analisis performansi condensing steam turbine 31pt-11 terhadap desain_siap presentasi

28
Hafif Dafiqurrohman/1106004235 Hafif Dafiqurrohman/1106004235 Universitas Indonesia Universitas Indonesia

Upload: rafdhika-ramadhani

Post on 20-Nov-2015

233 views

Category:

Documents


15 download

DESCRIPTION

kp lapangan 1234

TRANSCRIPT

  • Hafif Dafiqurrohman/1106004235Universitas Indonesia

  • Safety Moment

  • Outline

  • Pendahuluan(Specification, Skema Operasi, Backgrounds, Objectives, Batasan Masalah)

  • Serial Numbers: D1176, D1777Turbine Frame: T9MPBX3Y4Driven Machine: 12.500 kW GeneratorNumber of Turbine Stages: 1 Curtis 16 RateauTurbine Rating: 12.500 kW at 3000 rpmTurbine Rotation (Facing Governor End): ClockwiseInlet Steam Conditions: 59,8 kg/cm2 at 448,9 oC (850 psig. At 840 oF.T.T.)Exhaust Pressure: 4 Hg. Abs.Extraction Pressure: 4,22 kg/cm2 (60 psig.)Induction Pressure: 4,22 kg/cm2 at 218.3 oC (60 psig. 425 oF)Woodward Electronic 501Turbine Speeds2760 R.P.M.Minimum3240 R.P.M. Maximum

  • Skema Operasi 31PT-11EkstraksiInduksiFully Condensing

    31PT-11Multistage TypeExtraction Type

  • Backgrounds

  • Objective

  • Inti(Dasar Perhitungan, Metodologi Penelitian, Result, Analysis)

  • Reference: ASME PTC 6-2004 [Computational of Result] (Standards: API 612, API 617, NEMA SM 23, GE Design Modul, IEEE PSRC WG D6, and O&M Dresser Rand Turbodyne)Dasar Perhitungan

  • Dasar Perhitungan (Contd)

  • Calculation Flow Diagram

  • Calculation Flow Diagram (Contd)

  • Calculation Flow Diagram (Contd)

  • Operational Data

    HariJamPin (kg/cm2)1st P (kg/cm2)Tin (C)Min (T/H)Pind (kg/cm2)Tind (C)Mind (T/H)Pout (kg/cm2)Pgland1 (kg/cm2)Speed (rpm)Load (MW)V (kilovolt)Selasa08.0061,436,23438,1172,8794-20,17-1,011,16229957,4713,7522/07/201410.0061,516,2143816,72,9194-20,81-1,021,17329967,4413,7412.0061,516,12438,216,82,8794-20,79-1,011,14830007,4613,7514.0061,496,09438,216,72,994-20,37-1,021,16129957,4713,77Rabu08.0061,527,12438,519,82,8894-25,88-1,021,14929989,0313,7423/07/201410.0061,737,07438,619,72,8994-26,15-1,091,1629979,0413,7812.0061,726,97438,819,62,8994-25,91-1,021,15429989,0213,7714.0061,576,99438,519,62,8994-26,01-1,191,16929979,0313,8Kamis08.0061,626,07437,816,22,8994-25,85-0,941,16729977,8313,6224/07/201410.0061,686,0743816,32,8994-26,01-0,941,16229957,8513,6312.0061,586,0743816,12,8994-26,03-0,931,15329957,8313,6314.0061,636,0743816,42,9194-25,54-0,931,17829967,8413,63

  • Calculation Result (Actual Data)

    Nohin (kJ/kg)hisent (kJ/kg)hind (kJ/kg) hf (kJ/kg)hfg (kJ/kg)Enthalpy Adiabatic (kJ/kg)Overall EfficiencyTSR (kg/kJ.s)ASR (kg/kJ.s)13273,1524602583,4504,72201,92486,410,939820,000290,0003123272,924602583,4505,312201,492486,650,938080,000290,0003133273,3924602583,4504,72201,92486,410,938830,000290,0003143273,3924602583,4505,312201,492486,650,938630,000290,0003153274,1424602583,4505,312201,492486,650,936970,000290,0003163274,3924602583,4509,612198,642488,390,932460,000290,0003273274,8924602583,4505,312201,492486,650,936730,000290,0003183274,124602583,4515,742194,562490,840,92660,000290,0003293272,424602583,4500,192204,982484,670,936550,000290,00031103272,924602583,4500,192204,982484,670,936580,000290,00031113272,924602583,4499,442205,482484,370,937010,000290,00031123272,924602583,4499,442205,482484,370,937990,000290,00031

