-

    H2N NH2

    NH2

    2

    +

    64

    Benzaldehyde

    Reflux N

    N

    N

    NH2

    NH2114

    30%

    2

    Scheme 43

    2.4. Synthesis of miscellaneous compounds

    Zomordbakhsh et al. synthesized 2,4,6-triarylpyridine derivatives 116 by the reaction of chalcone derivatives

    115 with guanidine 46 and acetophenones 5 in solvent-free conditions (Scheme 44).72

    O

    Me

    H2N NH2

    NH

    +

    R1 R3

    O

    R2

    +Solvent-free

    MW, 600 W, 4 min N

    R3

    R1 R2

    R1 = Ph, 4-Me, 4-Cl, 4-MeO

    R3 = Ph, 2-Me, 4-Me, 4-Cl, 4-MeO, 4-N(Me)2, 4-NO2

    R2= Ph, 4-Me, 4-Cl, 4-MeO

    5 11546

    116

    Scheme 44

    Jalani et al. developed an efficient 1-pot domino method for the synthesis of 2-aminothiazoles 120 using

    isothiocyanates 117, tetramethylguanidine 118, and halomethylenes 119 in DMF (Scheme 45).73

    N(Me)2

    N(Me)2

    HN+R1 N C S N(Me)2

    N(Me)2

    N

    SNH

    R1

    N

    S

    N(Me)2

    NH

    R1

    R2DMF

    65-76%

    DMF

    2-3 h8-24 h

    R1 = Ph, Bn, CO2EtNO

    O

    OO

    Br

    Br R2

    Br R2 = or

    O

    Br

    117 118

    119

    120

    Scheme 45

    Jalani et al. also reported another 1-pot domino method for synthesis of 1,2,4-oxadiazol-3-amines 122

    using isothiocyanates 117, tetramethylguanidine 118, and hydroxylamine 121 in DMF (Scheme 46).74

    364

  • RAHIMIFARD et al./Turk J Chem

    N(Me)2

    N(Me)2

    HN+R N C S N(Me)2

    N(Me)2

    N

    SNH

    R

    N

    NO

    N(Me)2

    NH

    R

    67-86%

    DMF

    20-25 °C,1 h

    R = Ph, 4-ClPh, 4-MePh

    NH2OH.HCl

    Et3N, AgNO3r.t. 3-4 h117

    118122

    121

    Scheme 46

    The reaction of 4-chlorobenzaldehyde 4 and guanidinium carbonate 6 in the presence of sodium methoxide

    in ethanol after acidification with concentrated HCl gave noncyclic l-(p -chlorobenzoyl)-3-(p-chlorobenzyl)guanidine

    HCl 123 (Scheme 47).71

    2) HCl

    1) NaOMe/EtOHO

    H

    Cl

    CO32-

    H2N NH2

    NH2

    2

    2 +

    O

    NH

    Cl

    NH

    NH

    Cl

    HCl

    64 12342%

    r.t., 4 h

    Scheme 47

    Yavari et al. synthesized stable charge-separated tetramethylguanidinium-barbituric acid zwitterionic

    salts 125 through a 1-pot 3-component reaction of aromatic aldehydes 4, N,N’-dimethylbarbituric acid 124,

    and N,N,N’,N’-tetramethylguanidine 118. They also studied dynamic NMR of zwitterionic salts as a result of

    restricted rotation around the Me2N–C bonds of the guanidine functional group (Scheme 48).75

    118

    (Me)2N N(Me)2

    NH

    r.t., 81-93%Ar

    O

    H

    4 124

    Ar = Ph, 4-MePh, 2-MePh, 4-ClPh, 2-ClPh,

    4-FPh, 2-FPh, 2-NO2Ph, 2-OHPh, 4-MeOPh

    + +CH2Cl2N N

    O O

    O

    MeMe

    N N

    O O

    O

    MeMe

    Ar NH

    (Me)2N NH(Me)2

    125

    Scheme 48

    Kolos et al. reported a thermally activated or microwave-induced 1-pot 3-component condensation of

    arylglyoxal hydrates 126, 1,3-dimethylbarbituric acid 124, and guanidine salts 6 and 8 for synthesis of 5-(2-

    amino-5-aryl-1H -imidazol-4-yl)-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H ,3H)-dione 127. Formation of the

    imidazole ring involved intermediates 128 that after heating in 2-propanol gave the desired imidazole 127. The

    acetylation of pyrimidinediones 127 in acetic anhydride gave acetyl derivatives 129 (Scheme 49).76

