amplitude modulation and synchronous detection

32
Electronics – 96032 Alessandro Spinelli Phone: (02 2399) 4001 [email protected] home.deib.polimi.it/spinelli Amplitude Modulation and Synchronous Detection

Upload: others

Post on 18-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Amplitude Modulation and Synchronous Detection

Electronics – 96032

Alessandro SpinelliPhone: (02 2399) [email protected] home.deib.polimi.it/spinelli

Amplitude Modulation and Synchronous Detection

Page 2: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

Slides are supplementary material and are NOT a

replacement for textbooks and/or lecture notes

Disclaimer 2

Page 3: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ It’s time to begin a discussion on the techniques for improvingS/N

β€’ Noise-reduction techniques obviously depend on the type of signal and of noise:

Purpose of the lesson 3

NoiseHF (White) LF (flicker)

Sign

al LF (constant) done this lessonHF (pulse) done done

Page 4: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ Amplitude modulation and demodulationβ€’ The weighting function

Outline 4

Page 5: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ If the signal is at DC level and buried in LF noise, HP or BP filters become useless

β€’ If we could move the signal spectrum to higher frequencies, we would improve 𝑆𝑆/𝑁𝑁

β€’ A high-Q BP filter could then be used to recover the signal

The problem 5

Page 6: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ The amplitude of a carrier wave 𝑐𝑐 𝑑𝑑 is modified by a modulatingsignal π‘₯π‘₯ 𝑑𝑑

β€’ Originally developed for telephone and radio communication

Amplitude modulation (AM) 6

π‘šπ‘š 𝑑𝑑 = π‘₯π‘₯ 𝑑𝑑 𝑐𝑐(𝑑𝑑)𝑀𝑀 𝑓𝑓 = 𝑋𝑋 𝑓𝑓 βˆ— 𝐢𝐢(𝑓𝑓)

𝑐𝑐 𝑑𝑑𝐢𝐢(𝑓𝑓)

π‘₯π‘₯ 𝑑𝑑𝑋𝑋(𝑓𝑓)

Page 7: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ We consider a sinusoidal carrier𝑐𝑐 𝑑𝑑 = 𝐴𝐴cos πœ”πœ”π‘π‘π‘‘π‘‘ + πœ™πœ™π‘π‘ ⇔

𝐢𝐢 𝑓𝑓 =𝐴𝐴2

π‘’π‘’π‘—π‘—πœ™πœ™π‘π‘π›Ώπ›Ώ 𝑓𝑓 βˆ’ 𝑓𝑓𝑐𝑐 + π‘’π‘’βˆ’π‘—π‘—πœ™πœ™π‘π‘π›Ώπ›Ώ 𝑓𝑓 + 𝑓𝑓𝑐𝑐‒ The modulated signal is then

π‘šπ‘š 𝑑𝑑 = π‘₯π‘₯ 𝑑𝑑 𝑐𝑐 𝑑𝑑 ⇔

𝑀𝑀 𝑓𝑓 = 𝑋𝑋 𝑓𝑓 βˆ— 𝐢𝐢 𝑓𝑓 =𝐴𝐴2

π‘’π‘’π‘—π‘—πœ™πœ™π‘π‘π‘‹π‘‹ 𝑓𝑓 βˆ’ 𝑓𝑓𝑐𝑐 + π‘’π‘’βˆ’π‘—π‘—πœ™πœ™π‘π‘π‘‹π‘‹ 𝑓𝑓 + 𝑓𝑓𝑐𝑐

Time and frequency domains 7

Page 8: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

Waveforms and spectra 8

From [1]

𝑓𝑓

𝑓𝑓

𝑓𝑓

π‘“π‘“π‘π‘βˆ’π‘“π‘“π‘π‘

π‘“π‘“π‘π‘βˆ’π‘“π‘“π‘π‘

|𝑀𝑀 𝑓𝑓 |

|𝑋𝑋 𝑓𝑓 |

|𝐢𝐢 𝑓𝑓 |

Page 9: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

𝑑𝑑 𝑑𝑑 = π‘šπ‘š 𝑑𝑑 𝑐𝑐 𝑑𝑑 = π‘₯π‘₯ 𝑑𝑑 𝑐𝑐2 𝑑𝑑 = π‘₯π‘₯ 𝑑𝑑 𝐴𝐴2cos2 πœ”πœ”π‘π‘π‘‘π‘‘ + πœ™πœ™π‘π‘