  • Calculation Result (Actual Data) Contd

    NoThrottle Flow/Total FlowTHR (kJ/kW.s)HR (kJ/kW.s)AE (kJ/kg)Entropy Inlet (kJ/kg.K)Entropy Induction (kJ/kg.K)Entropy Exhaust (kJ/kg.K)Exhaust Temperature (C)Exhaust Temperature (abs) (K)Sum Actual WorkEntropy ChangesEffectiveness10,460,815080,86727786,746,679126,535767,1271120,25393,403786,746,087780,2472720,450,814880,86868786,2496,678766,535767,1256120,39393,544786,2496,088910,2470530,450,815090,86819786,986,679476,535767,1271120,25393,403786,986,088130,2473240,450,814910,8682786,7396,679476,535767,1256120,39393,544786,7396,089620,2471550,430,814950,86978787,4896,680556,535767,1256120,39393,544787,4896,090690,2472960,430,81370,87264786,0046,68096,535767,1152121,38394,533786,0046,101470,2461570,430,814990,87004788,2396,681626,535767,1256120,39393,544788,2396,091760,2474480,430,811880,87619783,2566,680556,535767,1003122,79395,945783,2566,115990,244490,390,816360,87167787,7286,681626,535767,1386119,06392,207787,7286,078730,24835100,390,816390,87167788,2286,678766,535767,1386119,06392,207788,2286,075880,24856110,380,816610,87151788,5286,678766,535767,1406118,88392,034788,5286,073950,24877120,390,816610,8706788,5286,678766,535767,1406118,88392,034788,5286,073950,24877

  • Calculated Design Data

    Throttle Flow/Total FlowHin (kJ/kg)Hisent (kJ/kg)Hind (kJ/kg)Hf (kJ/kg)Hfg (kJ/kg)Enthalpy AdiabaticOverall EfficiencyTSR (kg/kJ.s)ASR (kg/kJ.s)THR (kJ/kW.s)0,345963300,0623602898,92212,9182380,592355,450,997510,000260,000260,80416

    HR (kJ/kW.s)AE (kJ/kg)Entropy Inlet (kJ/kg.K)Entropy Induction (kJ/kg.K)Entropy Exhaust (kJ/kg.K)Exhaust Temperature (C)Exhaust Temperature (abs) (C)Delta H (kJ/kg)Delta s (kJ/kg.K)Effectiveness0,80616944,6136,717677,248568,0646451,8301324,98944,6135,90160,32999

  • Calculated Power Swing

    Average Load (MW)Swing Load (%)Frequency Nominal (Hz)Average Frequency (Hz)Swing Frequency (Hz)Average Voltage (kV)Swing Voltage (%)8,109166677,882026549,9249,940,0313,71750,236928,109166678,251978249,9349,940,0113,71750,164028,109166678,005343750,0049,940,0613,71750,236928,109166677,882026549,9249,940,0313,71750,382728,1091666711,35546249,9749,940,0213,71750,164028,1091666711,47877949,9549,940,0113,71750,455628,1091666711,23214549,9749,940,0213,71750,382728,1091666711,35546249,9549,940,0113,71750,601428,109166673,442606149,9549,940,0113,71750,710778,109166673,195971649,9249,940,0313,71750,637878,109166673,442606149,9249,940,0313,71750,637878,109166673,319288949,9349,940,0113,71750,63787

  • AnalysisM steam total actual < M steam total design OperationalACCEPT, Operational Condition, prevent tripM steam total actual < M steam total design OperationalP & T inlet actual > P & T inlet design H inlet actual > H inlet designACCEPT, Operational Condition, prevent tripP & T inlet actual > P & T inlet design H inlet actual > H inlet designEnergy dont adsorb perfectly by turbine Efficiency causeACCEPT, No margin tolerance, by user operation (NEMA SM 23, API 612)Throttle Flow actual < Throttle Flow designCapability actual < Capabilty designSteam Rate actual > Steam Rate designHeat Rate actual > Heat Rate designExhaust Enthalpy actual > Exhaust Enthalpy design

