an introduction to the theory of higher-dimensional ...higher-dimensional quasiconformal mappings...

27
Mathematical Surveys and Monographs Volume 216 American Mathematical Society An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka

Upload: others

Post on 23-Jun-2020

2 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

Mathematical Surveys

and Monographs

Volume 216

American Mathematical Society

An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings

Frederick W. Gehring Gaven J. Martin Bruce P. Palka

Page 2: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

Mathematical Surveys

and Monographs

Volume 216

An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings

Frederick W. Gehring Gaven J. Martin Bruce P. Palka

American Mathematical SocietyProvidence, Rhode Island

10.1090/surv/216

Page 3: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

EDITORIAL COMMITTEE

Robert GuralnickMichael A. Singer, Chair

Benjamin SudakovConstantin Teleman

Michael I. Weinstein

2010 Mathematics Subject Classification. Primary 30C65, 30C62.

Library of Congress Cataloging-in-Publication Data

Names: Gehring, Frederick W. | Martin, Gaven J. | Palka, Bruce P.Title: An introduction to the theory of higher-dimensional quasiconformal mappings / Frederick

W. Gehring, Gaven J. Martin, Bruce P. Palka.Description: Providence, Rhode Island : American Mathematical Society, [2017] | Series: Mathe-

matical surveys and monographs ; volume 216 | Includes bibliographical references and index.Identifiers: LCCN 2016029235 | ISBN 9780821843604 (alk. paper)Subjects: LCSH: Quasiconformal mappings. | Conformal mapping. | Mappings (Mathematics) |

AMS: Functions of a complex variable – Geometric function theory – Quasiconformal mappingsin Rn. msc | Functions of a complex variable – Geometric function theory – Quasiconformalmappings in the plane. msc

Classification: LCC QA360 .G437 2016 | DDC 515/.93–dc23 LC record available at https://lccn.loc.gov/2016029235

Copying and reprinting. Individual readers of this publication, and nonprofit libraries actingfor them, are permitted to make fair use of the material, such as to copy select pages for usein teaching or research. Permission is granted to quote brief passages from this publication inreviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publicationis permitted only under license from the American Mathematical Society. Permissions to reuseportions of AMS publication content are handled by Copyright Clearance Center’s RightsLink�service. For more information, please visit: http://www.ams.org/rightslink.

Send requests for translation rights and licensed reprints to [email protected] from these provisions is material for which the author holds copyright. In such cases,

requests for permission to reuse or reprint material should be addressed directly to the author(s).Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of thefirst page of each article within proceedings volumes.

c© 2017 by the American Mathematical Society. All rights reserved.The American Mathematical Society retains all rightsexcept those granted to the United States Government.

Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelinesestablished to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 22 21 20 19 18 17

Page 4: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

To the memory of Fred Gehring, advisor and friend,and to our partners Lois Gehring, Dianne Brunton, and Mary Ann Palka

Page 5: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs
Page 6: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

Contents

Preface vii

Chapter 1. Introduction 1

Chapter 2. Topology and Analysis 52.1. Euclidean n-space 52.2. Mobius n-space 62.3. Recollections from linear algebra 72.4. Dilatation and distortion of linear maps 112.5. Partial derivatives 112.6. Differentiability 122.7. Maximal and minimal stretchings 142.8. Diffeomorphisms 14

Chapter 3. Conformal Mappings in Euclidean Space 173.1. Linear conformal transformations 173.2. Reflections 203.3. The Mobius group 233.4. Hyperbolic geometry 373.5. Classification of hyperbolic isometries 473.6. The distortion, compactness and convergence properties

of Mobius transformations 493.7. The Mobius group as a matrix group 563.8. Liouville’s theorem 64

Chapter 4. The Moduli of Curve Families 774.1. Path integrals 874.2. Moduli of curve families 994.3. Technical properties of moduli 1254.4. Extremal metrics 1404.5. ACL-functions and Fuglede’s theorem 143

Chapter 5. Rings and Condensers 1515.1. Rings 1515.2. Condensers 1605.3. Spherical symmetrization of condensers 1675.4. Estimating the moduli of rings 1805.5. Sets of capacity zero 1825.6. Extremal functions for condensers 184

v

Page 7: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

vi CONTENTS

Chapter 6. Quasiconformal Mappings 2056.1. The definition of quasiconformality via conformal moduli 2056.2. Examples and the computation of dilatation 2106.3. Some measure theory 2226.4. The analytic characterisation of quasiconformality 2296.5. The boundary behavior of quasiconformal mappings 2516.6. The distortion, compactness and convergence properties of

quasiconformal families 2716.7. Quasiconformal mappings of Hn with the same boundary values 2986.8. The 1-quasiconformal mappings 300

Chapter 7. Mapping Problems 3077.1. Existence of extremal mappings 3097.2. Topological obstructions: Wild bilipschitz spheres 3107.3. Geometric obstructions to existence 3147.4. Existence: The Schoenflies theorem 3237.5. Vaisala’s theorem on cylindrical domains 3347.6. Quasiconformal homogeneity 351

Chapter 8. The Tukia-Vaisala Extension Theorem 3558.1. Lipschitz embeddings 3568.2. Preliminaries 3628.3. The Tukia-Vaisala extension theorem 371

Chapter 9. The Mostow Rigidity Theorem and Discrete Mobius Groups 3819.1. Introduction and statement of the theorem 3819.2. Hyperbolic manifolds, covering spaces and Mobius groups 3849.3. Quasiconformal manifolds and quasiconformal mappings 3889.4. Quasi-isometries 3909.5. Groups as geometric objects 3939.6. The boundary values are quasiconformal 3989.7. The limit set of a Mobius group 4029.8. Mappings compatible with a Mobius group 4099.9. The proof of Mostow’s theorem 412

Basic Notation 417

Bibliography 419

Index 427

Page 8: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

Preface

This book presents a fairly comprehensive account of the modern theory ofquasiconformal mappings in Euclidean n-space for n ≥ 2, starting from the elemen-tary theory of conformal mappings and building towards the more general aspectsby carefully developing the necessary analytic and geometric tools. This bookis primarily aimed at graduate students and researchers who seek to understandquasiconformal mappings, particularly in three or more dimensions, perhaps afterhaving seen applications of the two-dimensional theory in Teichmuller spaces ofRiemann surfaces, or in conformal dynamical systems and elsewhere. However, aswe carefully develop most of the necessary analytic theory only a basic backgroundcourse in multi-dimensional real analysis is assumed.