=𝐴𝐴2

2π‘₯π‘₯ 𝑑𝑑 1 + cos 2πœ”πœ”π‘π‘π‘‘π‘‘ + 2πœ™πœ™π‘π‘

𝐷𝐷 𝑓𝑓 =𝐴𝐴2

2𝑋𝑋 𝑓𝑓 +

𝐴𝐴2

4𝑒𝑒𝑗𝑗2πœ™πœ™π‘π‘π‘‹π‘‹ 𝑓𝑓 βˆ’ 2𝑓𝑓𝑐𝑐 + π‘’π‘’βˆ’π‘—π‘—2πœ™πœ™π‘π‘π‘‹π‘‹ 𝑓𝑓 + 2𝑓𝑓𝑐𝑐

Demodulation 9

𝑑𝑑 𝑑𝑑 = π‘šπ‘š 𝑑𝑑 𝑐𝑐(𝑑𝑑)

𝐷𝐷 𝑓𝑓 = 𝑀𝑀 𝑓𝑓 βˆ— 𝐢𝐢(𝑓𝑓)

𝑐𝑐 𝑑𝑑𝐢𝐢(𝑓𝑓)

π‘šπ‘š 𝑑𝑑𝑀𝑀(𝑓𝑓) LPF 𝑦𝑦 𝑑𝑑

π‘Œπ‘Œ(𝑓𝑓)

π‘Œπ‘Œ 𝑓𝑓

Page 10: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

Frequency-domain view 10

𝑓𝑓

𝑓𝑓

𝑓𝑓

2π‘“π‘“π‘π‘βˆ’2𝑓𝑓𝑐𝑐

π‘“π‘“π‘π‘βˆ’π‘“π‘“π‘π‘

|𝑋𝑋 𝑓𝑓 |

|𝑀𝑀 𝑓𝑓 |

|𝐷𝐷 𝑓𝑓 ||π‘Œπ‘Œ 𝑓𝑓 |

𝐴𝐴

𝐴𝐴/2𝐴𝐴/2

𝐴𝐴2/2

𝐴𝐴2/4𝐴𝐴2/4

Page 11: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ We consider demodulating with𝑀𝑀𝑅𝑅 𝑑𝑑 = 𝐡𝐡cos (πœ”πœ”π‘π‘+Ξ”πœ”πœ”)𝑑𝑑 + πœ™πœ™π‘π‘ + Ξ”πœ™πœ™

β€’ The low-frequency term (small Ξ”πœ”πœ”) is𝑦𝑦 𝑑𝑑 = 𝐴𝐴𝐡𝐡π‘₯π‘₯ 𝑑𝑑 cos(Ξ”πœ”πœ”π‘‘π‘‘ + Ξ”πœ™πœ™)/2

Phase error β‡’ signal reduction Frequency error β‡’ oscillating behavior

β€’ The reference must be locked in frequency and phase to the carrier β‡’ synchronous detection

β€’ The demodulator is also called phase-sensitive detector (PSD)

Frequency and phase errors 11

Page 12: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ Amplitude modulation and demodulationβ€’ The weighting function

Outline 12

Page 13: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

𝑦𝑦 𝑑𝑑 = �𝑑𝑑 𝜏𝜏 𝑀𝑀𝐿𝐿𝐿𝐿 𝑑𝑑, 𝜏𝜏 π‘‘π‘‘πœπœ = οΏ½π‘₯π‘₯ 𝜏𝜏 𝑀𝑀𝑅𝑅 𝜏𝜏 𝑀𝑀𝐿𝐿𝐿𝐿 𝑑𝑑, 𝜏𝜏 π‘‘π‘‘πœπœ