    Result from CalculationPredictable CauseTest Accept/No

  • Analysis (Contd)Jurnal (SPECIFYING STEAM AND RATING CONDITIONS FOR SPECIAL PURPOSE STEAMTURBINES, John S. Aalto):Bearing Losses (No Mention, after overhaul)Shaft End LeakagesPembatasan Laju Aliran MassaControl and TTV Steam LeakagesInlet Throttling LossesInternal pressure drops to extraction/induction flangesExhaust leaving and throttling losses

    ACCEPT (NEMA SM 23, API 612, ASME PTC 6-2004, margin tolerance -10% from design)Overall Efficiency actual < Overall Efficiency design

    Result from CalculationPredictable CauseTest Accept/No

  • Analysis (Contd)Equal to Exhaust Enthalpy (Energy dont adsorb perfectly by turbine Efficiency cause)ACCEPT, No margin tolerance, by user operation (NEMA SM 23, API 612)Governor (frequency nominal), line switching, generator disconnection, paralleling other generator, addition load, dan losses of load (power margin + operational voltage)NO ACCEPT Power Margin and Frequency Nominal (NEMA SM 23, API 612, API 617, IEEE PSRC WG D6) ACCEPT Op. Voltage (IEEE PSRC WG D6)Effectiveness actual < Effectiveness designPower swing (power margin, frequency nominal, operational voltage)

    Result from CalculationPredictable CauseTest Accept/No

  • Penutup(Conclusion, Recommendation, References)

  • Conclusion

    1Semua parameter pengujian ASME PTC 6-2004 telah memenuhi batas yang ditentukan2Throttle Flow actual < Throttle Flow design3Capability actual < Capabilty design4Steam Rate actual > Steam Rate design5Heat Rate actual > Heat Rate design6Exhaust Enthalpy actual > Exhaust Enthalpy design7Overall Efficiency actual < Overall Efficiency design8Effectiveness actual < Effectiveness design9Power swing tidak terpenuhi dalam batas power margin + frequency nominal, terpenuhi pada batas operational voltage

  • Recommendation

    1Melakukan evaluasi beberapa bagian yang berhubungan dengan Bearing Losses, Shaft End Leakages, Pembatasan Laju Aliran Massa, Control and TTV Steam Leakages, Inlet Throttling Losses, Internal pressure drops to extraction/induction flanges, dan Exhaust leaving and throttling losses.2Melakukan perawatan secara berkala selama 6 bulan sekali untuk indikator yang memonitor parameter performansi turbin uap 31PT-11.Apabila 6 bulan masih cukup baik, maka bisa dilakukan perawatan berkala selama 1 tahun.3Melakukan evaluasi pada beberapa bagian yang menjadi faktor penyebab power swing yaitu pada governor system, line switching, generator disconnection, paralleling other generator, addition load, dan losses of load. Selain itu ada metode Power Swing Block untuk mengatasi power swing pada sistem pembangkit ini.

  • References

    Moran, Michel. J, Shapiro, Howard N. 2006. Fundamental of Enginering Thermodynamics (Fifth Edition). England: John Wiley and Sons.Dresser Rand Turbodyne. 1987. Operation and Maintenance Manual Book. USA: Dresser Rand.American Society of Mechanical Engineer. 2006. Erratum to ASME PTC 6-2004 Steam Turbine. New York, USA: ASME.American Petroleum Institute. 2003. Petroleum, Petrochemical, and Natural Gas IndustriesSteam TurbinesSpecial-purpose Applications, API Standard 612. Washington DC, USA: API.American Petroleum Institute. 2002. Axial and Centrifugal Compressors and Expander-compressors for Petroleum, Chemical and Gas Industry Services API Standard 617. Washington DC, USA: API.National Electrical Manufacturers Association. 2002. NEMA Standards Publication No. SM 23-1991 (R1997, R2002) Steam Turbines for Mechanical Drive Service. USA: NEMA.Aalto, John S. 2008. SPECIFYING STEAM AND RATING CONDITIONS FOR SPECIAL PURPOSE STEAM TURBINES. Massachusetts, USA: General Electric Company.International Electrical and Eletronic Engineering. 2005. Power Swing and Out-of-Step Considerations on Transmission Lines. USA: IEEEKhan, Umar Naseem, Yan, Lu. 2006. Power Swing Phenomena and its Detection and Prevention. Wroclaw: Wroclaw University of Technology