an inverse problem for moore gibson thompson...

39
An inverse problem for Moore Gibson Thompson equation arising in high intensity ultrasound Rodrigo Lecaros Universidad T´ ecnica Federico Santa Mar´ ıa Workshop on Applied & Interdisciplinary Mathematics 19-20-21 March, 2019 supported by FONDECYT project 11180874 R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 1 / 21

Upload: others

Post on 18-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

An inverse problem for Moore Gibson Thompsonequation

arising in high intensity ultrasound

Rodrigo Lecaros

Universidad Tecnica Federico Santa Marıa

Workshop on Applied & Interdisciplinary Mathematics19-20-21 March, 2019

supported by FONDECYT project 11180874

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 1 / 21

Thank you for coming at this presentation
And thank you at the organizers
for the opportunity to present my work in this workshop
Page 2: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Joint work with

Alberto Mercado, Universidad Tecnica Federico Santa Marıa.

Sebastian Zamorano, Universidad de Santiago.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 2 / 21

Thank the audience for being awake.
Page 3: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

A models for wave propagation in viscous thermally relaxing fluids.

It is well known that the use the classical Fourier’s law to describe theheat flux leads to an infinite signal speed paradox.

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(1)

In this work, we consider the case α = α(x) and b > 0.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 3 / 21

Thank the audience for being awake.
Page 4: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

A models for wave propagation in viscous thermally relaxing fluids.

It is well known that the use the classical Fourier’s law to describe theheat flux leads to an infinite signal speed paradox.

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(1)

In this work, we consider the case α = α(x) and b > 0.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 3 / 21

Thank the audience for being awake.
Page 5: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

A models for wave propagation in viscous thermally relaxing fluids.

It is well known that the use the classical Fourier’s law to describe theheat flux leads to an infinite signal speed paradox.

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(1)

In this work, we consider the case α = α(x) and b > 0.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 3 / 21

Thank the audience for being awake.
Page 6: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(2)

In this work, we consider the case α = α(x) and b > 0.

α(x) > 0, is a coefficient depending on a viscosity of the fluid.

τ is the relaxation time.

c is the speed of sound

b = δ + τc2, where δ ≥ 0 is the diffusivity of sound.

Henceforth we will consider τ = 1.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 4 / 21

Page 7: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(2)

In this work, we consider the case α = α(x) and b > 0.

α(x) > 0, is a coefficient depending on a viscosity of the fluid.

τ is the relaxation time.

c is the speed of sound

b = δ + τc2, where δ ≥ 0 is the diffusivity of sound.

Henceforth we will consider τ = 1.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 4 / 21

Page 8: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(2)

In this work, we consider the case α = α(x) and b > 0.

α(x) > 0, is a coefficient depending on a viscosity of the fluid.

τ is the relaxation time.

c is the speed of sound

b = δ + τc2, where δ ≥ 0 is the diffusivity of sound.

Henceforth we will consider τ = 1.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 4 / 21

Page 9: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(2)

In this work, we consider the case α = α(x) and b > 0.

α(x) > 0, is a coefficient depending on a viscosity of the fluid.

τ is the relaxation time.

c is the speed of sound

b = δ + τc2, where δ ≥ 0 is the diffusivity of sound.

Henceforth we will consider τ = 1.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 4 / 21

Page 10: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(2)

In this work, we consider the case α = α(x) and b > 0.

α(x) > 0, is a coefficient depending on a viscosity of the fluid.

τ is the relaxation time.

c is the speed of sound

b = δ + τc2, where δ ≥ 0 is the diffusivity of sound.

Henceforth we will consider τ = 1.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 4 / 21

Page 11: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(3)

The equation models different phenomena depending on theparameters.

If b = 0 and f = β(u2)t is the Westervelt equation, which is used asa model of finite-amplitude nonlinear wave propagation in soft tissues.A therapeutic method of non–invasive ablation of tumors.If b > 0, the well–posedness and exponential decay of the equationhas been proved by Kaltenbacher et al.If b = 0, there does not exist an infinitesimal generator of thesemigroup.If γ := α− c2

b > 0, the group associated to the equation isexponentially stable, and for γ = 0, the group is conservative.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 5 / 21

Page 12: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(3)

The equation models different phenomena depending on theparameters.If b = 0 and f = β(u2)t is the Westervelt equation, which is used asa model of finite-amplitude nonlinear wave propagation in soft tissues.