𝑀𝑀 𝑑𝑑, 𝜏𝜏 = 𝑀𝑀𝑅𝑅 𝜏𝜏 𝑀𝑀𝐿𝐿𝐿𝐿 𝑑𝑑, πœπœπ‘Šπ‘Š 𝑑𝑑, 𝑓𝑓 = π‘Šπ‘Šπ‘…π‘… 𝑓𝑓 βˆ—π‘Šπ‘ŠπΏπΏπΏπΏ(𝑑𝑑, 𝑓𝑓)

PSD weighting function 13

𝑑𝑑 𝑑𝑑

𝐷𝐷 𝑓𝑓

𝑀𝑀𝑅𝑅 π‘‘π‘‘π‘Šπ‘Šπ‘…π‘…(𝑓𝑓)

π‘₯π‘₯ 𝑑𝑑𝑋𝑋(𝑓𝑓) LPF

𝑦𝑦 𝑑𝑑

π‘Œπ‘Œ(𝑓𝑓)

Page 14: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

Time/frequency domains 14

𝜏𝜏

𝜏𝜏

πœπœπ‘‘π‘‘

𝑑𝑑

𝑑𝑑

𝑀𝑀𝑅𝑅 𝜏𝜏

𝑀𝑀𝐿𝐿𝐿𝐿 𝑑𝑑, 𝜏𝜏

𝑀𝑀 𝑑𝑑, 𝜏𝜏

𝑓𝑓

𝑓𝑓

𝑓𝑓

|π‘Šπ‘Šπ‘…π‘… 𝑓𝑓 |

|π‘Šπ‘ŠπΏπΏπΏπΏ 𝑓𝑓 |

|π‘Šπ‘Š 𝑓𝑓 |

Page 15: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ The filter is time-variant even if LPF is LTI β‡’ remember that

𝑦𝑦 𝑑𝑑 = οΏ½π‘₯π‘₯ 𝜏𝜏 𝑀𝑀 𝑑𝑑, 𝜏𝜏 π‘‘π‘‘πœπœ = �𝑋𝑋 𝑓𝑓 π‘Šπ‘Šβˆ— 𝑑𝑑, 𝑓𝑓 𝑑𝑑𝑓𝑓

β‡’ π‘Œπ‘Œ(𝑓𝑓) is NOT equal to 𝑋𝑋 𝑓𝑓 π‘Šπ‘Š(𝑑𝑑, 𝑓𝑓)β€’ For the particular case of a PSD with LTI LPF, we have instead

π‘Œπ‘Œ 𝑓𝑓 = π‘Šπ‘ŠπΏπΏπΏπΏ 𝑓𝑓 (𝑋𝑋 𝑓𝑓 βˆ—π‘Šπ‘Šπ‘…π‘… 𝑓𝑓 )β€’ If 𝑀𝑀𝑅𝑅 𝑑𝑑 is a periodic signal, |π‘Šπ‘Š 𝑓𝑓 | represents the frequency

components that give contributions in the baseband

Notes 15

Page 16: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

Weghting function interpretation 16

𝑓𝑓

|π‘Šπ‘Š 𝑓𝑓 |

𝑓𝑓

|𝑋𝑋 𝑓𝑓 |

𝑓𝑓

|π‘Œπ‘Œ 𝑓𝑓 |

𝑓𝑓

|π‘Šπ‘Š 𝑓𝑓 |

𝑓𝑓

|𝑋𝑋 𝑓𝑓 |

𝑓𝑓

|π‘Œπ‘Œ 𝑓𝑓 |

Page 17: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ Let’s take a simple case of constant signal β‡’ the input of the PSD is then π‘₯π‘₯ 𝑑𝑑 = 𝐴𝐴cos πœ”πœ”π‘π‘π‘‘π‘‘

β€’ If LPF is an LTI integrator𝑀𝑀𝐿𝐿𝐿𝐿 𝑑𝑑, 𝜏𝜏 = 𝐾𝐾u 𝑑𝑑 βˆ’ 𝜏𝜏 β‡’ 𝑀𝑀 𝑑𝑑, 𝜏𝜏 ∝ π‘₯π‘₯ 𝜏𝜏