The theory of quasiconformal mappings seeks to generalise the remarkable geo-metric and analytic theory of conformal mappings in the plane to higher dimensions.This is since Liouville’s rigidity theorem implies an extreme paucity—a finite di-mensional family—of conformal mappings defined on domains Ω ⊂ Rn, n ≥ 3. Ofcourse in two dimensions the conformal mappings of a domain form an infinite-dimensional family and one has the Riemann mapping theorem. The reasons forseeking this generalisation are manifold with wide application. For instance inthe theory of partial differential equations, quasiconformal mappings preserve theellipticity of second order equations of divergence type—those with the widest ap-plication in physics—so the solution to mapping problems enables the transfer ofequations from one domain to another, potentially nicer, domain where a solutionmight be found.

In higher dimensions few manifolds admit a conformal structure, yet D. Sulli-van has shown that every topological manifold admits a quasiconformal structure,that is, a covering with quasiconformal local coordinate charts. This presents theopportunity to compute analytic invariants on a topological manifold or to computetopological invariants analytically—for instance in the work of A. Connes, D. Sulli-van, and N. Teleman. Unfortunately we will only touch on these deep applicationsin this work. Nevertheless the reader will find—for the first time in book form—asolid foundation to explore these remarkable results and applications.

We approach the theory of quasiconformal mappings from the geometric pointof view, using conformal invariants such as the moduli of curve families and ca-pacities. These ideas are of independent interest and again of wide utility in manyareas of mathematics, and so we give a fairly thorough account of them.

We begin by developing the basics of the theory—including the study of confor-mal mappings in space, elementary aspects of higher-dimensional hyperbolic geom-etry and its isometries, along with the associated matrix groups. This leads quicklyto the celebrated rigidity theorem of Liouville for smooth mappings, the proof for

vii

Page 9: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

viii PREFACE

which follows an argument of Nevanlinna. To get Liouville’s theorem in completegenerality, more theory—in particular the theory of conformal modulus—is devel-oped. The geometric aspects of the theory of quasiconformal mappings rely to agreat deal on understanding and estimating these conformal invariants. Indeed thevery definition of a quasiconformal mapping here is via the distortion of moduli bya multiplicative factor.

We then consider deeper properties of conformal modulus such as symmetrisa-tion, continuity, the structure of sets of capacity zero and the existence and unique-ness of extremal functions. These give us powerful tools to study quasiconformalmappings which enable us to not only establish analytic properties, but also to de-velop the compactness and normal family properties of sequences of quasiconformalmappings.

We then turn our attention to the mapping problem in its various forms, basi-cally seeking a higher-dimensional version of the Riemann mapping theorem for theclass of quasiconformal mappings. We present the classical geometric obstructionsto existence and then turn to positive results. We give a proof for the Schoenfliestheorem in the quasiconformal category and subsequently give a fairly completeproof of Vaisala’s mapping theorem for cylindrical domains, perhaps the best re-sult to date answering this question.

We then present the sophisticated and important work of Tukia-Vaisala devel-oped using Sullivan’s machinery. In particular we give a proof for their solution ofthe lifting problem. Many of the last chapters of this book—part of a central themein the area to develop quasiconformal versions of classical theorems in geometrictopology—have never previously appeared in book form. Indeed many aspects ofthe approach to the theory given here are novel among recent monographs on thesubject, as these primarily focus on the analytic approach through the associatednonlinear partial differential equations and differential inequalities.

We close with a presentation of the Mostow rigidity theory, one of the mostcompelling and important applications of the higher-dimensional theory of quasi-conformal mappings. We take a fairly roundabout approach here so as to be ableto clearly exhibit the remarkable interaction between quasiconformal theory, hy-perbolic geometry, and modern aspects of geometric group theory. In particularwe give a fairly comprehensive discussion of quasi-isometries and isomorphisms ofhyperbolic groups.

During the long gestation of this book the first-named author Fred Gehringpassed away. He was of course a major figure in the area, and much of the importantwork presented in this book is due to him and his coauthors. He is sadly missed.

It is our pleasure to acknowledge the wide-ranging support we have had froma number of places that has made this book possible. We have all been partlysupported by the Academy of Finland, the Marsden Fund of New Zealand, and theNational Science Foundation of the United States at one time or another. Also theAalto Science Institute deserves thanks for providing the time and support neededto finally complete this project.

Page 10: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

PREFACE ix

We would also like to thank the team at the American Mathematical Society (inparticular Ina Mette who tirelessly pressed us to complete) who skillfully guided usthrough the production process and whose considerable efforts improved this book.

Gaven Martin and Bruce Palka

Auckland and Washington, 2015.

Page 11: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs
Page 12: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs
Page 13: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

Basic Notation

Here we have collected together some of the standard notation used throughoutthe text.

• C, the complex plane• C = C ∪ {∞}, the Riemann sphere

• Rn = Rn ∪ {∞}, the Riemann n-sphere or Mobius space• Bn(a, r) = {x ∈ Rn : |x− a| ≤ r}• Bn = Bn(0, 1), the open unit ball• Bn(a, r) = {x ∈ C : |x− a| ≤ r}, the closed ball about a of radius r• Bn, the closed unit ball• diam(E), the diameter of the set E ⊂ C• |E|, the Lebesgue measure of the set E• dist(E,F ), the distance between the sets E and F ,

dist(E,F ) = infx∈E,w∈F

|x− w|

• Hs(E), the s-dimensional Hausdorff measure of a set E• dimH(E), the Hausdorff dimension of a set E• Ms(E), the s-dimensional content of a set E• χF (x), the characteristic function of the set F ,

χF (x) =

{1, x ∈ F,0, x �∈ F

• χidentity(0,R), the characteristic function of the disk identity(0, R)

• GL(n,R), the general linear group, that is, the space of invertible n × nmatrices with real entries

• SL(n,R), those matrices A ∈ GL(n,R) with determinant equal to 1,det (A) = 1

• SO(n,R), the orthogonal matrices in SL(n,R)• |A|, the operator norm of A ∈ GL(n,R),

|A| = max|ζ|=1

|Aζ|

• ‖A‖, the Hilbert-Schmidt norm of A ∈ GL(n,R),

‖A‖ =

⎛⎝ n∑i,j=1

a2i j

⎞⎠1/2

417

Page 14: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

418 BASIC NOTATION

• Df , the differential matrix of the function f(x) = (f1(x), f2(x), . . .,fn(x)),

Df(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

∂f1

∂x1(x) ∂f1

∂x2(x) . . . ∂f1

∂xn(x)

∂f2

∂x1(x) ∂f2

∂x2(x) . . . ∂f2

∂xn(x)

......