    365

  • RAHIMIFARD et al./Turk J Chem

    H2N NH2

    NH2

    +

    Cl-

    N

    NO

    O

    Me

    Me

    O OHO

    OH

    , 2-PrOH, ∆, 1 hr.t., 24 h, 55-70%

    or

    H2N NH2

    NH2, EtOH, AcOH, MW

    2

    CO32-

    N

    NO

    O

    Me

    Me

    OH

    N

    NH

    NH2

    Ac2O

    ∆, 30 min

    N

    NO

    O

    Me

    Me

    OH

    N

    NH

    NH

    Me

    O

    2-PrOH, AcOH, 50 °C

    N

    NO

    O

    Me

    Me

    O

    N

    O

    NH2

    NH2 2-PrOH,∆ ,1h

    R

    R = H, 4-MeO, 4-Cl, 4-Br, 4-NO2

    R

    R

    H2N NH2

    NH2

    2

    CO32-

    150 °C, 10 min, 65-72%

    R

    124 126

    6

    8

    127

    128

    129

    Scheme 49

    The multicomponent condensation of guanidinium sulfate 130 with CH2O 131 and H2S 132 in more than

    70 ◦C and in the concentration of the thiomethylating mixture (130:131:132 = 1:10:9) led to the formation of

    target macroheterocycle 133 in 10% yield along with 1,3,5,7-oxatrithiocane 134 (Scheme 50). In the temperature

    range from 20 to 60 ◦C the guanidinium sulfate salt 130 is not involved in the reaction with CH2O and H2S.77

    SO42-

    H2N NH2

    NH2

    2

    130

    + CH2O H2S+70 °C

    S

    O

    S

    O

    NH

    S

    NH

    S

    S

    NH

    S

    HN

    SHN

    S

    S

    NH

    S

    +

    131 132

    133 (10 %)

    134 (56 %)

    Scheme 50

    Synthesis of aza crown 137 was carried out by 3-component condensation of 1,5-bis(2-formylphenoxy)-

    3-oxapentane 135, ammonium acetate 136, and guanidine 46 in ethanol and acetic acid (Scheme 51).78

    366

  • RAHIMIFARD et al./Turk J Chem

    H2N NH2

    NH

    r.t., 13 h

    46

    EtOH, AcOH

    135

    +

    O

    CHO

    O

    O

    OHCNH

    HN NH

    NH

    O O

    O

    +NH4OAc

    136

    137

    28%

    Scheme 51

    3. Guanidine as a catalyst

    Guanidinium chloride 8 has been found to be a highly efficient catalyst for 1-pot 3-component Strecker reaction

    between various aldehydes 4, amines 81, and trimethylsilyl cyanide 137 for synthesis of α -aminonitriles 138

    (Scheme 52).13

    H2N NH2

    NH2 Cl

    R1 H

    O

    R2NR3

    H

    Me3SiCN

    NR3R2

    CNR1MeOH, 40 °C, 1h

    R1 = t-Bu, Bn, n-pentyl, Ph, 4-ClPh, 2-furyl,

    4-pyridyl, cinnamyl, i-propyl, 4-MeOPh

    R2= H, Et, Bn R3 = Ph, Et, Bn

    ++

    4 81 137

    8

    82-98% 138

    Scheme 52

    Guanidinium chloride 8 is also an active and simple catalyst for Mannich-type reaction between various

    aldehydes 4, acetophenone 5, and aniline 42 for synthesis of β -carbonyl compounds 139 (Scheme 53).12

    H2N NH2

    NH2

    O

    H

    R

    O

    Me

    4 5

    R = H, 4-Me, 4-F, 4-Cl, 4-NO2, 4-MeO

    ClNH2

    O HN

    R

    r.t., 3-4 h

    42

    8

    80-90%

    139

    Scheme 53

    Baghbanian et al. have described an efficient methodology for synthesis of Hantzsch dihydropyridines

    141 by 3-component condensation of aldehydes 4, methyl acetoacetate 140 (or ethyl acetoacetate 96), and

    ammonium acetate 136 by guanidinium chloride 8 as catalyst (Scheme 54). They also used guanidinium

    chloride 8 as catalyst for synthesis of octahydroquinoline derivatives 143 through Hantzsch reaction of aldehydes