β‡’ PSD is the optimum filter!β€’ In the general case, PSD is quasi-optimum, but more flexible Reference frequency set externally BW of LPF can accomodate different signals

PSD as optimum filter 17

Page 18: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ For the case of the LTI integrator we have

𝑦𝑦 𝑑𝑑 = πΎπΎοΏ½βˆ’βˆž

𝑑𝑑π‘₯π‘₯ 𝜏𝜏 𝑀𝑀𝑅𝑅 𝜏𝜏 π‘‘π‘‘πœπœ β‰ˆ 𝐾𝐾π‘₯π‘₯𝑀𝑀𝑅𝑅(0)

β€’ 𝑦𝑦 𝑑𝑑 is an estimate of the cross-correlation between input and referencesignals β‡’ maximum output is achieved when π‘₯π‘₯ 𝑑𝑑 has the same frequencyand phase as 𝑀𝑀𝑅𝑅 𝑑𝑑

β€’ For, say, a simple RC filter we have

𝑦𝑦 𝑑𝑑 =1π‘‡π‘‡πΉπΉοΏ½βˆ’βˆž

𝑑𝑑π‘₯π‘₯ 𝜏𝜏 𝑀𝑀𝑅𝑅 𝜏𝜏 π‘’π‘’βˆ’

π‘‘π‘‘βˆ’πœπœπ‘‡π‘‡πΉπΉ π‘‘π‘‘πœπœ

which is again 𝐾𝐾π‘₯π‘₯𝑀𝑀𝑅𝑅(0) estimated over a time 𝑇𝑇𝐹𝐹

Another look at the weighting function 18

Page 19: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ In the frequency domain we have

𝑋𝑋 𝑓𝑓 βˆ—π‘Šπ‘Šπ‘…π‘… 𝑓𝑓 = �𝑋𝑋(𝜈𝜈)π‘Šπ‘Šπ‘…π‘… 𝑓𝑓 βˆ’ 𝜈𝜈 π‘‘π‘‘πœˆπœˆ

β€’ The output LPF selects the components around 𝑓𝑓 = 0, i.e.

π‘Œπ‘Œ 𝑓𝑓 β‰ˆ �𝑋𝑋 𝜈𝜈 π‘Šπ‘Šπ‘…π‘… βˆ’πœˆπœˆ π‘‘π‘‘πœˆπœˆ = �𝑋𝑋 𝜈𝜈 π‘Šπ‘Šπ‘…π‘…βˆ— 𝜈𝜈 π‘‘π‘‘πœˆπœˆ

We find again the correlation behavior!

Frequency domain 19

Page 20: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

The output noise of the PSD is non-stationary (actuallycyclostationary) even if the input noise is

Output noise 20

𝑅𝑅𝑑𝑑𝑑𝑑 𝑑𝑑, 𝜏𝜏

𝑆𝑆𝑑𝑑 𝑑𝑑,𝑓𝑓

𝑀𝑀𝑅𝑅 π‘‘π‘‘π‘Šπ‘Šπ‘…π‘…(𝑓𝑓)

𝑅𝑅π‘₯π‘₯π‘₯π‘₯ πœπœπ‘†π‘†π‘₯π‘₯(𝑓𝑓) LPF

𝑅𝑅𝑦𝑦𝑦𝑦 𝑑𝑑, 𝜏𝜏

𝑆𝑆𝑦𝑦(𝑑𝑑,𝑓𝑓)

From [2]

Page 21: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

𝑅𝑅𝑑𝑑𝑑𝑑 𝑑𝑑, 𝑑𝑑 + 𝜏𝜏 = 𝑛𝑛𝑑𝑑 𝑑𝑑 𝑛𝑛𝑑𝑑(𝑑𝑑 + 𝜏𝜏) = 𝑛𝑛π‘₯π‘₯ 𝑑𝑑 𝑛𝑛π‘₯π‘₯ 𝑑𝑑 + 𝜏𝜏 𝑀𝑀𝑅𝑅 𝑑𝑑 𝑀𝑀𝑅𝑅 𝑑𝑑 + 𝜏𝜏= 𝑅𝑅π‘₯π‘₯π‘₯π‘₯(𝜏𝜏)𝑀𝑀𝑅𝑅 𝑑𝑑 𝑀𝑀𝑅𝑅 𝑑𝑑 + 𝜏𝜏