. . ....

∂fn

∂x1(x) ∂fn

∂x2(x) . . . ∂fn

∂xn(x)

⎤⎥⎥⎥⎥⎥⎥⎦• Dtf = (Df)t, the transpose differential matrix• J(x, f) = det [Df(x)], the Jacobian determinant• f |E, the function f restricted to the set E• Lf (x), the maximal derivative of a function f• |dx|, ds, line-elements in integrating with respect to arc length

• supp(f), the support of the function f , supp(f) = {x : f(x) �= 0}• C(Ω), the space of continuous real-valued functions defined on an openset Ω

• C0(Ω), those functions in C(Ω) whose support is compactly contained inΩ

• C∞(Ω), the space of infinitely differentiable real-valued functions definedon an open set Ω

• C∞0 (Ω), those functions in C∞(Ω) whose support is compactly contained

in Ω• C1,α(Ω), those functions in C1(Ω) whose first derivatives satisfy a Holderestimate with exponent α

• Lp(Ω), the Banach space (p ≥ 1) of functions f with |f |p integrable in Ω• Lp

loc(Ω), the Banach space (p ≥ 1) of functions f with |f |p locally inte-grable in Ω, that is, integrable in each compact subset of Ω

• L∞(Ω), the Banach space of essentially bounded measurable functions• W k,p(Ω,V), 1 ≤ p ≤ ∞, k ∈ N, the Sobolev space of all distributionsf ∈ D′(Ω,V) whose derivatives up to the kth order are represented byfunctions in Lp(Ω,V) and equipped with the norm

‖f‖k,p =

⎛⎝ ∑|α+β|≤k

∫Ω

∣∣∣∣∂α+βf(ζ)

∂xα ∂xβ

∣∣∣∣p⎞⎠1/p

for p <∞ and

‖f‖k,∞ = essup|α+β|≤k

∣∣∣∣∂α+βf(ζ)

∂xα ∂xβ

∣∣∣∣ ;when V = C, we denote these spaces by W k,p(Ω). The space C∞(Ω,V) isa dense subspace of W k,p(Ω,V) for all k and p, 1 ≤ p <∞

• W k,ploc (Ω), the space of functions f with f ∈ W k,p(Ω′) for every relatively

compact subdomain with Ω′ ⊂ Ω• W1,p(Ω), the Banach space (modulo constants) of functions whose gradi-ent lies in Lp(Ω)v

Page 15: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

Bibliography

[1] S. Agard, A geometric proof of Mostow’s rigidity theorem for groups of divergence type,Acta Math., 151, (1983), 231–252.

[2] L.V. Ahlfors, Zur theorie der Uberlagerungsflachen, Acta Math., 65, (1935), 157–194.[3] L.V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Princeton 1966;

Reprinted by Wadsworth Inc. Belmont, 1987.[4] L.V. Ahlfors, Commentary on: “Zur theorie der Uberlagerungsflachen” (1935), Fields

Medallists’ Lectures, 8–9, World Sci. Ser. 20th Century Math., 5, World Sci. Publishing,River Edge, NJ, 1997.

[5] L.V. Ahlfors, On quasiconformal mappings, J. d’Analyse Math., 3, (1953/54), 1–58. (cor-rection loc. cit., pp. 207–208).

[6] L.V. Ahlfors, Extension of quasiconformal mappings from two to three dimensions, Proc.Nat. Acad. Sci. U.S.A., 51, (1964), 768–771.

[7] L.V. Ahlfors, Quasiconformal reflections, Acta Math., 109, (1963), 291–301.[8] L.V. Ahlfors, Conformal invariants. Topics in geometric function theory. Reprint of the

1973 original. With a foreword by Peter Duren, F. W. Gehring and Brad Osgood. AMSChelsea Publishing, Providence, RI, 2010.

[9] L.V. Ahlfors, Mobius transformations in several dimensions, Ordway Professorship Lecturesin Mathematics. University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981.ii+150 pp.

[10] L.V. Ahlfors and A. Beurling, Conformal invariants and function theoretic null sets, ActaMath., 83, (1950), 101–129.

[11] L.V. Ahlfors and A. Beurling, The boundary correspondence under quasiconformal map-pings, Acta Math., 96, (1956), 125–142.

[12] G.D. Anderson, M.K. Vamanamurthy, and M. Vuorinen, Conformal invariants, inequali-ties, and quasiconformal maps, Canadian Mathematical Society Series of Monographs andAdvanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York,1997. xxviii+505 pp.

[13] C. Andreian Cazacu, Foundations of quasiconformal mappings, Handbook of complex anal-ysis: Geometric Function Theory, Vol. 2, 687–753, Elsevier, Amsterdam, 2005.

[14] M. Arsenovic, V. Manojlovic, and R. Nakki, Boundary modulus of continuity and quasicon-formal mappings, Ann. Acad. Sci. Fenn. Math., 37, (2012), 107–118.

[15] K. Astala, T. Iwaniec and G. Martin, Elliptic partial differential equations and quasiconfor-mal mappings in the plane, Princeton Mathematical Series, 48, Princeton University Press,Princeton, NJ, 2009. xviii+677 pp.

[16] A.F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, 91,Springer-Verlag, New York, 1983. xii+337 pp.

[17] A.F. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamentalpolyhedra, Acta Math., 132, (1974), 1–12.

[18] B.A. Bhayo and M. Vuorinen, On Mori’s theorem for quasiconformal mappings in n-space,Trans. Amer. Math. Soc., 363, (2011), no. 11, 5703–5719.

[19] B. Bojarski and T. Iwaniec, Another approach to Liouville Theorem, Math. Nachr., 107,(1982), 253–262.

[20] P. Bonfert-Taylor, R. Canary, G.J. Martin, and E.C. Taylor, Quasiconformal homogeneityof hyperbolic manifolds, Math. Ann., 331, (2005), 281–295.

[21] P. Bonfert-Taylor, R. Canary, and E.C. Taylor, Quasiconformal homogeneity after Gehringand Palka, Comput. Methods Funct. Theory, 14, (2014), 417–430.

419

Page 16: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

420 BIBLIOGRAPHY

[22] M. Bonk, B. Kleiner and S. Merenkov, Rigidity of sets, Amer. J. Math., 131, (2009), 409–443.

[23] M. Bonk, Uniformization of Sierpinski carpets in the plane, Invent. Math., 186, (2011),559–665.