    367

  • RAHIMIFARD et al./Turk J Chem

    4, methyl acetoacetate 140 (or ethyl acetoacetate 96), dimedone 142, and ammonium acetate 136 (Scheme

    55).79

    H2N NH2

    NH2

    R1

    O

    H

    4

    R1 = Ph, 4-ClPh, PhCH=CH, cyclohexyl, 2-Furyl,

    4-MePh, 4-BrPh, 4-OHPh, 4-NO2Ph, n-pentyl

    Cl

    EtOH, r.t., 3 h

    8

    95-98%

    Me

    O O

    OR2NH4OAc

    NH

    O

    R2O

    O

    OR2

    R1

    2

    136140, R2 = Me

    96, R2 = Et 141

    Scheme 54

    H2N NH2

    NH2

    R1

    O

    H

    4

    R1 = Ph, 4-ClPh, PhCH=CH, 2-Furyl, 4-MePh, 4-MeOPh,

    4-OHPh, 4-NO2Ph, 3-pyridyl, 4-BrPh, n-Pr

    Cl

    EtOH, r.t., 3 h

    15

    75-95%

    Me

    O O

    OR2NH4OAc

    NH

    O

    R2O

    O

    R1

    O

    O

    140, R2 = Me

    96, R2 = Et142

    143

    136

    Scheme 55

    4. Guanidine as a solvent

    1,1,3,3-Tetramethylguanidine acetate [TMG][Ac] ionic liquid 147 was used as solvent for the 3-component

    reaction between ninhydrin 144, sarcosine 145, and 1-benzyl/methyl-3,5-bis[(E)-arylidene]-piperidin-4-ones

    146 for synthesis of dispiro heterocycles 148 (Scheme 56). The TMG-based ionic liquid is a reusable and

    environmentally benign solvent for synthesis of dispiropyrrolidines in high yields.80

    (Me)2N N(Me)2

    NH2

    O

    O

    OH

    OH H3C

    HN COOH

    NR

    ArH

    ArH

    OO

    O

    NCH3

    ArH

    NR

    O

    Ar

    + +

    OAc

    R = Me, CH2Ph Ar = Ph, 4-MePh, 4-MeOPh, 4-ClPh,

    4-BrPh, 4-FPh, 3,4-(MeO)2Ph

    80 °C, 3-6 h

    88-92%

    144

    145

    146

    147

    148

    Scheme 56

    368

  • RAHIMIFARD et al./Turk J Chem

    5. Conclusion

    In this review, applications of guanidine and its salts in multicomponent reaction have been studied. Guanidine

    can be used as catalyst and also as a reactant in the synthesis of heterocycles in conventional, microwave, or

    solvent-free conditions. In most cases, using a base with guanidine salts is necessary for synthesis of heterocyclic

    compounds. Because of the ionic structure of guanidine salts, using microwave irradiation will be suitable for

    synthesis of heterocylic compounds.

    Acknowledgment

    We are grateful for financial support from the Research Council of Alzahra University.

    References

    1. Wyss, P. C.; Gerber, P.; Hartman, P. G.; Hubschwerlen, C.; Locher, H.; Marty, H. P.; Stahl, M. J. Med. Chem.

    2003, 46, 2304–2312.

    2. Joffe, A. M.; Farley, J. D.; Linden, D.; Goldsand, G. Am. J. Med. 1989, 87, 332–338.

    3. Petersen, E.; Schmidt, D. R. Exp. Rev. Anti. Infect. Ther. 2003, 1, 175–182.

    4. Nadal, E.; Olavarria, E. Int. J. Clin. Pract. 2004, 58, 511–516.

    5. Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609–1646.

    6. Ube, H.; Uraguchi, D.; Terada, M. J. Organomet. Chem. 2007, 692, 545–549.

    7. Weber, L. Drug Discov. Today 2002, 7, 143–147.

    8. Domling, A. Curr. Opin. Chem. Biol. 2002, 6, 306–313.

    9. Otzen, T.; Wempe, E. G.; Kunz, B.; Bartels, R.; Lehwark-Yvetot, G.; Hänsel, W.; Schaper, K. J.; Seydel, J. K. J.

    Med. Chem. 2004, 47, 240–253.

