w el c o m e t o a c o m e t 2 0 17 - cem

Post on 28-May-2022

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1 C O M E T 2 0 1 7

C O M E T 2 0 1 7 W E L C O M E T O A

T E C H N I C A L P A P E R P R E S E N T A T I O N

2 C O M E T 2 0 1 7

B y : J O S H C O N T R E R A S a n d L I S A M A R T I N

“ DISTRIBUTED GEN ERATION : IN TEGRATIN G

UTILITY- SCALE BATTERY STORAGE.”

3 C O M E T 2 0 1 7

J O S H C O N T R E R A S S Y S T E M E N G I N E E R I N G

A U S T I N E N E R G Y

A B O U T T H E P R E S E N T E R

Josh Contreras is a Power System Engineer Senior at Austin Energy,

the City of Austin’s municipally-owned utility.

Josh currently works in the System Engineering workgroup that

supports integrating Distributed Generation into the AE system, and

previously worked in Transmission Relay for seven years. Josh is a

registered Professional Engineer in the State of Texas.

BRIEF B IO

4 C O M E T 2 0 1 7

L I S A M A R T I N D E R I N T E G R A T I O N

A U S T I N E N E R G Y

A B O U T T H E P R E S E N T E R

Lisa Martin is a Program Manager of Advanced Technologies at

Austin Energy. Her focus is in the field of Distributed Energy

Resource (DER) Integration.

Lisa serves as the project manager for Austin SHINES, a federal and

state-funded project. Austin SHINES establishes an open standards-

based DER management platform to integrate and optimize DER at

several levels along the utility value chain. Lisa is a registered

Professional Engineer in the State of Texas.

BRIEF B IO

5 C O M E T 2 0 1 7

A BSTRA CT SUM M A RY

O V E R V I E W &

S o l a r + S t o r a g e , M i c r o g r i d , D E R M S a n d S t a c k e d

Va l u e s a r e b u z z w o r d s t h a t c o n t i n u e t o g a i n i n

p o p u l a r i t y a s t h e u t i l i t y i n d u s t r y c o n t i n u e s t o

d r i v e t o w a r d b u i l d i n g a S m a r t G r i d . D i s t r i b u t e d

E n e r g y R e s o u r c e s o f f e r m a n y p r o m i s i n g b e n e f i t s

t o t h e u t i l i t y a n d t o t h e c u s t o m e r , b u t i n t e g r a t i n g

D E R i s o f t e n m o r e c h a l l e n g i n g a n d c o m p l e x t h a n

o n e m i g h t r e a l i z e .

T h i s s e m i n a r p r o v i d e s a d e e p - d i v e i n t o o n e

u t i l i t y ’ s j o u r n e y f o r i n t e g r a t i n g u t i l i t y - s c a l e

e n e r g y s t o r a g e i n t o i t s d i s t r i b u t i o n s y s t e m .

L E A R N M O R E

C r e d i t : D i s t r i b u T e c h 2 0 18

6 C O M E T 2 0 1 7

I N TEGRA TI N G UTI LI TY-

SCA LE BA TTERY STORA GE

D I S T R I B U T E D G E N E R A T I O N

What is causing the industry to think

about deploying more and more

distributed energy resources?

S T R A T E G I C D R I V E R S

The very basics, just to ensure everyone

has a foundation

B A T T E R Y B A S I C S

Proper set-up (resources and tools) are

critical to successful operations and

maintenance

C O N T R O L S & M O N I T O R I N G

Design considerations and constraints,

planning and analysis … critical to

success of the project

I N T E R C O N N E C T I O N A N D P L A N N I N G

Field work, testing, troubleshooting, and

commissioning lead to an operational

project

I N S T A L L A T I O N

Lessons learned, workgroups involved,

Q&A

C O N C L U S I O N S

7 C O M E T 2 0 1 7

STRATEGIC DRIVERS

8 C O M E T 2 0 1 7

STRA TEGIC D RIVERS E N E R G Y S T O R A G E

Regulatory Mandate

Transmission/Distribution Deferral

Market Participation

Reliability Benefits

Renewables Integration

Available Capacity

U T I LI T Y- B A S E D Bill Offsets

Back-Up Power

Power Factor Support

Behind-the-Meter Control

Sustainability Leadership

C U S T O M E R - B A S E D

Th e b u s i n e ss c a se f o r e n e r g y s t o r a g e i s r e a l i z e d w h e n b o t h c u s t o m e r a n d u t i l i t y o b t a i n v a l u e