[24] A. Borel, Andre Weil and algebraic topology, Andre Weil (1906–1998). Gaz. Math., 80,(1999), 63–74.

[25] M. Brown, A proof of the generalised Schoenflies theorem, Bull. Amer. Math. Soc., 66,

(1960), 74–76.[26] D. Bump, Lie groups, second edition. Graduate Texts in Mathematics, 225, Springer, New

York, 2013.[27] D.E. Callender, Holder continuity of n-dimensional quasiconformal mappings, Pacific J.

Math., 10, (1960), 499–515.[28] L. Carleson, The extension problem for quasiconformal mappings, Contributions to analysis

(a collection of papers dedicated to Lipman Bers), pp. 39–47. Academic Press, New York,1974.

[29] J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40, (1936), 396–414.[30] A. Connes, D. Sullivan, and N. Teleman, Quasiconformal mappings, operators on Hilbert

space, and local formulae for characteristic classes, Topology, 33, (1994), 663–681.[31] A. Connes, D. Sullivan, and N. Teleman, Formules locales pour les classes de Pontrjagin

topologiques, C. R. Acad. Sci. Paris Sr. I Math., 317, (1993), 521–526.[32] E. de Giorgi, Sulla differenziabilita e l’analiticita delle estremali degli integrali multipli

regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3, (1957), 25–43.[33] S.K. Donaldson and D. P. Sullivan, Quasiconformal 4-manifolds, Acta Math., 163, (1989),

181–252.[34] A. Douady and C.J. Earle, Conformally natural extension of homeomorphisms of the circle,

Acta Math., 157, (1986), 23–48.[35] R.D. Edwards and R. C. Kirby, Deformations of spaces of imbeddings, Ann. Math., 93,

(1971), 63–88.[36] V.A. Efremovich and E.S. Tihomirova, Equimorphisms of hyperbolic spaces, Izv. Akad. Nauk

SSSR Ser. Mat., 28, (1964), 1139–1144.

[37] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wis-senschaften, 153 Springer-Verlag New York Inc., New York, 1969, xiv+676 pp.

[38] R. Finn and J. Serrin, On the Holder continuity of quasi-conformal and elliptic mappings,Trans. Amer. Math. Soc., 89, (1958), 1–15.

[39] R.H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Annals ofMath., 49, (1948), 979–990.

[40] K.O. Friedrichs, On Clarkson’s inequalities, Communications on Pure and Applied Math.,23, (1970), 603–607.

[41] V.N. Dubinin, Condenser capacities and symmetrisation in geometric function theory,translated from the Russian by N.G. Kruzhilin, Springer, Basel, 2014.

[42] B. Fuglede, Extremal length and functional completion, Acta Math., 98, (1957), 171–219.[43] D. Gabai, Convergence groups are Fuchsian groups, Ann. of Math., 136, (1992), 447–510.[44] D.B. Gauld and M.K. Vamanamurthy, Quasiconformal extensions of mappings in n-space,

Ann. Acad. Sci. Fenn. Ser. A I Math., 3, (1977), 229–246.[45] D.B. Gauld and M.K. Vamanamurthy, A special case of Schonflies’ theorem for quasicon-

formal mappings in n-space, Ann. Acad. Sci. Fenn. Ser. A I Math., 3, (1977), 311–316.[46] F.W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc., 103,

(1962), 353–393.[47] F.W. Gehring, The Lp-integrability of the partial derivatives of a quasiconformal mapping,

Acta Math., 130, (1973), 265–277.[48] F.W. Gehring, Quasiconformal mappings in Euclidean spaces, Handbook of complex anal-

ysis: Geometric Function Theory, Vol 2, 1–29, Elselvier, Amsterdam, 2005.

[49] F.W. Gehring and T. Iwaniec, The limit of mappings with finite distortion, Ann. Acad. Sci.Fenn. Math., 24, (1999), 253–264.

[50] F.W. Gehring and O. Lehto, On the total differentiability of functions of a complex variable,Ann. Acad. Sci. Fenn. A I, 272, (1959), 9pp.

[51] F.W. Gehring and G. J. Martin, Discrete quasiconformal groups, I, Proc. London Math.Soc., 55, (1987), 331–358.

Page 17: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

BIBLIOGRAPHY 421

[52] F.W. Gehring and B.P. Palka, Quasiconformally homogeneous domains, J. Analyse Math.,30, (1976), 172–199.

[53] F.W. Gehring and B. Osgood, Uniform domains and the quasi-hyperbolic metric, Journald’Analyse Mathematique, 36, (1979), 50–74.

[54] F.W. Gehring and J. Vaisala, The coefficients of quasiconformality of domains in space,Acta Math., 114, (1965), 1–70.

[55] M. Giaquinta, Multiple integrals in the calculus of variations and non-linear elliptic systems,

Annals of Math. Stud., 105, Princeton University Press, 1983.[56] M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals, Acta

Math., 148, (1982), 31–46.[57] E. Ghys and P. de La Harpe, Infinite groups as geometric objects (after Gromov), Ergodic

theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), 299–314, Oxford Sci.Publ., Oxford Univ. Press, New York, 1991.

[58] E. Ghys and P. de La Harpe, Quasi-isometries et quasi-geodesiques, Sur les groupes hy-perboliques d’apres Mikhael Gromov (Bern, 1988), 79–102, Progr. Math., 83, BirkhauserBoston, Boston, MA, 1990.

[59] J. D. Gray and S. A. Morris, When is a Function that Satisfies the Cauchy-Riemann Equa-tions Analytic? American Math. Monthly, 85, (1978), 246 –256

[60] L. Greenberg, Discrete subgroups of the Lorentz group, Math. Scand., 10, (1962), 85–107.[61] M.J. Greenberg, J.R. Harper, Algebraic topology. A first course, Mathematics Lecture Note

Series, 58, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading,Mass., 1981. xi+311 pp.

[62] M. Gromov, Hyperbolic groups, Essays in group theory, 75–263, Math. Sci. Res. Inst. Publ.,8, Springer, New York, 1987.

[63] M. Gromov and P. Pansu, Rigidity of lattices: an introduction, Geometric topology: recentdevelopments (Montecatini Terme, 1990), 39–137, Lecture Notes in Math., 1504, Springer,Berlin, 1991.

[64] W. Gross, Uber das Flashenmass von Punktmengen, Monat. Math. Physik, 29, (1918),145–176.