    10. Peters, J. U.; Hunziker, D.; Fischer, H.; Kansy, M.; Weber, S.; Kritter, S.; Müller, A.; Wallier, A.; Ricklin, F.;

    Boehringer, M.; et al. Bioorg. Med. Chem. Lett. 2004, 14, 3575–3578.

    11. Wyatt, E. E.; Galloway, W. R. J. D.; Thomas, G. L.; Welch, M.; Loiseleur, O.; Plowright, A. T.; Spring, D. R.

    Chem. Commun. 2008, 4962–4964.

    12. Heravi, M. M.; Zakeri, M.; Mohammadi, N. Chinese Chem. Lett. 2011, 22, 797–800.

    13. Heydari, A.; Arefi, A.; Khaksar, S.; Shiroodi, R. K. J. Mol. Catal. A: Chem. 2007, 271, 142–144.

    14. Zhuang, Q.; Han, H. X.; Wang, S.; Tu, S.; Rong, L. Synth. Commun. 2009, 39, 516–522.

    15. Jawale, D. V.; Pratap, U. R.; Netankar, P. D.; Mane, R. A. Chem. Biol. Interface 2012, 2, 420–425.

    16. Tao, S.; Xia, S.; Rong, L.; Cao, C.; Tu, S. Res. Chem. Intermed. 2012, 38, 2065–2073.

    17. Rong, L.; Ji, H.; Xia, S.; Yin, S.; Shi, Y.; Tu, S. J. Heterocycl. Chem. 2012, 49, 696–699.

    18. Vanden, E.; Jean, J.; Hecq, N.; Kataeva, O.; Kappe, C. O. Tetrahedron 2001, 57, 1785–1791.

    19. Wyatt, E. E.; Fergus, S.; Galloway, W. R. J. D.; Bender, A.; Fox, D. J.; Plowright, A. T.; Jessiman, A. S.; Welch,

    M.; Spring, D. R. Chem. Commun. 2006, 3296–3298.

    20. Gangjee, A.; Adair, O.; Queener, S. F. J. Med. Chem. 1999, 42, 2447–2455.

    21. Gangjee, A.; Vasudevan, A.; Queener, S. F.; Kisliuk, R. L. J. Med. Chem. 1996, 39, 1438–1446.

    22. Hamby, J. M.; Connolly, C. J. C.; Schroeder, M. C.; Winters, R. T.; Showalter, H. D. H.; Panek, R. L.; Terry, C.;

    Olsewski, B.; Ryan, M. J.; Dahring, T. J. Med. Chem. 1997, 40, 2296–2303.

    23. Nasr, M. N.; Gineinah, M. M. Arch. Pharm. 2002, 335, 289–295.

    24. Mont, N.; Teixidó, J.; Borrell, J. I.; Kappe, C. O. Tetrahedron Lett. 2003, 44, 5385–5387.

    369

    http://dx.doi.org/10.1021/jm020495yhttp://dx.doi.org/10.1021/jm020495yhttp://dx.doi.org/10.1016/S0002-9343(89)80160-3http://dx.doi.org/10.1586/14787210.1.1.175http://dx.doi.org/10.1111/j.1368-5031.2004.00173.xhttp://dx.doi.org/10.1021/cr9603845http://dx.doi.org/10.1016/j.jorganchem.2006.06.046http://dx.doi.org/10.1016/S1367-5931(02)00328-9http://dx.doi.org/10.1021/jm030931whttp://dx.doi.org/10.1021/jm030931whttp://dx.doi.org/10.1039/b812901khttp://dx.doi.org/10.1039/b812901khttp://dx.doi.org/10.1016/j.molcata.2007.02.046http://dx.doi.org/10.1080/00397910802399932http://dx.doi.org/10.1007/s11164-012-0526-9http://dx.doi.org/10.1002/jhet.839http://dx.doi.org/10.1016/S0040-4020(00)01157-1http://dx.doi.org/10.1039/b607710bhttp://dx.doi.org/10.1039/b607710bhttp://dx.doi.org/10.1021/jm970367nhttp://dx.doi.org/10.1021/jm970367nhttp://dx.doi.org/10.1016/S0040-4039(03)01306-6

  • RAHIMIFARD et al./Turk J Chem

    25. Mont, N.; Teixidó, J.; Kappe, C. O.; Borrell, J. I. Mol. Divers. 2003, 7, 153–159.

    26. Victory, P.; Borrell, J. I. Trends Heterocycl. Chem. 1993, 3, 235–247.

    27. Victory, P. J.; Teixidó, J.; Borrell, J. I. Heterocycles 1992, 34, 1905–1916.

    28. Borrell, J. I.; Teixidó, J.; Matallana, J. L.; Mart́ınez-Teipel, B.; Colominas, C.; Costa, M.; Balcells, M.; Schuler,

    E.; Castillo, M. J. J. Med. Chem. 2001, 44, 2366–2369.