9 C O M E T 2 0 1 7

A USTIN EN ERGY A B O U T

M I S S I O N : T O S A F E LY D E L I V E R C L E A N , A F F O R D A B L E , R E L I A B L E E N E R G Y A N D

E X C E L L E N T C U S T O M E R S E R V I C E

P U B L I C P O W E R 8th largest community-owned electric utility

Reports to the City Manager who execute the policy and

direction of the City Council

1700+ employees; Annual budget $1.5B

C O M P A C T , D E N S E S YS T E M 437 square miles of service area covering City of Austin and

beyond

480,000+ meters (65,000+ C&I)

V E R T I C A L L Y- I N T E G R A T E D • Vertically-integrated (NOIE) in a deregulated, energy only

market (ERCOT)

• System peak load 2755 MW (summer), 2377 MW (winter)

10 C O M E T 2 0 1 7

STRA TEGIC D IRECTIO N A U S T I N E N E R G Y

M I S S I O N To safely deliver clean, affordable, reliable energy and excellent

customer service

V I S I O N Drive customer value in energy services with innovative

technology and environmental leadership

C U S T O M E R D R I V E N . C O M M U N I T Y F O C U S E D .

A u s t i n – T h e n a n d N o w

11 C O M E T 2 0 1 7

RESO URCE GEN ERA TIO N PLA N

REN EW A B LE EN ERGY

65% renewable energy

by 2027

EN ERGY EFFI C I EN CY a n d

D EM A N D RESP O N SE

900 MW of savings from

energy efficiency and

demand response

by 2025

SO LA R a n d STO RA GE

950 MW solar (200 MW

local and 100 MW

customer-sited)

10 MW electrical storage

30 MW thermal storage

by 2025

GO I N G FO RW A RD

Net-Zero Community-Wide

Green House Gases

by 2050

S u b j e c t t o A f f o r d a b i l i t y G o a l s

12 C O M E T 2 0 1 7

13 C O M E T 2 0 1 7

BY TH E N UM BERS L O C A L S O L A R

14 C O M E T 2 0 1 7

STRA TEGIC GO A LS A U S T I N E N E R G Y

F i n a n c i a l H e a l t h B u s i n e s s

E x c e l l e n c e E m p l o y e e

E n g a g e m e n t

E n v i r o n m e n t C u s t o m e r

C o l l a b o r a t i o n G r i d

M o d e r n i z a t i o n

15 C O M E T 2 0 1 7

ROOTED IN CUSTOM ER SA TISFA CTION A N D RELIA BILITY IN DEX M ETRICS

G R I D M O D E R N I Z A T I O N

AE Strategic Goals

Grid Modernization

Advanced Metering Infrastructure

Grid Automation

Distributed Energy Resource Integration

Asset Management

16 C O M E T 2 0 1 7

ST R A T EGY F U N D A M EN T A L S

Policy/ Stakeholder Inclusion

Customer and Application Driven

Leverage Funding Opportunities

Build on Project and Industry Learnings/ Share Openly

Open Standards/ Interoperability/ Scalability

Diversification of Application, Architecture, Partners

Stacking the Values

17 C O M E T 2 0 1 7

The U.S. Department of Energy initiated a funding

opportunity for projects that would work to dramatically

increase solar-generated electricity that can be

dispatched at any time – day or night – to meet

consumer electricity needs while ensuring the reliability

of the nation’s electricity grid.

This opportunity is known as SHINES.

Austin Energy is a proud recipient of a SHINES award

for $4.3 million. Along with several project partners, AE

is in the process of implementing its Austin SHINES

project.

S U S T A I N A B L E A N D H O L I S T I C I N T E G R A T I O N O F E N E R G Y

S T O R A G E A N D S O L A R P V

18 C O M E T 2 0 1 7

DER Management System

Utility Scale Energy Storage + PV

Commercial Energy Storage + PV

Residential Energy Storage + PV

19 C O M E T 2 0 1 7

U T I L I T Y S C A L E

2.5 MW Community Solar Farm

1.5 MW / 3 MWh Li-Ion Battery Storage

1.5 MW / 2.5 MWh Li-Ion Battery Storage

C O M M E R C I A L S C A L E

Aggregated storage installations at four sites:

Two 18 kW / 36 kWh Li-Ion Battery Storage installations

Two 72 kW / 144 kWh Li-Ion Battery Storage installations

All sites have existing solar (300+ kW)

R E S I D E N T I A L S C A L E

Aggregated storage installations at six homes (10 kWh each)

Each with existing rooftop solar

Utility-Controlled Solar via Smart Inverters at twelve homes

Autonomously Controlled Smart Inverters at six homes

D E R M A N A G E M E N T S Y S T E M

Fleet-wide controller at utility control center and energy market desk

Circuit manager for certain applications like voltage control

Site-level controller for grid-scale installations

Inputs include grid data, market data and forecasts

20 C O M E T 2 0 1 7

21 C O M E T 2 0 1 7

D E P L O YM E N T U N D E R W A Y

4 5 m o n t h p r o j e c t

$ 11. 5 m i l l i o n

22 C O M E T 2 0 1 7

BATTERY BASICS

C o u r t e s y o f S n o h o m i s h P U D

23 C O M E T 2 0 1 7

Energy can be neither created

nor destroyed

However, energy can change

forms, and energy can flow from

one place to another

The total energy in an isolated

system does not change.

Ein = Eout + Lossesheat

C O N S E R VA TIO N O F E N E R G Y

F I R S T L A W O F T H E R M O D Y N A M I C S

1 Joule = Energy applied by a

force of one newton through a

distance of one meter

1 Joule [J] = 1 watt-second

1 kWh = 3,600,000 Joules

1 AA battery (alkaline) = 12,960 J

KB ESS = 833,334 AA batteries

E N E R G Y M E A S U R E M E N T

24 C O M E T 2 0 1 7

Fast e st -g r o w i n g t y p e o f e n e r g y st o r ag e d u e t o sc a l ab i l i t y an d f l e x i b i l i t y

B A T T E R Y E N E R G Y S T O R A G E

Best for standby power because batteries degrade through multiple charge-discharge cycles

L E A D A C I D

Better at charge-discharge than lead-acid, but batteries degrade

N I - C A D

New technology, great for long-duration applications with frequent charge-discharge, about 70% efficient

V A N A D I U M F L O W

More expensive, but good for many charge-discharge cycles and efficient. Best for short-duration applications

L I T H I U M - I O N

Fair efficiency, about a 15-year life, best for high capacity installations

S O D I U M - S U L F U R

Most often used with batteries when a high discharge rate is needed

U L T R A - C A P A C I T O R

25 C O M E T 2 0 1 7

Source: DOE’s Sandia National Laboratory, Energy Storage Systems Program

http://www.sandia.gov/ess/wp-content/uploads/2015/04/EsPositioningHandbook.png

B A TTERY SELECTI O N I S D EP EN D EN T O N D ESI RED

U SE

Lithium-ion is a versatile but costly selection, though prices are dropping

every year

However, battery modules are only one component of cost

Balance of system costs are often approximately equal to the battery

module costs

26 C O M E T 2 0 1 7

BA LA N CE O F SYSTEM B A T T E R Y S T O R A G E S Y S T E M

O N E

P o w e r C o n v e r s i o n S y s t e m

c o n v e r t s e l e c t r i c i t y b e t w e e n

D C a n d A C a s n e e d e d

T W O

T H R E E

E S S C o n t r o l S y s t e m

p r o v i d e s a b i l i t y t o d i s p a t c h

a n d m o n i t o r b a t t e r y s t o r a g e ,

r e a l a n d r e a c t i v e p o w e r

F O U R

A n c i l l a r i e s : H VA C , f i r e

s u p p r e s s i o n s y s t e m ,

i s o l a t i o n p o i n t s , p r o t e c t i o n

r e l a y s a n d m o r e

A l t h o u g h t h e r e a r e m a n y, t h e f o u r m a i n c o m p o n e n t s a r e

B A T T E R Y E N E R G Y S T O R A G E

A battery energy storage system is made of more than just batteries. The rest of the

system is often referred to as “Balance of System” or “BOS”

B a t t e r y M a n a g e m e n t

S y s t e m s e n s u r e p r o p e r

c o n t r o l a n d p r o v i d e s a f e t y

27 C O M E T 2 0 1 7

IN TERCON N ECTION AN D PLAN N IN G

28 C O M E T 2 0 1 7

K i n g sb e r y En e r g y St o r ag e Sy st e m (KB ESS)

D e s i g n i n g t h e U t i l i t y - S c a l e

A r e v i e w o f t h e i n t e r c o n n e c t i o n p r o c e s s a n d t h e t y p e s o f i n t e r c o n n e c t i o n e q u i p m e n t u s e d t o d e s i g n a

s a f e , r e l i a b l e , a n d e c o n o m i c a l d i s t r i b u t e d g e n e r a t i o n f a c i l i t y o n a n A u s t i n E n e r g y d i s t r i b u t i o n c i r c u i t .