[65] W. Gross, Uber das lineare Mass von Punktmengen, Monat. Math. Physik, 29, (1918),

177–193.[66] H. Grotzsch, Uber die Verzerrung bei schlichten nichtconformen Abbildungen und ubereine

damit zusammenhangende Erweiterung des Picardschen Satzes, Ber. Verh. Sachs. Akad.Wiss. Leipzig, 80, (1928), 503–507.

[67] P. Gruber, Convex Geometry, Grundlehren der Mathematischen Wissenschaften, SpringerVerlag, 2007.

[68] W.K. Hayman, Symmetrization in the theory of functions, Tech. Rep. no. 11, Navy ContractN6-ori-106 Task Order 5, Stanford University, Calif., 1950. 38 pp.

[69] W.K. Hayman, Multivalent functions, second edition. Cambridge Tracts in Mathematics,110, Cambridge University Press, Cambridge, 1994. xii+263 pp

[70] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press,1952.

[71] P. Hartman On isometries and on a theorem of Liouville, Math. Z., 69, (1958), 202–210.[72] G.A. Hedlund, Fuchsian groups and transitive horocycles , Duke Math. J., 2, (1936), 530–

542.[73] J. Heinonen, Lectures on Lipschitz Analysis, Report., University of Jyvaskyla Department

of Mathematics and Statistics, 100, University of Jyvaskyla, Jyvaskyla, 2005.[74] J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear Potential Theory of Degenerate

Elliptic Equations, Oxford Math. Monographs, 1993.[75] J. Heinonen and P. Koskela, Definitions of quasiconformality, Invent. Math., 120, (1995),

61–79.[76] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geome-

try, Acta Math., 181, (1998), 1–61.[77] J. Hesse, p-extremal length and p-measurable curve families, Proc. Amer. Math. Soc., 53,

(1975), 356–360.[78] J. Hesse, A p-extremal length and p-capacity equality, Ark. Mat., 13, (1975), 131–144.[79] E. Hopf, A remark on linear elliptic differential equations of second order, Proc. Amer.

Math. Soc., 3, (1952), 791–793.

Page 18: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

422 BIBLIOGRAPHY

[80] E. Hopf and N. Wiener, Uber eine Klasse singularer Integralgleichungen, Sitzungber. Akad.Wiss. Berlin, (1931), pp. 696–706

[81] H. Hopf, Zum Clifford-Kleinschen Raumproblem, Math. Annalen, 95, (1926), 313–339.[82] T. Iwaniec, p-Harmonic tensors and quasiregular mappings, Ann. of Math., 136, (1992),

589–624.[83] T. Iwaniec, The failure of lower semicontinuity for the linear dilatation, Bull. London Math.

Soc., 30, (1998), 55–61.

[84] T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis, Oxford Math-ematical Monographs. The Clarendon Press, Oxford University Press, New York, 2001.xvi+552. ISBN: 0-19-850929-4

[85] T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Acta Math., 170,(1993), 29–81.

[86] T. Iwaniec and J. Onninen, n-harmonic mappings between annuli: the art of integratingfree Lagrangians, Mem. Amer. Math. Soc., 218, (2012), no. 1023, viii+105 pp. ISBN: 978-0-8218-5357-3

[87] T. Iwaniec and J. Onninen, An invitation to n-harmonic hyperelasticity, Pure Appl. Math.Q., 7, (2011), Special Issue: In honor of Frederick W. Gehring, Part 2, 319–343.

[88] D.S. Jerison and C.E. Kenig, Hardy spaces, A∞ and singular integrals on chord-arc domains,Math. Scand., 50, (1982), 221–247.

[89] F. John, Rotation and strain, Comm. Pure Appl. Math., 14, (1961), 391–413.

[90] W. Killing, Uber die Clifford-Klein’schen Raumformen, Math. Annalen, 39, (1891), 257–278.

[91] B.N. Kimel’fe’ld, Homogeneous regions on the conformal sphere, Mat. Zametki, 8, (1970),321–328.

[92] R.C. Kirby and L.C. Siebenmann, Foundational essays on topological manifolds, smoothings,and triangulations. With notes by John Milnor and Michael Atiyah. Annals of MathematicsStudies, 88. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo,1977.

[93] R. Kuhnau, Bibliography of geometric function theory, Handbook of complex analysis: Geo-metric Function Theory, Vol. 2, 809–828, Elsevier, Amsterdam, 2005.

[94] T. Kuusalo, Quasiconformal mappings without boundary extensions, Ann. Acad. Sci. Fenn.Ser. A I Math., 10, (1985), 331– 338.

[95] S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics, 191,Springer-Verlag, New York, 1999.

[96] T.G. Latfullin, Geometric characterisation of the quasi-isometric image of a half plane,Theory of mappings, its generalizations and applications, 116–126, “Naukova Dumka”, Kiev,1982.

[97] O. Lehto and K. Virtanen, Quasiconformal mappings in the plane, Springer–Verlag, 1973.[98] J. Lindenstrauss and D. Preiss, On Frechet differentiability of Lipschitz maps between Ba-

nach spaces, Annals of Math., 157, (2003), 257–288.[99] J. Liouville, Extension au cas de trois dimensions de la question du trace geographique,

Note IV in Application de l’Anallyse a la Geometrie, Bachelier, Paris, 1850, 609–616.[100] J. Liouville, Theorem sur l’equation dx2 + dy2 + dz2 = λ(dα2 + dβ2 + dγ2), J. Math. Pures

Appl., 1, (15), (1850), 103.[101] J. Lutzen, Joseph Liouville 1809–1882: master of pure and applied mathematics, Studies

in the History of Mathematics and Physical Sciences, 15, Springer-Verlag, New York, 1990.xx+884 pp.

[102] J. Luukkainen, Lipschitz and quasiconformal approximation of homeomorphism pairs,Topology Appl., 109, (2001), 1–40.

[103] J. Maly, A simple proof of the Stepanov theorem on differentiability almost everywhere,Exposition. Math., 17, (1999), 59–61.

[104] G.J. Martin, Infinite group actions on spheres, Revista Mat. Iberoamericana, 4, No. 3–4(1988), 407–451.

[105] G.J. Martin, Algebraic convergence of discrete isometry groups of negative curvature, PacificJ. Math., 160, (1992), 109–127.

[106] G.J. Martin, The Hilbert-Smith conjecture for quasiconformal actions, Electron. Res. An-nounc. Amer. Math. Soc., 5, (1999), 66–70.

[107] G.J. Martin and R. Skora, Group actions on S2, Amer. J. Math., 111, (1989), 387–402.