    29. Borrell, J. I.; Teixidó, J.; Mart́ınez-Teipel, B.; Serra, B.; Matallana, J. L.; Costa, M.; Batllori, X. Collect. Czech.

    Chem. Commun. 1996, 61, 901–909.

    30. Berzosa, X.; Bellatriu, X.; Teixido, J.; Borrell, J. I. J. Org. Chem. 2009, 75, 487–490.

    31. Galve, I.; Puig de la Bellacasa, R.; Sánchez-Garćıa, D.; Batllori, X.; Teixidó, J.; Borrell, J. Mol. Divers. 2012, 16,

    639–649.

    32. Jin, G.; Wu, C. C. N.; Carson, D. A.; Cottam, H. B. Nucleos. Nucleot. Nucl. 2006, 25, 1391–1397.

    33. Rong, L.; Han, H.; Wang, H.; Jiang, H.; Tu, S.; Shi, D. J. Heterocycl. Chem. 2009, 46, 152–157.

    34. Augustin, M.; Groth, C. H. J. Prakt. Chem. 1979, 321, 215–225.

    35. Tominaga, Y.; Hirose, M.; Hagimori, M.; Shigemitsu, Y.; Mizuyama, N.; Wang, B. C. Heterocycles 2009, 78,

    899–903.

    36. Matasi, J. J.; Caldwell, J. P.; Hao, J.; Neustadt, B.; Arik, L.; Foster, C. J.; Lachowicz, J.; Tulshian, D. B. Bioorg.

    Med. Chem. Lett. 2005, 15, 1333–1336.

    37. Meshram, G.; Wagh, P.; Deshpande, S.; Amratlal, V. Lett. Org. Chem. 2013, 10, 445–450.

    38. Yadav, L. D. S.; Rai, A. Carbohydr. Res. 2009, 344, 2329–2335.

    39. Yadav, L. D. S.; Rai, A. Synthesis 2009, 2009, 2802–2808.

    40. Trivedi, A.; Dodiya, D.; Surani, J.; Jarsania, S.; Mathukiya, H.; Ravat, N.; Shah, V. Arch. Pharm. 2008, 341,

    435–439.

    41. Bararjanian, M.; Balalaie, S.; Rominger, F.; Barouti, S. Helv. Chim. Acta. 2010, 93, 777–784.

    42. Liu, L.; Yin, S.; Xia, S.; Cai, P.; Rong, L. Chinese J. Org. Chem. 2012, 32, 612–615.

    43. Bhatewara, A.; Jetti, S. R.; Kadre, T.; Paliwal, P.; Jain, S. Arch. Appl. Sci. Res. 2012, 4, 1274–1278.

    44. Bhatewara, A.; Jetti, S. R.; Kadre, T.; Paliwal, P.; Jain, S. Int. J. Med. Chem. 2013, 2013, 1–5.

    45. Deshmukh, M. B.; Salunkhe, S. M.; Patil, D. R.; Anbhule, P. V. Eur. J. Med. Chem. 2009, 44, 2651–2654.

    46. Val, C.; Crespo, A.; Yaziji, V.; Coelho, A.; Azuaje, J.; El Maatougui, A.; Carbajales, C.; Sotelo, E. ACS Comb.

    Sci. 2013, 15, 370–378.