A therapeutic method of non–invasive ablation of tumors.If b > 0, the well–posedness and exponential decay of the equationhas been proved by Kaltenbacher et al.If b = 0, there does not exist an infinitesimal generator of thesemigroup.If γ := α− c2

b > 0, the group associated to the equation isexponentially stable, and for γ = 0, the group is conservative.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 5 / 21

Page 13: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(3)

The equation models different phenomena depending on theparameters.If b = 0 and f = β(u2)t is the Westervelt equation, which is used asa model of finite-amplitude nonlinear wave propagation in soft tissues.A therapeutic method of non–invasive ablation of tumors.

If b > 0, the well–posedness and exponential decay of the equationhas been proved by Kaltenbacher et al.If b = 0, there does not exist an infinitesimal generator of thesemigroup.If γ := α− c2

b > 0, the group associated to the equation isexponentially stable, and for γ = 0, the group is conservative.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 5 / 21

Page 14: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(3)

The equation models different phenomena depending on theparameters.If b = 0 and f = β(u2)t is the Westervelt equation, which is used asa model of finite-amplitude nonlinear wave propagation in soft tissues.A therapeutic method of non–invasive ablation of tumors.If b > 0, the well–posedness and exponential decay of the equationhas been proved by Kaltenbacher et al.

If b = 0, there does not exist an infinitesimal generator of thesemigroup.If γ := α− c2

b > 0, the group associated to the equation isexponentially stable, and for γ = 0, the group is conservative.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 5 / 21

Page 15: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(3)

The equation models different phenomena depending on theparameters.If b = 0 and f = β(u2)t is the Westervelt equation, which is used asa model of finite-amplitude nonlinear wave propagation in soft tissues.A therapeutic method of non–invasive ablation of tumors.If b > 0, the well–posedness and exponential decay of the equationhas been proved by Kaltenbacher et al.If b = 0, there does not exist an infinitesimal generator of thesemigroup.

If γ := α− c2

b > 0, the group associated to the equation isexponentially stable, and for γ = 0, the group is conservative.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 5 / 21

Page 16: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The model

Moore Gibson Thompson (MGT) equationτuttt + αutt − c2∆u − b∆ut = f , Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2, Ω,

(3)

The equation models different phenomena depending on theparameters.If b = 0 and f = β(u2)t is the Westervelt equation, which is used asa model of finite-amplitude nonlinear wave propagation in soft tissues.A therapeutic method of non–invasive ablation of tumors.If b > 0, the well–posedness and exponential decay of the equationhas been proved by Kaltenbacher et al.If b = 0, there does not exist an infinitesimal generator of thesemigroup.If γ := α− c2

b > 0, the group associated to the equation isexponentially stable, and for γ = 0, the group is conservative.R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 5 / 21

Page 17: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Inverse Problem

The inverse problem is to recover the unknown coefficient α(x)

α(x)→

uttt + αutt − c2∆u − b∆ut = fu = gu(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2

→ u(α)

from partial knowledge of some trace of the solution u(α) at the boundary,where Γ0 ⊂ ∂Ω is a relatively open subset, called the observationregion,and n is the outward unit normal vector on Γ.

α→ ∂u(α)

∂non Γ0 × (0,T ),

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 6 / 21

Thank the audience for being awake.
Page 18: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The aim tasks

Under appropriate hypotheses:

Uniqueness:

∂u(α1)

∂n=∂u(α2)

∂non Γ0 × (0,T ) implies α1 = α2 in Ω.

Stability:

‖α1 − α2‖X (Ω) ≤ C

∥∥∥∥∂u(α1)

∂n− ∂u(α2)

∂n

∥∥∥∥Y (Γ0)

,

for some appropriate spaces X (Ω) and Y (Γ0).

Reconstruction: Design an algorithm to recover the coefficient α

from the knowledge of∂u(α)

∂non Γ0.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 7 / 21

Page 19: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Difficulties

Third-order in time.