Page 19: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

BIBLIOGRAPHY 423

[108] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability,Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge,1995. xii+343 pp.

[109] O. Martio, S. Rickman, and J. Vaisala, Definitions for Quasiregular mappings, Ann. Acad.Sci. Fenn. Ser. A.I., 448, (1969), 1-40.

[110] O. Martio, S. Rickman, and J. Vaisala, Distortion and Singularities of Quasiregular Map-pings, Ann. Acad. Sci. Fenn. Ser. A I Math., 465, (1970), 1–13.

[111] O. Martio, S. Rickman, and J. Vaisala, Topological and metric properties of quasiregularmappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 488, (1971), 1–31.

[112] O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser.A I Math., 4, (1979), 383–401.

[113] M. Mateljevica, Isoperimetric Inequality, F. Gehring’s Problem on Linked Curves and Ca-pacity, Filomat, 29, (3), (2015), 629–650.

[114] V. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, Sec-ond, revised and augmented edition, Grundlehren der Mathematischen Wissenschaften 342,Springer, Heidelberg, 2011. xxviii+866 pp.

[115] M. J. McKemie, Quasiconformal groups with small dilatation, Ann. Acad. Sci. Fenn. Ser. AI Math., 12, (1987), 95–118.

[116] E. E. Moise, Geometric topology in dimensions 2 and 3, Graduate Texts in Mathematics,47, Springer-Verlag, New York-Heidelberg, 1977. x+262 pp.

[117] G. Monge Application de l’Anallyse a la Geometrie, Bachelier, Paris, 1850.[118] P. Montel, Sur les suites infinies de fonctions, Gauthier-Villars, Paris, 1907.[119] D. Montgomery and L. Zippin, Topological transformation groups, Reprint of the 1955 orig-

inal. Robert E. Krieger Publishing Co., Huntington, N.Y., 1974. xi+289 pp.[120] A. Mori An absolute constant in the theory of quasiconformal mappings, J. Math. Soc.

Japan, 8, (1956), 156–166.[121] A. Mori On quasiconformality and pseudo-analyticity, Trans. Amer. Math. Soc., 84, (1957),

56–77.[122] C.B. Morrey, Multiple integrals in the calculus of variations, Springer–Verlag, 1966.[123] J. Moser, On Harnack’s theorem for elliptic differential equations, Communications on Pure

and Applied Mathematics, 14, (1961), 577–591.[124] J. Moser, A rapidly convergent iteration method and non-linear partial differential equa-

tions. I & II, Ann. Scuola Norm. Sup. Pisa, 20, (1966), 265–315, Ann. Scuola Norm. Sup.Pisa, 20, (1966), 499–535.

[125] G.D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space

forms, Inst. Hautes Etudes Sci. Publ. Math., 34, (1968), 53–104.[126] D. Mumford, C. Series and D. Wright, Indra’s pearls, Cambridge University Press, 2002.[127] J.R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.

xvi+413 pp.

[128] R. Nakki, Cluster sets and quasiconformal mappings, Complex Var. Elliptic Equ., 55,(2010), 31–47.

[129] R. Nakki and O. Martio, Boundary accessibility of a domain quasiconformally equivalent toa ball, Bull. London Math. Soc., 36, (2004), 115–118.

[130] R. Nakki and B.P. Palka, Lipschitz conditions and quasiconformal mappings, Indiana Univ.Math. J., 31, (1982), 377–401.

[131] R. Nakki and B.P. Palka, Swiss cheese, dendrites, and quasiconformal homogeneity, Com-put. Methods Funct. Theory, 14, (2014), 525–539.

[132] G. Narasimhan, Complex analysis in one variable, Birkhauser Boston, Inc., Boston, MA,1985. xvi+266 pp.

[133] R. Nevanlinna On differentiable mappings, Analytic functions, pp. 3–9, Princeton Univ.Press, Princeton, N.J., 1960.

[134] R. Nevanlinna Die konformen Selbstabbildungen des euklidischen Raumes, Rev. Fac. Sci.Univ. Istanbul. Ser. A., 19, (1954), 133–139.

[135] M. Ohtsuka, Extremal length and precise functions. With a preface by Fumi-Yuki Maeda.GAKUTO International Series. Mathematical Sciences and Applications, 19. GakkotoshoCo., Ltd., Tokyo, 2003.

[136] G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math., 21, (1973), 255–286.

Page 20: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

424 BIBLIOGRAPHY

[137] M.S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrerGrenzgebiete, 68, Springer-Verlag, New York-Heidelberg, 1972. ix+227 pp

[138] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, 149,Springer-Verlag, New York, 1994. xii+747 pp.

[139] R. Remmert and L. Kay, Classical Topics in Complex Function Theory, Springer-Verlag,1998.

[140] Yu. G. Reshetnyak, Space mappings with bounded distortion, Sibirsk. Mat. Zh., 8, (1967),

629–659.[141] Yu. G. Reshetnyak, Liouville’s Theorem on conformal mappings under minimal regularity

assumptions, Sibirsk. Mat. Zh., 8, (1967), 835–840.[142] W. Rudin, Real and Complex Analysis, (third ed.), McGraw-Hill, 1986.[143] J. Sarvas, Symmetrization of condensers in n-space, Ann. Acad. Sci. Fenn. Ser., A I, 522,

(1972), 44 pp.[144] A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions

to function theory (Internat. Colloq. Function Theory, Bombay, 1960), pp. 147–164. TataInstitute of Fundamental Research, Bombay.

[145] J. L. Schiff, Normal families, Universitext, Springer-Verlag, New York, 1993.[146] V.A. Shlyk, K-capacity and the Rado problem for mappings with bounded distortion, Sibirsk.

Mat. Zh., 31, (1990), 179–186, 222; translation in Siberian Math. J., 31, (1990), 152–158.[147] V.A. Shlyk, On the equality between p-capacity and p-modulus, Sibirsk. Mat. Zh., 34, (1993),

216–221; translation in Siberian Math. J., 34, (1993), 1196–1200.[148] R.J. Spatzier, Harmonic Analysis in Rigidity Theory, in Petersen, Karl E.; Salama, Ibrahim

A., Ergodic Theory and its Connection with Harmonic Analysis, Proceedings of the 1993Alexandria Conference, Cambridge University Press, (1995), 153–205,

[149] Stallings, Group theory and three-dimensional manifolds, A James K. Whittemore Lecturein Mathematics given at Yale University, 1969, Yale Mathematical Monographs, 4, YaleUniversity Press, New Haven, Conn.-London, 1971. v+65 pp.