    47. Ali, K. A. Heterocycles 2012, 85, 1975–1986.

    48. Rong, L.; Han, H.; Gao, L.; Dai, Y.; Cao, M.; Tu, S. Synth. Commun. 2010, 40, 504–509.

    49. Hekmatshoar, R.; Kenary, G. N.; Sadjadi, S.; Beheshtiha, Y. S. Synth. Commun. 2010, 40, 2007–2013.

    50. Ahmadi, S.; Sadjadi, S.; Hosseinpour, M. Monatsh. Chem. 2011, 142, 1163–1168.

    51. Deshmukh, M. B.; Anbhule, P. V.; Jadhav, S. D.; Jagtap, S. S.; Patil, D. R.; Salunkhe, S. M.; Sankpal, S. A. Indian

    J. Chem. B 2008, 47, 792.

    52. Sheibani, H.; Saljoogi, A. S.; Bazgir, A. Arkivoc 2008, 2, 115–123.

    53. Sheibani, H.; Seifi, M.; Bazgir, A. Synth. Commun. 2009, 39, 1055–1064.

    54. Raghuvanshi, D. S.; Singh, K. N. J. Heterocycl. Chem. 2011, 48, 582–585.

    55. Tominaga, Y.; Shigemitsu, Y.; Sasaki, K. J. Heterocycl. Chem. 2002, 39, 571–591.

    56. Tominaga, Y.; Matsuda, Y. J. Heterocycl. Chem. 1985, 22, 937–949.

    57. Ramezanpour, S.; Hashtroudi, M. S.; Bijanzadeh, H. R.; Balalaie, S. Tetrahedron Lett. 2008, 49, 3980–3982.

    58. Amutha, P.; Nagarajan, S. Helv. Chim. Acta. 2010, 93, 430–434.

    370

    http://dx.doi.org/10.1023/B:MODI.0000006808.10647.f8http://dx.doi.org/10.3987/COM-92-6101http://dx.doi.org/10.1021/jm990411uhttp://dx.doi.org/10.1021/jm990411uhttp://dx.doi.org/10.1135/cccc19960901http://dx.doi.org/10.1135/cccc19960901http://dx.doi.org/10.1021/jo902345rhttp://dx.doi.org/10.1007/s11030-012-9398-6http://dx.doi.org/10.1007/s11030-012-9398-6http://dx.doi.org/10.1080/15257770600918912http://dx.doi.org/10.2174/1570178611310060006http://dx.doi.org/10.1016/j.carres.2009.06.017http://dx.doi.org/10.1002/ardp.200800027http://dx.doi.org/10.1002/ardp.200800027http://dx.doi.org/10.1002/hlca.200900319http://dx.doi.org/10.1016/j.ejmech.2008.10.018http://dx.doi.org/10.1021/co4000503http://dx.doi.org/10.1021/co4000503http://dx.doi.org/10.3987/COM-12-12515http://dx.doi.org/10.1080/00397910802474982http://dx.doi.org/10.1002/jhet.540http://dx.doi.org/10.1002/jhet.5570390312http://dx.doi.org/10.1002/jhet.5570220401http://dx.doi.org/10.1016/j.tetlet.2008.04.092http://dx.doi.org/10.1002/hlca.200900221

  • RAHIMIFARD et al./Turk J Chem

    59. Maddila, S.; Jonnalagadda, S. B.; Chunduri, V.; Lavanya, P. Heterocycl. Lett. 2012, 2, 37–42.

    60. Ostras, K. S.; Gorobets, N. Y.; Desenko, S. M.; Musatov, V. I. Mol. Divers. 2006, 10, 483–489.

    61. Mohammadnejad, M.; Hashtroudi, M. S.; Balalaie, S. Heterocycl. Commun. 2009, 15, 459–466.

    62. Mirza-Aghayan, M.; Baie Lashaki, T.; Rahimifard, M.; Boukherroub, R.; Tarlani, A. A. J. Iran. Chem. Soc. 2011,

    8, 280–286.

    63. Akbas, E.; Levent, A.; Guemues, S.; Suemer, M. R.; Akyazi, I. Bull. Korean Chem. Soc. 2010, 31, 3632–3638.

    64. Prakash, O.; Pannu, K.; Naithani, R.; Kaur, H. Synth. Commun. 2006, 36, 3479–3485.

    65. Trivedi, A. R.; Bhuva, V. R.; Dholariya, B. H.; Dodiya, D. K.; Kataria, V. B.; Shah, V. H. Bioorg. Med. Chem.

    Lett. 2010, 20, 6100–6102.