Energies is not preserved, α represent a dissipation coefficient.

M-G-T is not controllable with interior control.

Improve the energies estimates.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 8 / 21

Page 20: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Under certain conditions for α, Γ0 and the time T .

The admissible coefficients:

AM =

α ∈ L∞(Ω),

c2

b≤ α(x) ≤ M ∀x ∈ Ω

, (4)

and we consider the assumptions:

∃x0 /∈ Ω such that Γ0 ⊃ x ∈ Γ : (x − x0) · n ≥ 0, (5)

andT > sup

x∈Ω|x − x0|. (6)

Also, we suppose that the data satisfies

(u0, u1, u2) ∈ (L2(Ω)× H−1(Ω)× H−2(Ω)), |u2| ≥ η > 0,f ∈ L1(0,T ; L2(Ω), g ∈ L2(0,T ; L2(∂Ω)).

(7)

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 9 / 21

Page 21: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Principal Results

Our main result, concerning the stability, is the following:

Theorem (R. L., A. Mercado, S. Zamorano)

Suppose that Γ0 ⊂ ∂Ω and T > 0 satisfy (5)-(6) and the data satisfy (7).Let M > 0, and α2 ∈ AM be such that the corresponding solution u(α2)of (3) (with α = α2) satisfies

u(α2) ∈ H3(0,T ; L∞(Ω)).

Then there exists a constant C > 0 such that

C−1‖α1−α2‖2L2(Ω) ≤

∥∥∥∥∂u(α1)

∂n− ∂u(α2)

∂n

∥∥∥∥2

H2(0,T ;L2(Γ0))

≤ C‖α1−α2‖2L2(Ω)

(8)for all α1 ∈ AM .

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 10 / 21

Page 22: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Remarks

The hypothesis u(α2) ∈ H3(0,T ; L∞(Ω)) in Theorem 1 is satisfied ifmore regularity is imposed on the data.

The inverse problem studied in this paper was previously consideredby Liu and Triggiani.The results obtained in this work requires less regularity.

The hypotheses (5) and (6) on Γ0 and T typically arises in the studyof stability or observability inequalities for the wave equation.

The assumption of the positiveness for u2 appearing in Theorem 1 isclassical when applying the Bukhgeim-Klibanov method and Carlemanestimates for inverse problems with only one boundary measurement.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 11 / 21

Page 23: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Remarks

The hypothesis u(α2) ∈ H3(0,T ; L∞(Ω)) in Theorem 1 is satisfied ifmore regularity is imposed on the data.

The inverse problem studied in this paper was previously consideredby Liu and Triggiani.The results obtained in this work requires less regularity.

The hypotheses (5) and (6) on Γ0 and T typically arises in the studyof stability or observability inequalities for the wave equation.

The assumption of the positiveness for u2 appearing in Theorem 1 isclassical when applying the Bukhgeim-Klibanov method and Carlemanestimates for inverse problems with only one boundary measurement.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 11 / 21

Page 24: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Remarks

The hypothesis u(α2) ∈ H3(0,T ; L∞(Ω)) in Theorem 1 is satisfied ifmore regularity is imposed on the data.

The inverse problem studied in this paper was previously consideredby Liu and Triggiani.The results obtained in this work requires less regularity.

The hypotheses (5) and (6) on Γ0 and T typically arises in the studyof stability or observability inequalities for the wave equation.

The assumption of the positiveness for u2 appearing in Theorem 1 isclassical when applying the Bukhgeim-Klibanov method and Carlemanestimates for inverse problems with only one boundary measurement.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 11 / 21

Page 25: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Remarks

The hypothesis u(α2) ∈ H3(0,T ; L∞(Ω)) in Theorem 1 is satisfied ifmore regularity is imposed on the data.

The inverse problem studied in this paper was previously consideredby Liu and Triggiani.The results obtained in this work requires less regularity.

The hypotheses (5) and (6) on Γ0 and T typically arises in the studyof stability or observability inequalities for the wave equation.