[150] D. Sullivan, Hyperbolic geometry and homeomorphisms, Geometric topology (proceedingsGeorgia Topology Conf., Athens, Ga., 1977) edited by J. C. Cantrell, Academic Press, NewYork, N. Y.-London, 1979, 543–555.

[151] C.H. Taubes, Differential geometry. Bundles, connections, metrics and curvature, OxfordGraduate Texts in Mathematics, 23, Oxford University Press, Oxford, 2011. xiv+298 pp

[152] W.P. Thurston Three-dimensional geometry and topology, Vol. 1. Edited by Silvio Levy.Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997. x+311pp.

[153] P. Tukia, Extension of quasisymmetric and Lipschitz embeddings of the real line into theplane, Ann. Acad. Scie. Fenn. Ser. A. I. Math., 6, (1981), 89–94.

[154] P. Tukia, The planar Schonfliess theorem for Lipschitz maps, Ann. Acad. Sci. Fenn. Ser. AI Math., 5, 1980, 49–72.

[155] P. Tukia, On isomorphisms of geometrically finite Mobius groups, Inst. Hautes Etudes Sci.Publ. Math., 61, (1985), 171–214.

[156] P. Tukia, A quasiconformal group not isomorphic to a Mobius group, Ann. Acad. Sci. Fenn.Ser. A I Math., 6, (1981), 149–160.

[157] P. Tukia and J. Vaisala, Lipschitz and quasiconformal approximation and extension, Ann.Acad. Sci. Fenn. Ser. A I Math., 6, (1981), 303–342.

[158] P. Tukia and J. Vaisala, Quasiconformal extension from dimension n to n + 1, Ann. ofMath., 115, (1982), 331–348.

[159] P. Tukia and J. Vaisala, Bi-Lipschitz extensions of maps having quasiconformal extensions,Math. Ann., 269, (1984), 561–572.

[160] J. Vaisala, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math.,229, Springer-Verlag, 1971.

[161] J. Vaisala, On quasiconformal mappings of a ball, Ann. Acad. Sci. Fenn. Ser. A I, 304,(1961), 7 pp.

[162] J. Vaisala, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I, 298,(1961), 36 pp.

[163] J. Vaisala, Homeomorphisms of bounded length distortion, Ann. Acad. Sci. Fenn. Ser. A IMath., 12, (1987), 303–312.

[164] J. Vaisala, Quasiconformal maps of cylindrical domains, Acta Math., 162, (1989), 201–225.

Page 21: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

BIBLIOGRAPHY 425

[165] M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathemat-ics, 1319, Springer-Verlag, Berlin, 1988. xx+209 pp.

[166] A. Weil, On discrete subgroups of Lie groups, Annals of Math., 72, (1960), 369–384.[167] A. Weil, On discrete subgroups of Lie groups. II, Annals of Math., 75, (1962), 578–602.[168] G.T. Whyburn, Analytic Topology, American Mathematical Society Colloquium Publica-

tions 28, American Mathematical Society, Providence, R.I., 1942.[169] J. Wolf, Spaces of Constant Curvature, Third edition. Publish or Perish, Inc., Boston, Mass.,

1974. xv+408 pp.[170] W.P. Ziemer, Extremal length and p-capacity, Michigan Math. J., 16, (1969), 43–51.[171] V.A. Zorich, The theorem of M.A. Lavrent’ev on quasiconformal mappings in space, Mat.

Sb., 74, (1967), 417–433.[172] V.A. Zorich, Homeomorphity of space quasiconformal mappings (Russian) Dokl. Acad.

Nauk. SSSR, 176, (1967), 31–34; (English) Sov. Math. Dokl. 8, (1967), 1039–1042.

Page 22: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs
Page 23: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

Index

Ac, 6

Bn+, 252

C∞(U,Rm), 11

Ck(U,Rm), 11

Ck0 (U,R

m), 12

Cf (x), 151

H(T ), 11

HI(T ), 11

HO(T ), 11

Hf (x), 229

Jf (x), 15

K(f), 205

K∗(f), 206KI(f), 205

K∗I (f), 206

KO(f), 205

K∗O(f), 206

Lf (x), 14

M(Γ), 79

Mp(Γ), 99

OΓ, 403

RG(n, r), 154

RT (n, s), 155

A(n), 8

Δ(E,F : G), 101

E(n), 8

Mob(n), 23

GS(n), 19

Hn, 22

Isom+(Hn), 384

Λ(Γ), 403

O(n), 8

SO(n), 8

ΘnK , 274

δD, 335

δΩ(a, b), 336

�ρ(γ), 37

�f (x), 14

kerν→∞ Aν , 284

λD, 335

osc Su, 149

∂∗D, 337

φ-Loewner, 342

φ-broad, 342

π(x), 7

supp(f), 12

ax(γ), 407

dρ(x, y), 37

kD, 39

p-Laplace equation, 197

p-extremal metric for 140

p-harmonic equation, 197

p-harmonic function, 197

p-modulus, 99

qσ, 137

qσD (x, y), 266

C(A), 87

L(Rn), 134

R(C0, C1), 152

ACL(U), 145

ACL(U,Rm), 145

ACL-function, 143

ACL-homeomorphism, 230

ACL-property, 143

ACLp-function, 144

Adm(Γ), 78

Capp(R), 152

absolute continuity, 88

absolutely continuous on lines, 143

accessible, 268

adjoint, 8

admissible density, 78, 99

affine group, 8

affine transformation, 8

almost admissible, 140

Arzela-Ascoli theorem, 53

asymptote, 186

asymptotically regulated, 186

atlas, 384

axis, 49, 407

Beurling’s compactness criterion, 296

Beurling-Ahlfors extension, 355, 378

bilipschitz, 50, 218, 219, 225, 243, 295, 356

locally, 356

BLD, 347

427

Page 24: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

428 INDEX

boundarycusp, 315ridge, 316

bounded length distortion, 347bounded turning, 324broad, 342

canonical Schoenflies theorem, 331cap inequality, 121capacity

condenser, 161conformal, 152zero, 182

carrot, 341chain rule, 14chord-arc condition, 335chord-arc curve, 336chordal

diameter, 7distance, 7metric, 7

cigar, 339cluster set, 151cocompact, 381, 388coefficients of quasiconformality, 309