K e y G o a l s

E n e r g y S t o r a g e S y s t e m

C o n c l u s i o n s

I n t e r c o n n e c t i o n R e q u i r e m e n t s

D e s i g n O p t i o n s

F i n a l D e s i g n

29 C O M E T 2 0 1 7

Ke y Go a l s E n e r g y S t o r a g e S y s t e m

Safely install, operate, and maintain a utility-scale energy storage system within Austin Energy’s operational and information technology ecosystem

A E E c o s y s t e m

Demonstrate and evaluate the benefits of the Modular Energy Storage Architecture (MESA) open standard.

M E S A B e n e f i t s

Identify and demonstrate distributed energy storage use cases that support power quality and reliability on a feeder with a high penetration of solar generation, energy arbitrage, distribution system efficiency, etc.

U s e C a s e s

Enhance Austin Energy’s ability to design and model the appropriate capacity of energy storage to address distribution system issues caused by solar penetration.

D e s i g n a n d M o d e l i n g

30 C O M E T 2 0 1 7

KB ESS D e t a i l s U t i l i t y - S c a l e

Doosan, serving as the System Integrator, selected the following equipment during the conceptual design phase of the project:

B a t t e r y B a n k Lithium Ion

1.5MW

3.0 MWh

I n v e r t e r MESA compliant

Can act as a voltage source

D i s c o n n e c t E n c l o s u r e Houses the manual disconnect, 480V protection,

network switches, AC distribution panel, and the

auxiliary power meter

31 C O M E T 2 0 1 7

K B- 1 Ci r c u i t Ch a r ac t e r i s t i c s

K i n g s b e r y F e e d e r

Substation with 69kV and 138kV

transmission voltages.

K i n g s b e r y S u b s t a t i o n

Primarily residential customers

C u s t o m e r s

Subject to the elements

Reliable circuit

O v e r h e a d F e e d e r

12.47kV primary;

four-wire multigrounded system

D i s t r i b u t i o n S y s t e m

Approximately 2.5 miles long

# m i l e s l o n g

2.5 MW community PV solar farm

installation adjacent to the Kingsbery

Substation

C o m m u n i t y S o l a r

32 C O M E T 2 0 1 7

I n t e r c o n n e c t i o n Re q u i r e m e n t s

A u s t i n E n e r g y

For this project, we chose to follow the same guidelines that we would give any other customer looking to interconnect onto our distribution system. To begin, we started with the AE Distribution Interconnection Guide. The purpose of this guide is to make sure the design takes the following into account: 1. Safety: The DG must not pose a safety risk

to the general public or to our field crews working on the system

2. Reliability: The interconnection must not compromise the reliability and/ or the service quality of other AE customers

3. Economics: The interconnection must designed in a cost effective manner.

F o r D G S i t e s

33 C O M E T 2 0 1 7

Use of certified DR equipment Potential for unintended islands System protection, fault conditions, and Arc Flash rating

Sy st e m En g i n e e r i n g

I m p a c t S t u d y , P a r t 1

Impacts on voltage regulation using quasi-steady state analysis Impact on AE equipment loading (steady state) Flicker Criteria

D i st r i b u t i o n Pl an n i n g

I m p a c t S t u d y , P a r t 2

34 C O M E T 2 0 1 7

D e si g n Co n st r a i n t s S y s t e m I n t e g r a t o r

U n g r o u n d e d 4 8 0 V S y s t e m Required by inverter manufacturer as the common mode

noise filter would not work with a grounded system

D e l t a t r a n s f o r m e r c o n n e c t i o n Recommended by manufacturer for triplen harmonics

mitigation

A u x i l i a r y P o w e r 480V auxiliary power required to keep the batteries cooled

for warranty purposes

35 C O M E T 2 0 1 7

D e si g n Co n si d e r a t i o n s A u s t i n E n e r g y

I m p e r v i o u s C o v e r Keep site under 1080 square feet to avoid major

development permitting within the Kingsbery Substation.