The assumption of the positiveness for u2 appearing in Theorem 1 isclassical when applying the Bukhgeim-Klibanov method and Carlemanestimates for inverse problems with only one boundary measurement.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 11 / 21

Page 26: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Well–posedness

Theorem ([1], Theorem 2.2)

Let b > 0 and α ∈ L∞(Ω). Then the solution u(α) is generated by astrongly continuous group on the state space

H = (H2(Ω) ∩ H10 (Ω))× H1

0 (Ω)× L2(Ω).

That is, for each (u0, u1, u2) ∈ (H2(Ω) ∩ H10 (Ω))× H1

0 (Ω)× L2(Ω) andf ∈ L1(0,T ; L2(Ω)), there exists a unique solutionU = (u(α), ut(α), utt(α)) ∈ C ([0,T ];H).

Kaltenbacher, Barbara and Lasiecka, Irena

Exponential decay for low and higher energies in the third order linearMoore-Gibson-Thompson equation with variable viscosity

Palest. J. Math 1 (2012) 1–10.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 12 / 21

Page 27: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Hidden regularity

Theorem (R. L., A. Mercado, S. Zamorano)

The unique solution(u, ut , utt) ∈ C ([0,T ]; (H2(Ω) ∩ H1

0 (Ω))× H10 (Ω)× L2(Ω)) of (3) satisfies

∂u

∂n∈ H1(0,T ; L2(∂Ω)). (9)

Moreover, the normal derivative satisfies∥∥∥∥∂u∂n∥∥∥∥2

H1(0,T ;L2(∂Ω))

≤ C (‖u0‖2H2(Ω)∩H1

0 (Ω)+‖u1‖2H1

0 (Ω)+‖u2‖2L2(Ω)+‖f ‖2

L1(0,T ;L2(Ω))).

(10)Consequently, the mapping (f , u0, u1, u2) 7→ ∂u

∂n is linear continuous fromL1(0,T ; L2(Ω))× (H2(Ω) ∩ H1

0 (Ω))× H10 (Ω)× L2(Ω)) into

H1(0,T ; L2(∂Ω)).

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 13 / 21

Page 28: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Carleman estimates

For x0 ∈ RN \ Ω and λ > 0, we define the weight functions φ and ϕλ asfollows

ϕλ(x , t) = eλφ(x ,t), (11)

whereφ(x , t) = |x − x0|2 − βt2 + M0, 0 < β < 1, (12)

and M0 is chosen such that

∀(x , t) ∈ Ω× (−T ,T ), φ(x , t) ≥ 1. (13)

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 14 / 21

Thank the audience for being awake.
Page 29: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Carleman estimates

Theorem (R. L., A. Mercado, S. Zamorano)

Suppose that Γ0 and T satisfies (5)–(6). Let M > 0 and α ∈ AM . Letβ ∈ (0, 1) such that

βT > supx∈Ω‖x − x0‖. (11)

Then, there exists s0 > 0, λ > 0 and a positive constant C such that forall s ≥ s0

√s

∫Ωe2sϕλ(0)|ytt (0)|2dx

+sλc4∫ T

0

∫Ωe2sϕλϕλ(|yt |2 + |∇y|2)dxdt + s3

λ3c4

∫ T

0

∫Ωe2sϕλϕ

3λ|y|

2dxdt

+sλ

∫ T

0

∫Ωe2sϕλϕλ(|ytt |2 + |∇yt |2)dxdt + s3

λ3∫ T

0

∫Ωe2sϕλϕ

3λ|yt |

2dxdt

≤ C

∫ T

0

∫Ωe2sϕλ |f |2dxdt + Csλ

∫ T

0

∫Γ0

e2sϕλ(|∇yt · n|2 + c4|∇y · n|2

)dσdt,

for all y ∈ L2(0,T ;H10 (Ω)) satisfying f ∈ L2(Ω× (0,T )),

y(·, 0) = yt(·, 0) = 0 in Ω, and ytt(·, 0) ∈ L2(Ω).