complement, 6complex dilatation, 82condenser, 161

capacity, 161extremal function, 184

cone, 214conformal

group, 23mapping, 19modulus, 80, 99capacity, 152

conformally Euclidean metrics, 37conical limit point, 407convergence group, 293convergence of kernels, 287coordinates

cylindrical, 212polar, 212spherical, 212

cross-ratiochordal, 28Euclidean, 28

cusp, 315

dense orbit, 394, 408diffeomorphism, 15dihedral wedge, 213dilatation, 11

ellipsoid, 210inner, 11outer, 11ring, 206

dilation, 20discrete group, 385

distortion function, 274

distributional derivative, 145

Efremovich–Tihomirova theorem, 393

elementary group, 404

elliptic, 404

Mobius transformation, 387

transformation, 47endcut, 336

equicontinuity, 53, 282

essentially nonsingular, 199

Euclidean group, 8

extremal

function, 184

mapping, 309

metric, 140

fellow traveller, 396

finitely connected, 260

along boundary, 260Fox-Artin sphere, 310

Frechet derivative, 12

free, 385

fundamental domain, 386

fundamental group, 385

general linear group, 8

generalized Jacobian, 223

geometrisation conjecture, 383

gradient, 12

Hadamard space, 293

Hausdorff

dimension, 85

distance, 137

outer measure, 85

holomorphic, 307

homogeneously totally bounded, 340

homothety, 20

horosphere, 49

hyperbolic

convex, 42geodesics, 42

line, 41

manifold, 384

metric, 39

segments, 42

volume, 388

hyperboloid model, 59

ideal boundary, 402

impression map, 337

inner chord-arc domain, 336

inner dilatation, 11, 81internal metrics, 335

inversion, 21

involution, 20

isodiametric inequality, 228

isometric sphere, 30

Page 25: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

INDEX 429

Jacobian determinant, 15

John domain , 339

Jordan domain, 260, 323, 324

Jordan-Brouwer, 331

kernel, 284, 288

Killing–Hopf theorem, 385

Kleinian group, 402

lattice, 415

Lebesgue differentiation theorem, 222

Lebesgue measure, 82

Lebesgue modification, 187

limit set, 403

linear dilatation, 74

linear measure, 225

Liouville’s theorem, 64, 72

LIP-embedding, 356

Lipschitz

domain, 254embedding, 356

local uniform convergence, 52

locally connected, 260

along boundary, 260

locally quasiconformally collared, 252

locally simply connected at ∞, 313

Loewner, 342

lower semicontinuity

distortion functions, 287

lower semicontinuous, 295

loxodromic, 404

loxodromic transformation, 47

Lusin property, 224

Mobius

group, 23

space, 6

transformation, 23

maximal dilatation, 81

maximal stretching, 7, 14

metric arc, 318

metric density, 37

minimal stretching, 7, 14

modulus, 152modulus of a curve family, 79

monotone, 186

Morse lemma, 396

nonelementary group, 404

normal

family, 53, 281, 283

limit point, 405

representation of a path, 93

operator norm, 7

orbit, 403

orbit space, 387

order, 387

orthogonal

group, 8

transformation, 8

oscillation, 149, 187

outer distortion, 79

outerdilatation, 11

parabolic, 404

parabolic transformation, 47

path, 87

piecewise linear, 163, 179, 295, 355

Poincare

extension, 33

metric, 39

point of density, 223

positive

definite, 9

semidefinite, 9

precompact, 296

prime end, 336

properly discontinuously, 385

quasi-isometry, 390

quasiball, 313, 316–318, 328, 334

quasiconformal, 77, 206

homogeneity, 322, 351

manifold, 389

reflection, 321

structure, 388

quasiconformally

collared, 252, 323

flat, 325

quasigeodesic, 396

quasihyperbolic metric, 39, 349, 392

quasisphere, 253, 308, 314

quasisymmetric, 271, 276, 339

weakly, 276

quotient space, 385

radial derivative, 156

radial extension, 323

radial limit point, 407

radial stretching, 211, 281

rank-one, 295

convex, 295

real-analytic, 202

reflection, 20

relative chordal distance, 266

removable set, 244

Rickman’s rug, 318, 321, 353

ridge, 316

Riemannian structure, 68

ring, 152

capacity, 152

Grotzsch, 154

modulus, 152

nondegenerate, 152

symmetrization of, 180

Teichmuller, 155

Page 26: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

430 INDEX

scalar curvature, 70Schoenflies theorem, 328sense-preserving, 15sense-reversing, 15similarity, 19simplex, 163Sobolev space, 145

special orthogonal group, 8sphere at infinity, 384spherical metric, 7spherical outer measure, 85spherical symmetrization, 167stabilizer, 384stable w.r.t. similarities, 296standard basis, 5standard position, 342starlike, 218stereographic projection, 6, 7, 23, 27, 59,

114subcurve, 87Sullivan’s theorem, 389symmetric derivative of a measure, 222symmetric transformation, 9symmetrization, 167

tangent hyperplane, 352topological

group, 56, 288isomorphism, 57

torsion, 387torsion free, 387totally disconnected, 182trajectory, 87translation, 20

uniformly approximable, 358

volume derivative, 223

weak derivative, 145weak divergence, 196weakly divergence-free, 196weakly quasisymmetric, 339Whitney decomposition, 368word metric, 393

Page 27: An Introduction to the Theory of Higher-Dimensional ...Higher-Dimensional Quasiconformal Mappings Frederick W. Gehring Gaven J. Martin Bruce P. Palka. Mathematical Surveys and Monographs

SURV/216

For additional information and updates on this book, visit

www.ams.org/bookpages/surv-216 www.ams.orgAMS on the Web

This book offers a modern, up-to-date introduction to quasi-conformal mappings from an explicitly geometric perspective, emphasizing both the extensive developments in mapping theory during the past few decades and the remarkable applications of geometric function theory to other fields, including dynamical systems, Kleinian groups, geometric topology, differential geometry, and geometric group theory. It is a careful and detailed introduction to the higher-dimensional theory of quasiconformal mappings from the geometric viewpoint, based primarily on the technique of the conformal modulus of a curve family. Notably, the final chapter describes the application of quasiconformal mapping theory to Mostow’s celebrated rigidity theorem in its original context with all the necessary background.

This book will be suitable as a textbook for graduate students and researchers inter-ested in beginning to work on mapping theory problems or learning the basics of the geometric approach to quasiconformal mappings. Only a basic background in multidi-mensional real analysis is assumed.

Phot

o cr

edit:

Geh

ring

Fam

ily A

rchi

ves