O p e r a t i n g G u i d e l i n e s Preferred to keep the operating guidelines for this DG facility the

same as the other DG facilities within the AE service area.

A E / S y s t e m I n t e g r a t o r C o n t r a c t Contract did not cover all aspects of the design

P r o j e c t S c h e d u l e / D O E I m p a c t s Funding for the project was tied to meeting milestones set

out in the project schedule

36 C O M E T 2 0 1 7

Sy st e m Co m p o n e n t s M a j o r

O N E

D i r e c t Tr a n s f e r Tr i p

T W O

E R C O T M e t e r i n g

T H R E E

D G i n t e r c o n n e c t

Tr a n s f o r m e r

F O U R

U t i l i t y E x t e r n a l

D i s c o n n e c t s

A m i x t u r e o f e l e m e n t s a r e r e q u i r e d i n t h e d e s i g n o f a

D G i n t e r c o n n e c t i o n

D G I n t e r c o n n e c t i o n “ B i g P i c t u r e ”

While the types of DG facilities may vary, there are basic functions the interconnection

equipment need to perform for a safe, reliable, and economical system. The big picture

is that ERCOT requires EPS metering for systems that generate more than 1MW, a

direct transfer trip will be sent from the feeder breaker to prevent unintentional islanding,

disconnects are necessary in order to keep our field crews safe, and the DG

interconnect transformer plays a crucial role in the stability of the distribution system.

37 C O M E T 2 0 1 7

AE System Engineering

-Protection One-Line -Specify equipment

AE Consultant

-Recloser Settings -Arc Flash analysis -Interconnection Transformer Study

12 .47k V D e si g n

A u s t i n E n e r g y

Doosan

-Battery (LG Chem) -Inverter (Parker) -Disconnect Encl. (Consultant)

AE Consultant

-480V relay settings -Maintenance Settings

48 0 V D e si g n

S y s t e m I n t e g r a t o r

38 C O M E T 2 0 1 7

D e si g n D e c i si o n s 1 2 . 4 7 k V

W i t h a l l o f t h e r e q u i r e m e n t s a n d c o n s t r a i n t s a c c o u n t e d f o r , i t w a s t i m e t o b e g i n t h e d e c i s i o n

m a k i n g p r o c e s s f o r t h e t y p e s o f i n t e r c o n n e c t e q u i p m e n t t o b e u s e d f o r t h i s p r o j e c t

U t i l i t y E x t e r n a l D i s c o n n e c t s

12.47kV: Switchgear fault interrupter vs.

Pole-mounted recloser

480V: Manual disconnect for transformer maintenance

E R C O T - P o l l e d S e t t l e m e n t M e t e r s

Primary metered vs. Secondary metered

C o m m u n i c a t i o n s L o g i c P r o c e s s o r

Location: Substation control house vs. distribution circuit

I n t e r c o n n e c t i o n T r a n s f o r m e r

12.47kV to 480V DG Transformer

Wye-grounded to delta-ungrounded vs.

Delta to wye-ungrounded

39 C O M E T 2 0 1 7

I s l and Mode

IEEE 1547 currently prohibits a DG facility from

controlling the voltage at the point of interconnection.

This may change in the future and AE was interested in

creating a design for the ESS that would also be

capable of islanding in the future.

The main obstacles to creating an island capable design

is having an inverter that could act as a voltage source,

a properly configured interconnect transformer, and a

way for protective relays to be able to detect a fault

when in island mode.

I s l a n d - C a p a b l e D e s i g n

40 C O M E T 2 0 1 7

Primary, 12.47kV: Wye-grounded

Secondary, 480V: Delta (ungrounded)

Advantages:

• No overvoltage for ground faults on KB-1

• *Would provide zero sequence current source in

island mode

Disadvantages:

• Not on contract – long approval process

• Manufacturer lead time

• Unfamiliar equipment for field crews

• *Additional zero sequence current during KB

ground fault

• Could require a neutral impedance to ensure

proper operation of ground fault relaying

Y- D Tr a n s f o r m e r

C u s t o m E q u i p m e n t

Primary, 12.47kV: Delta

Secondary, 480V: Wye-ungrounded

Advantages:

• Spare transformers available

• Simply remove grounding strap to the XO

bushing

• *No source of zero sequence current to impact

the utility ground relay coordination.

