an introduction to microfluidics : lecture n°2

61
AN INTRODUCTION TO MICROFLUIDICS : Lecture n°2 Patrick TABELING, [email protected] ESPCI, MMN, 75231 Paris 0140795153

Upload: roddy

Post on 01-Feb-2016

71 views

Category:

Documents


0 download

DESCRIPTION

AN INTRODUCTION TO MICROFLUIDICS : Lecture n°2. Patrick TABELING, [email protected] ESPCI, MMN, 75231 Paris 0140795153. Outline of Lecture 1. 1 - History and prospectives of microfluidics 2 - Microsystems and macroscopic approach. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

AN INTRODUCTION TO MICROFLUIDICS :

Lecture n°2

Patrick TABELING, [email protected], MMN, 75231 Paris0140795153

Page 2: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

1 - History and prospectives of microfluidics2 - Microsystems and macroscopic approach.3 - The spectacular changes of the balances of forces aswe go to the small world.

Outline of Lecture 1

- The fluid mechanics of microfluidics - Digital microfluidics

Outline of Lecture 2

Page 3: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2
Page 4: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

∂ρ∂t

+divρu=0

Navier-Stokes equations

DuDt

=∂u∂t

+(u∇)u=−1ρ

∇P+νΔu

Page 5: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Reynolds numbers are small in microsystems

Re = Ul/ ~ l2

One thus may think in the framework of Stokes equations

Page 6: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Microhydrodynamics

0 =−∂p∂xi

+μ∂2ui∂xj∂xj

Stokes regime : inertial terms are neglected

Acceptable approximation in most case. Exceptions are Micro-heat pipes and drop dispensers

Page 7: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Linéarité : si u(x) et v(x) sont solution des équations de Stokes, alors toute combinaison

linéaire de u et v l 'est aussi. Les conditions aux limites seront également une combinaison

linéaire des conditions aux limites associées à et v.

Réversibilité : changer t en -t ne change pas les équations. De manière équivalente, changer u

en -u sur les frontières de l'écoulement inverse la vitesse partout dans l'écoulement.

Minimum de dissipation : l'écoulement donné par l'équation de Stokes minimise la

dissipation d'énergie cinétique par r apport aux champs cinématiquement admissibles,

compatibles avec les conditions aux limites.

Unicité : La solution des équations de Stokes est unique

Réciprocité : Deux solutions, associées à des conditions aux l imites différentes, sont reliées

par une équation intégrale.

Propriétés des écoulements à très petit nombre de Reynolds

Page 8: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Let us reverse U

-U

If it is a Stokes solution, arrows must be invertedeverywhere

Page 9: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

This solution cannot be Stokes

U

Page 10: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Because if we reverse U

-U

We obtain a non plausible streamline pattern

Page 11: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2
Page 12: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Experiment Performed byO Stern (2001)

Page 13: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Flows in cavities at low Reynolds numbers

Page 14: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Hele Shaw flows

Page 15: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Darcy law governs Hele Shaw cells

V=−b2

12μ∇p

In a Hele Shaw cell, flows are potential

Page 16: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

An important notion : the hydrodynamic resistance

ΔP=RQmR=

12νb2LS

~l−3

Increases as the system size decreases

Page 17: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Flows in rectangular ducts

Q=CGwb3

μ

3 10-2

4 10-2

5 10-2

6 10-2

7 10-2

8 10-2

9 10-2

0 2 4 6 8 10 12 14

χ

χ=wb

Page 18: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Another important notion : the hydrodynamic capacity

Qm=CdPdt

Example : Deformable tube :dP= dV/V

Now Qm=dV/dt

Thus Qm=mdP/dt and hence C=m

Volume VPressure P

Page 19: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

The bottleneck effect

uc(t)

up(x,t)

U

Page 20: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Question : Show that the time to reach a steady state is given byThe expression

τ=

3πlμD2LEb3w

Response : C=m/E=πD2L/4E et R=12l/b3wwith =RC

Page 21: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Expérience effectuée au MMN (2001)- Matthieu Cécillon

Experiment in a microchannel, 1.4 m deep

Page 22: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Beware of dead volumes

Because to reach a steady state, it takes a time equal to

≈ RC then ≈ mR

One must avoid dead volumes, bubbles, etc..

Page 23: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

A PDMS actuator, based on Multi-layer Soft Lithography

A. Unger, H-P. Chou, T. Thorsen, A . Scherer et S. R. Quake, Science, 288, 113, (2000).

Actuation channel

Glass slideWorking channelPDMS

Page 24: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

From the electrical point of view, pneumatic actuators arerepresented by a capacitance/non linear resistance system . They are not just diodes

Non linearresistances

J.Goulpeau, A. AjdariP. Tabeling,J. Appl.Phys.May 2005

R=f(VC)

VC

R

R

Page 25: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

QuickTime™ et undécompresseur Cinepak

sont requis pour visionner cette image.