β€’ In particular, 𝑛𝑛𝑑𝑑2(𝑑𝑑) = 𝑛𝑛π‘₯π‘₯2𝑀𝑀𝑅𝑅2(𝑑𝑑)β€’ Since the output filter averages over many periods of 𝑀𝑀𝑅𝑅, we consider

the time average𝑅𝑅𝑑𝑑𝑑𝑑 𝑑𝑑, 𝑑𝑑 + 𝜏𝜏 = 𝑅𝑅π‘₯π‘₯π‘₯π‘₯(𝜏𝜏) 𝑀𝑀𝑅𝑅 𝑑𝑑 𝑀𝑀𝑅𝑅 𝑑𝑑 + 𝜏𝜏

= 𝑅𝑅π‘₯π‘₯π‘₯π‘₯(𝜏𝜏) limπ‘‡π‘‡β†’βˆž

12𝑇𝑇

οΏ½βˆ’π‘‡π‘‡

𝑇𝑇𝑀𝑀𝑅𝑅 𝑑𝑑 𝑀𝑀𝑅𝑅 𝑑𝑑 + 𝜏𝜏 𝑑𝑑𝑑𝑑 = 𝑅𝑅π‘₯π‘₯π‘₯π‘₯ 𝜏𝜏 𝐾𝐾𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅(𝜏𝜏)

Output noise autocorrelation 21

Page 22: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

𝑀𝑀𝑅𝑅 𝑑𝑑 = 𝐡𝐡 cosπœ”πœ”π‘π‘π‘‘π‘‘

𝐾𝐾𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅 𝜏𝜏 = limπ‘‡π‘‡β†’βˆž

𝐡𝐡2

2π‘‡π‘‡οΏ½βˆ’π‘‡π‘‡

𝑇𝑇cosπœ”πœ”π‘π‘π‘‘π‘‘ cosπœ”πœ”π‘π‘(𝑑𝑑 + 𝜏𝜏)𝑑𝑑𝑑𝑑

= limπ‘‡π‘‡β†’βˆž

𝐡𝐡2

2π‘‡π‘‡οΏ½βˆ’π‘‡π‘‡

𝑇𝑇cosπœ”πœ”π‘π‘π‘‘π‘‘ (cosπœ”πœ”π‘π‘π‘‘π‘‘ cosπœ”πœ”π‘π‘πœπœ βˆ’ sinπœ”πœ”π‘π‘π‘‘π‘‘ sinπœ”πœ”π‘π‘πœπœ)𝑑𝑑𝑑𝑑 =

𝐡𝐡2 cosπœ”πœ”π‘π‘πœπœ limπ‘‡π‘‡β†’βˆž

12𝑇𝑇

οΏ½βˆ’π‘‡π‘‡

𝑇𝑇cos2 πœ”πœ”π‘π‘π‘‘π‘‘ 𝑑𝑑𝑑𝑑 =

𝐡𝐡2

2cosπœ”πœ”π‘π‘πœπœ

Reference signal time correlation 22

Page 23: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ In the frequency domain we have (average spectral density!)𝑆𝑆𝑑𝑑 𝑓𝑓 = 𝑆𝑆π‘₯π‘₯ 𝑓𝑓 βˆ— 𝑆𝑆𝑀𝑀𝑅𝑅(𝑓𝑓)

β€’ 𝑀𝑀𝑅𝑅 is a power signal β‡’ we consider the truncated signal 𝑀𝑀𝑅𝑅𝑇𝑇, whose transform is