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 14 / 21

Thank the audience for being awake.
Page 30: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Sketch of the proof for Carleman estimates

For the wave equation we have

Ew (u) :=√

s

∫Ωe2sϕλ(0)|ut (0)|2dx + sλ

∫ T

0

∫Ωe2sϕλϕλ(|ut |2 + |∇u|2)dxdt + s3

λ3∫ T

0

∫Ωe2sϕλϕ

3λ|u|

2dxdt

≤ C

∫ T

0

∫Ωe2sϕλ |L0u|

2dxdt + Csλ

∫ T

0

∫Γ0

e2sϕλ(|∇u · n|2

)dσdt,

where L0u = utt − b∆u is the classical wave operator.

We consider theoperator Lαu = uttt + αutt − c2∆u − b∆ut , and we have

Lαu = L0ut +c2

bL0u + (α− c2

b)utt .

Now we consider the weight norm ‖f ‖2w =

∫ T0

∫Ω e2sϕλ |f |2dxdt. And we

compute

‖Lαu − (α− c2

b)utt‖2

w = ‖L0ut‖2w +

c4

b2‖L0u‖2

w + 2c2

b(e2sϕλ∂tL0u, L0u).

Using the Carleman estimates for the waver equation,

C‖Lαu‖2w+C‖(α−c2

b)utt‖2

w ≥ Ew (ut)+c4

b2Ew (u)+

c2

b

∫ T

0

∫Ωe2sϕλ∂t |L0u|2dxdt.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 15 / 21

Page 31: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Sketch of the proof for Carleman estimates

For the wave equation we have

Ew (u) :=√

s

∫Ωe2sϕλ(0)|ut (0)|2dx + sλ

∫ T

0

∫Ωe2sϕλϕλ(|ut |2 + |∇u|2)dxdt + s3

λ3∫ T

0

∫Ωe2sϕλϕ

3λ|u|

2dxdt

≤ C

∫ T

0

∫Ωe2sϕλ |L0u|

2dxdt + Csλ

∫ T

0

∫Γ0

e2sϕλ(|∇u · n|2

)dσdt,

where L0u = utt − b∆u is the classical wave operator. We consider theoperator Lαu = uttt + αutt − c2∆u − b∆ut , and we have

Lαu = L0ut +c2

bL0u + (α− c2

b)utt .

Now we consider the weight norm ‖f ‖2w =

∫ T0

∫Ω e2sϕλ |f |2dxdt. And we

compute

‖Lαu − (α− c2

b)utt‖2

w = ‖L0ut‖2w +

c4

b2‖L0u‖2

w + 2c2

b(e2sϕλ∂tL0u, L0u).

Using the Carleman estimates for the waver equation,

C‖Lαu‖2w+C‖(α−c2

b)utt‖2

w ≥ Ew (ut)+c4

b2Ew (u)+

c2

b

∫ T

0

∫Ωe2sϕλ∂t |L0u|2dxdt.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 15 / 21

Page 32: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Sketch of the proof for Carleman estimates

For the wave equation we have

Ew (u) :=√

s

∫Ωe2sϕλ(0)|ut (0)|2dx + sλ

∫ T

0

∫Ωe2sϕλϕλ(|ut |2 + |∇u|2)dxdt + s3

λ3∫ T

0

∫Ωe2sϕλϕ

3λ|u|

2dxdt

≤ C

∫ T

0

∫Ωe2sϕλ |L0u|

2dxdt + Csλ

∫ T

0

∫Γ0

e2sϕλ(|∇u · n|2

)dσdt,

where L0u = utt − b∆u is the classical wave operator. We consider theoperator Lαu = uttt + αutt − c2∆u − b∆ut , and we have

Lαu = L0ut +c2

bL0u + (α− c2

b)utt .

Now we consider the weight norm ‖f ‖2w =

∫ T0

∫Ω e2sϕλ |f |2dxdt. And we

compute

‖Lαu − (α− c2

b)utt‖2

w = ‖L0ut‖2w +

c4

b2‖L0u‖2

w + 2c2

b(e2sϕλ∂tL0u, L0u).