No actuation : Large localized gradient

Actuation : Producing different Concentration gradients by changing the actuaction parameters

Page 26: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

The same, using mechanicalactuators

Mechanical actuators dedicated to the generation of concentration gradients

Passive concentration gradient generator (1)

(1)Jeon et al, Nature Techn., 20, 826 (2002))

Page 27: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Mixer - ExtractorMicrodoser

MixerGradient concentration generatorMicrodoser

ELECTRICAL REPRESENTATIONS OF ELEMENTARY ACTIVE SYSTEMS

Page 28: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Integrated actuators can be used to make progress in the realization of complex systems : an example is a chip for proteomics

Page 29: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

The boundary conditions for liquids

Page 30: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

u=±Ls∂u∂z

⎝ ⎜

⎠ ⎟

z

The slip length

u

Slip length (or extrapolation length)

Navier Boundary Conditions

Page 31: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Flow rate Q

P

Pressure drop with a slip length

ΔP=12μLQwb3

×1

1+6LS /b

Slip length LS

Depth b

Page 32: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Microfluidics and capillarity

Page 33: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Two or three things importantto know in microfluidics

Page 34: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Laplace’s law

R

V

S

Bubble

δE =−pδV+γδS

V=43πR3 ⇒ δV=4πR3δR

S=4πR2 ⇒ δS=8πRδR

At mechanical equilibrium : E=0

p=2γR

Page 35: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Capillary phenomena are important in microsystems

Pressure dropscaused by capillarityare ~ l-1 while those due toviscosity behavelike l0

Page 36: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

THE PATTERNS WHICH DEVELOP IN “ORDINARY” TWO PHASE FLOWS

…OFTEN PRODUCE COMPLEX MORPHOLOGIES; THIS IS DUETO HYDRODYNAMIC TURBULENCE

Page 37: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

IN MICROFLUIDIC SYSTEMS, WE OBTAIN MUCH SIMPLER MORPHOLOGIES : ESSENTIALLY DROPLETS

Laure MENETRIER, 2004

QuickTime™ et undécompresseur Vidéo

sont requis pour visionner cette image.

Page 38: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Droplets can be made using a “hydrodynamic focusing” geometry

Page 39: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

3 cases

Complete wetting

Partial wetting

Desorption

Wetting are exceedingly important in microsytems

Page 40: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Spreading parameter

S=γSG −γSL −γ

Page 41: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

When S is non homogeneous, droplets spontaneouslymove on the surfaces

A<B

Poor wetting (S <0)Good wetting (S ≈ 0)

Page 42: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

γSO−γSW=γcosθ

oil water

In liquid, one may easily change S by adding surfactants

Page 43: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

WaterOil with or without surfactant (Span 80)

Water

Wetting properties of the walls are important in microfluidic multiphase flows

R Dreyfus, P.Tabeling, H Willaime, Phys Rev Lett, 90, 144505 (2003))

Page 44: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

QuickTime™ et un décompresseurDV - PAL sont requis pour visualiser

cette image.

NICE DROPS CAN BE PRODUCEDIN MINIATURIZED SYSTEMS IN COMPLETE WETTING CONDITIONS

200

m

Page 45: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

When oil fully wets the surface

Water flow rate (L/min)

Oil flow rate(L/min) Stratified regimeIsolated water drops

Coalescence

Pears

Pearl necklace

Pear necklace

Large-pearl necklace

Page 46: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Oil

flo

w-r

ate

(L

/mn)

(R Dreyfus, P.Tabeling, H Willaime, Phys Rev Lett (2003))

Water flow-rate (L/mn)

WHEN THE FLUIDS PARTIALLY WET THE WALLS

Page 47: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Rayleigh instability is the most important instability to be aware of

d

EC =2πRLγ=2πVγR

Surface energy of a column

E =4πR'2Nγ=3γVR'

Surface energy of N spherical droplets

R'>3

2πR UNSTABLE

Page 48: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Applications :Digital microfluidics

- Liquid liquid flows are used in microsystems, in several circumstances.

Producing drops of one liquid into another liquidso as to generate emulsions, or perform screening

Producing bubbles in a microchannel flow so asto increase heat exchange, or simply because the liquid boils.

Page 49: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Digital microfluidics

1 - In air

2 - In a liquid

The drop moves in a liquidin a microchannel

The drop moves in air over a flat surface

Page 50: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Digital microfluidics is interesting for chemical analysis, protein cristallization, elaborating novel emulsions,…

Ismagilov et al(Chicago University)

Page 51: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

AN EXAMPLE OF AN INTERESTING PROBLEM : REDUCING THE DROP SIZE OF AN EMULSION BY USING DIGITAL MICROFLUIDICS TECHNOLOGY

Suppose we are willing to reduce the drop size of an emulsion

10m

Page 52: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

One possibility is to cut the drops one by onein a microfluidic system

Water drop

10m

U

u

L0

l =L0uU

Page 53: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

WHITE = WATER DROP, BLACK (IN THE CHANNEL) = HEXADECANE

DIFFERENT REGIMES, FOR INCREASING SIDE FLOWS

QuickTime™ et undécompresseur Vidéo

sont requis pour visionner cette image.

Page 54: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

QuickTime™ et undécompresseur

sont requis pour visionner cette image.

Page 55: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Lf

Finger

VS

We would like also to control the drop break-up

Page 56: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Lf (m)

VS

(m/s)

BREAKING

NONBREAKING

Curve suggested bythe theory (Navot, 1999)

To break or not to break

0 1 2 3 4 5 x102

Laure MENETRIER, 2004

Page 57: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

AN IMPORTANT PART OF DIGITAL MICROFLUIDICS IS BASED ON ELECTROWETTING

Side where the contact angleis smallerA<B

Électrode+V

B=A +1/2CV2

Page 58: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2
Page 59: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

A microfluidic network along which drops are driven

C.J.Kim (2001)

Page 60: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Digital microfluidic devices based on electrowetting

Page 61: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°2

Liquid-liquid flows in microsystems may be used to produce well controlled drops, emulsions,…

… provided the wetting properties of the exposed surfaces, with respect to the working fluids, are appropriately chosen.