π‘Šπ‘Šπ‘…π‘…π‘‡π‘‡ 𝑓𝑓 =

𝐡𝐡2 𝛿𝛿 𝑓𝑓 βˆ’ 𝑓𝑓𝑐𝑐 + 𝛿𝛿(𝑓𝑓 + 𝑓𝑓𝑐𝑐) βˆ— 2𝑇𝑇sinc 2πœ‹πœ‹π‘“π‘“π‘‡π‘‡

=𝐡𝐡2 2𝑇𝑇 sinc 2πœ‹πœ‹ 𝑓𝑓 βˆ’ 𝑓𝑓𝑐𝑐 𝑇𝑇 + sinc 2πœ‹πœ‹ 𝑓𝑓 + 𝑓𝑓𝑐𝑐 𝑇𝑇

π‘Šπ‘Šπ‘…π‘…π‘‡π‘‡ 𝑓𝑓 2 =

𝐡𝐡2

4 2𝑇𝑇 2 sinc2 2πœ‹πœ‹ 𝑓𝑓 βˆ’ 𝑓𝑓𝑐𝑐 𝑇𝑇 + sinc2 2πœ‹πœ‹ 𝑓𝑓 + 𝑓𝑓𝑐𝑐 𝑇𝑇

𝑆𝑆𝑀𝑀𝑅𝑅 𝑓𝑓 = limπ‘‡π‘‡β†’βˆž

12𝑇𝑇 π‘Šπ‘Šπ‘…π‘…

𝑇𝑇 𝑓𝑓 2 =𝐡𝐡2

4 𝛿𝛿 𝑓𝑓 βˆ’ 𝑓𝑓𝑐𝑐 + 𝛿𝛿(𝑓𝑓 + 𝑓𝑓𝑐𝑐)

which is obviously the Fourier transform of 𝐡𝐡2

2cosπœ”πœ”π‘π‘πœπœ

Frequency domain 23

Page 24: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ The reference signal is

𝑀𝑀𝑅𝑅 𝑑𝑑 = 𝐡𝐡cos πœ”πœ”π‘π‘π‘‘π‘‘ ⇔ π‘Šπ‘Šπ‘…π‘… 𝑓𝑓 =𝐡𝐡2𝛿𝛿 𝑓𝑓 βˆ’ 𝑓𝑓𝑐𝑐 + 𝛿𝛿 𝑓𝑓 + 𝑓𝑓𝑐𝑐

β€’ Its time correlation is

𝐾𝐾𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅 𝜏𝜏 =𝐡𝐡2

2cos πœ”πœ”π‘π‘πœπœ ⇔ 𝑆𝑆𝑀𝑀𝑅𝑅 𝑓𝑓 =

𝐡𝐡2

4𝛿𝛿 𝑓𝑓 βˆ’ 𝑓𝑓𝑐𝑐 + 𝛿𝛿 𝑓𝑓 + 𝑓𝑓𝑐𝑐

β€’ The output noise becomes

𝑅𝑅𝑑𝑑𝑑𝑑 𝜏𝜏 = 𝑅𝑅π‘₯π‘₯π‘₯π‘₯ 𝜏𝜏𝐡𝐡2

2cos πœ”πœ”π‘π‘πœπœ ⇔ 𝑆𝑆𝑑𝑑 𝑓𝑓 =

𝐡𝐡2

4𝑆𝑆π‘₯π‘₯ 𝑓𝑓 βˆ’ 𝑓𝑓𝑐𝑐 + 𝑆𝑆π‘₯π‘₯ 𝑓𝑓 + 𝑓𝑓𝑐𝑐

Wrap up 24

Page 25: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

Ex: flicker noise spectra 25

𝑓𝑓

π‘“π‘“π‘π‘βˆ’π‘“π‘“π‘π‘

𝑆𝑆𝑑𝑑 𝑓𝑓

𝑓𝑓

𝑆𝑆π‘₯π‘₯ 𝑓𝑓

𝐡𝐡2

4 𝑆𝑆π‘₯π‘₯ 𝑓𝑓 βˆ’ 𝑓𝑓𝑐𝑐𝐡𝐡2

4 𝑆𝑆π‘₯π‘₯ 𝑓𝑓 + 𝑓𝑓𝑐𝑐

π‘Šπ‘ŠπΏπΏπΏπΏ 𝑑𝑑, 𝑓𝑓 2

Page 26: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

These are the input noise components that will contribute to the output noise β‡’ remember the meaning of the weighting function!