Using the Carleman estimates for the waver equation,

C‖Lαu‖2w+C‖(α−c2

b)utt‖2

w ≥ Ew (ut)+c4

b2Ew (u)+

c2

b

∫ T

0

∫Ωe2sϕλ∂t |L0u|2dxdt.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 15 / 21

Page 33: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Sketch of the proof for the stability Theorem

Bukhgeim-Klibanov method.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 16 / 21

Page 34: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Algorithm to find the coefficient α

This algorithm will be based by the work of Baudouin, Buhan andErvedoza [?], in which they propose a reconstruction algorithm for thepotential of the wave equation.Let us consider the following functional

J[µ, f ](y) =1

2

∫ T

0

∫Ωe2sϕλ |Lαy − f |2dxdt

+1

2

∫ T

0

∫Γ0

e2sϕλ

(∣∣∣∣∂y∂n − µ∣∣∣∣2 +

∣∣∣∣∂yt∂n − µt∣∣∣∣2)dσdt, (12)

where α ∈ AM , g ∈ L2(Ω× (0,T )), µ ∈ H1(0,T ; L2(Γ0)).

L. Baudouin, M. De Buhan, and S. Ervedoza.

Global Carleman estimates for waves and applications.

Communications in Partial Differential Equations, 38(5):823–859, 2013.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 17 / 21

Page 35: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Algorithm:

1 Initialization: α0 = c2

b .2 Iteration: From k to k + 1Step 1 - Given αk we consider µk = ∂t

(∂u(αk )∂n − ∂u(α)

∂n

)on Γ0 × (0,T )

where u(αk) and u(α) are the solution of the problems Lαku = f ,Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2,Ω

(13)

and Lαu = f ,Ω× (0,T )u = g , ∂Ω× (0,T )u(·, 0) = u0, ut(·, 0) = u1, utt(·, 0) = u2,Ω.

(14)

Step 2 - Minimize the functional J[µk , 0] on the admissible trajectories y .Step 3 - Let y∗,k the minimizer of J[µk , 0] and

αk+1 = αk +y∗,ktt (·, 0)

u2. (15)

Step 4 - Finally, consider αk+1 = T (αk+1), where

T (α) =

M if α > M

α ifc2

b≤ α ≤ M

c2

bif α <

c2

b.

(16)

This function T is to guarantee at each step that αk belongs to theadmissible set AM .

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 18 / 21

Page 36: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Algorithm:

1 Initialization: α0 = c2

b .2 Iteration: From k to k + 1Step 1 - Given αk we consider µk = ∂t

(∂u(αk )∂n − ∂u(α)

∂n

)on Γ0 × (0,T )

Step 2 - Minimize the functional J[µk , 0] on the admissible trajectories y .Step 3 - Let y∗,k the minimizer of J[µk , 0] and

αk+1 = αk +y∗,ktt (·, 0)

u2. (13)

Step 4 - Finally, consider αk+1 = T (αk+1), where

T (α) =

M if α > M

α ifc2

b≤ α ≤ M

c2

bif α <

c2

b.

(14)

This function T is to guarantee at each step that αk belongs to theadmissible set AM .

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 18 / 21

Page 37: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

The convergence of this algorithm

Theorem (R. L., A. Mercado, S. Zamorano)

Assume the same hypotheses of observability Theorem, and the followingassumption of u(α) :

u(α) ∈ H3(0,T ; L∞(Ω)) and |u2| ≥ η > 0. (15)

Then, there exists a constant C > 0 and s0 > 0 such that for all s ≥ s0

and k ∈ N∫Ωe2sϕλ(0)(αk+1 − α)2dx ≤ C√

s

∫Ωe2sϕλ(0)(αk − α)2dx . (16)

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 19 / 21

Page 38: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Working in progress

Consider a new numerical approach

Baudouin, L. and de Buhan, M. and Ervedoza, S.

Convergent Algorithm Based on Carleman Estimates for the Recovery of aPotential in the Wave Equation.

SIAM Journal on Numerical Analysis, 55(4):1578-1613, 2017.

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 20 / 21

Page 39: An inverse problem for Moore Gibson Thompson equationstatic.cmm.uchile.cl/descargas/2019/cmmubath2019/Lecaros_TalkU… · R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath

Thank you for your attention!

R. Lecaros (USM) Inverse problems in MGT U. Chile & U. Bath 21 / 21

Thank the audience for being awake.