    66. Lokwani, D.; Shah, R.; Mokale, S.; Shastry, P.; Shinde, D. J. Comput. Aided Mol. Des. 2012, 26, 267–277.

    67. Azizian, J.; Mirza, B.; Mojtahedi, M. M.; Abaee, M. S.; Sargordan, M. J. Fluorine Chem. 2008, 129, 1083–1089.

    68. Azizian, J.; Mohammadi, M. K.; Firuzi, O.; Mirza, B.; Miri, R. Chem. Biol. Drug Des. 2010, 75, 375–380.

    69. Chavda, D. R.; Modiya, P. R.; Marvaniya, H. M.; Sen, D. J. Int. J. Drug Dev. Res. 2010, 2, 348–355.

    70. Ujjinamatada, R. K.; Hosmane, R. S. Tetrahedron Lett. 2005, 46, 6005–6009.

    71. Gund, P.; Berkelhammer, G.; Wayne, R. S. Tetrahedron Lett. 1972, 13, 3983–3986.

    72. Zomordbakhsh, S.; Anaraki-Ardakani, H.; Zeeb, M.; Sadeghi, M.; Mazraeh-Seffid, M. J. Chem. Res. 2012, 36,

    138–140.

    73. Jalani, H. B.; Pandya, A. N.; Pandya, D. H.; Sharma, J. A.; Sudarsanam, V.; Vasu, K. K. Tetrahedron Lett. 2013,

    54, 5403–5406.

    74. Jalani, H. B.; Sudarsanam, V.; Vasu, K. K. Synthesis 2012, 44, 3378–3386.

    75. Yavari, I.; Aminkhani, A.; Arab-Salmanabadi, S. Monatsh. Chem. 2012, 143, 1195–1198.

    76. Kolos, N. N.; Chechina, N. V.; Zamigailo, L. L.; Vashchenko, E. V. Chem. Heterocycl. Comp. 2013, 49, 872–881.

    77. Akhmetova, V. R.; Khairullina, R. R.; Bushmarinov, I. S.; Tyumkina, T. V.; Yanybin, V. M. Arkivoc 2011, 2011,

    149–162.

    78. Hieu, C.; Anh, L.; Levov, A. N.; Nikitina, E. V.; Soldatenkov, A. T. Chem. Heterocycl. Comp. 2009, 45, 1406–1407.

    79. Baghbanian, S. M.; Khaksar, S.; Vahdat, S. M.; Farhang, M.; Tajbakhsh, M. Chinese Chem. Lett. 2010, 21,

    563–567.

    80. Dandia, A.; Jain, A. K.; Sharma, S. Tetrahedron Lett. 2012, 53, 5859–5863.

    371

    http://dx.doi.org/10.1007/s11030-006-9045-1http://dx.doi.org/10.1515/HC.2009.15.6.459http://dx.doi.org/10.5012/bkcs.2010.31.12.3632http://dx.doi.org/10.1080/00397910600942941http://dx.doi.org/10.1007/s10822-011-9540-zhttp://dx.doi.org/10.1016/j.jfluchem.2008.06.025http://dx.doi.org/10.1111/j.1747-0285.2009.00937.xhttp://dx.doi.org/10.1016/j.tetlet.2005.07.024http://dx.doi.org/10.1016/S0040-4039(01)94214-5http://dx.doi.org/10.3184/174751912X13295721847185http://dx.doi.org/10.3184/174751912X13295721847185http://dx.doi.org/10.1016/j.tetlet.2013.07.122http://dx.doi.org/10.1016/j.tetlet.2013.07.122http://dx.doi.org/10.1055/s-0032-1317504http://dx.doi.org/10.1007/s00706-011-0698-9http://dx.doi.org/10.1007/s10593-013-1321-2http://dx.doi.org/10.3998/ark.5550190.0012.811http://dx.doi.org/10.3998/ark.5550190.0012.811http://dx.doi.org/10.1007/s10593-010-0441-1

    IntroductionGuanidine as a reagentSynthesis of 2-aminopyrimidine compoundsSynthesis of 4,6-diaryl compoundsSynthesis of pyrimidine-fused ring systemsSynthesis of 5-carbonitrile compoundsSynthesis of 5-alkyl compounds Synthesis of dihydropyrimidinone compounds

    Synthesis of 2-iminopyrimidine compoundsSynthesis of triazine compoundsSynthesis of miscellaneous compounds

    Guanidine as a catalystGuanidine as a solventConclusion