Output noise 26

π‘“π‘“π‘π‘βˆ’π‘“π‘“π‘π‘

𝑓𝑓

𝑆𝑆π‘₯π‘₯ 𝑓𝑓 π‘Šπ‘Š 𝑓𝑓 2

Page 27: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ We consider the equivalent noise bandwidth of π‘Šπ‘ŠπΏπΏπΏπΏ 𝑑𝑑, 𝑓𝑓 , π΅π΅π‘Šπ‘Šπ‘›π‘›

β€’ We approximate 𝑆𝑆𝑑𝑑 𝑓𝑓 with 𝑆𝑆𝑑𝑑 0 over π΅π΅π‘Šπ‘Šπ‘›π‘› (narrow-band output filter)

β€’ The output mean square noise is then

𝑛𝑛𝑦𝑦2 = �𝑆𝑆𝑑𝑑 𝑓𝑓 π‘Šπ‘ŠπΏπΏπΏπΏ 𝑑𝑑, 𝑓𝑓 2𝑑𝑑𝑓𝑓 β‰ˆ 𝑆𝑆𝑑𝑑 0 2π΅π΅π‘Šπ‘Šπ‘›π‘›

= 2π΅π΅π‘Šπ‘Šπ‘›π‘›π΅π΅2

4𝑆𝑆π‘₯π‘₯ βˆ’π‘“π‘“π‘π‘ + 𝑆𝑆π‘₯π‘₯ 𝑓𝑓𝑐𝑐 = 𝐡𝐡2π΅π΅π‘Šπ‘Šπ‘›π‘›π‘†π‘†π‘₯π‘₯ 𝑓𝑓𝑐𝑐

Output rms noise 27

Page 28: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ We consider a constant (modulated) signalπ‘₯π‘₯ 𝑑𝑑 = 𝐴𝐴cos πœ”πœ”π‘π‘π‘‘π‘‘

β€’ Output signal and noise are

𝑦𝑦 𝑑𝑑 =𝐴𝐴𝐡𝐡2

𝑛𝑛𝑦𝑦2 = 𝐡𝐡2π΅π΅π‘Šπ‘Šπ‘›π‘›π‘†π‘†π‘₯π‘₯ 𝑓𝑓𝑐𝑐𝑆𝑆𝑁𝑁

=𝐴𝐴

4𝑆𝑆π‘₯π‘₯ 𝑓𝑓𝑐𝑐 π΅π΅π‘Šπ‘Šπ‘›π‘›

𝑺𝑺/𝑡𝑡 ratio 28

(no phase errors)

Page 29: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

β€’ If only LPF were used, 𝑆𝑆/𝑁𝑁 would be𝑆𝑆𝑁𝑁

=𝐴𝐴

2𝑆𝑆π‘₯π‘₯ 0 π΅π΅π‘Šπ‘Šπ‘›π‘›

β€’ Synchronous detection is useful only if 𝑆𝑆π‘₯π‘₯ 0 ≫ 𝑆𝑆π‘₯π‘₯ 𝑓𝑓𝑐𝑐‒ The modulation stage must be inserted before the relevant LF

noise sources (usually the amplifiers)

Remarks 29

Page 30: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

Wheatstone bridge with LIA 30

Vo

R

R R(1+x)

R

LIA

𝑉𝑉sin(πœ”πœ”π‘π‘π‘‘π‘‘)

Page 31: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

Low-light measurement with LIA 31

From [3]

Page 32: Amplitude Modulation and Synchronous Detection

Alessandro Spinelli – Electronics 96032

1. http://cnx.org/content/m45974/latest/2. http://home.deib.polimi.it/cova/elet/lezioni/SSN08c_Filters-

BPF3.pdf3. http://en.wikipedia.org/wiki/Lock-in_amplifier

References 32