Disadvantages:

During the clearing of a ground fault, it is possible

for the ESS to supply KB-1 in an ungrounded

configuration. This could cause overvoltage

conditions for our customers.

Prohibited from using for islanding for a four-wire,

multi-grounded neutral system (IEEE 1547.4)

D - Y Tr a n s f o r m e r

S t a n d a r d E q u i p m e n t

* I E E E I m p a c t o f D i s t r i b u t e d R e s o u r c e s o n D i s t r i b u t i o n

R e l a y P r o t e c t i o n

41 C O M E T 2 0 1 7

I n i t i a l 12 .47k V D e si g n K B E S S

T h i s d e s i g n f e a t u r e d a s w i t c h g e a r t h a t i n c l u d e d a p r i m a r y m e t e r i n g c a b i n e t i n o r d e r t o r e d u c e t h e

e q u i p m e n t f o o t p r i n t . T h i s s w i t c h g e a r, a l o n g w i t h a p r o p e r i n t e r c o n n e c t t r a n s f o r m e r, w o u l d h a v e

a l l o w e d t h e s y s t e m t o b e i s l a n d c a p a b l e .

All components of the KB ESS would reside within the

KB substation.

W i t h i n K B S u b s t a t i o n

System VI switchgear with primary metering cabinet,

remote supervisory control, and a communications

logic processor to transfer trip all KB-1 DG devices.

S w i t c h g e a r

A wye-grounded to delta ungrounded 12.47kV to 480V

transformer was considered in order to act as a zero

sequence current source when in island mode.

D G T r a n s f o r m e r

42 C O M E T 2 0 1 7

43 C O M E T 2 0 1 7

Fi n a l 12 .47k V D e si g n K B E S S

T h i s d e s i g n u t i l i z e d s t a n d a r d d i s t r i b u t i o n e q u i p m e n t a n d k e p t p r o j e c t t i m e l i n e s / b u d g e t s w i t h i n

t h e i r l i m i t s . P l a c i n g t h e E S S i n i s l a n d m o d e w o u l d r e q u i r e a d d i n g e q u i p m e n t i n t h e f u t u r e .

ESS and interconnection equipment will not reside in

the same confined area.

I n s i d e / O u t s i d e o f K B S u b

12.5kA standard DG recloser with additional

communication equipment for transfer tripping.

P o l e - m o u n t e d R e c l o s e r

Standard distribution transformer used (delta to wye-

ungrounded).

D G T r a n s f o r m e r

44 C O M E T 2 0 1 7 Kingsbery Energy Storage System Final Interconnection Design

45 C O M E T 2 0 1 7

CLP

La Loma Community Solar Recloser

La Loma Community Solar Main Bkr

Kingsbery Energy Storage System Direct Transfer Tripping

46 C O M E T 2 0 1 7

CLP

Kingsbery Energy Storage System 480V Direct Transfer Trip

when KB-PCS1 is open via SEL-751A (not shown)

Trip also helped to

dramatically reduce the arc flash incident energy.

47 C O M E T 2 0 1 7

Kingsbery Energy Storage System Protection One-Line

48 C O M E T 2 0 1 7

Syst em Im p ac t s I m p a c t S t u d y , P a r t 1

As expected, the equipment fault

ratings were not exceeded by the

limited fault contributions from an

inverter-based DG.

Fa u l t Ra t i n g s

Completed arc flash analysis on

both the 12.47kV system and the

480V system.

A r c F l a s h

All DER equipment was certified

and suitable for interconnecting.

UL 1741 devices removed the

potential for unintentional islanding.

D ER Eq u i p .

All devices coordinate from the 480V

system up through the KB-1 feeder

breaker.

Co o r d i n a t i o n

49 C O M E T 2 0 1 7

48 0 V A rc Flash Valu es I m p a c t S t u d y , P a r t 1

50 C O M E T 2 0 1 7

D ist r ib u t io n Plan n in g I m p a c t S t u d y , P a r t 2

Voltage changes, rises, and dips

were seen to be less than 1%.

The addition of the ESS did not

overload any distribution lines.

V o l t a g e / O L

KB-123 transformer tap changer

not impacted and remained at the

original tap position each time

the ESS connected to the grid.

T a p C h a n g e r

943.6kVAR will need to be added to

maintain KB-1’s original power factor

k V A R

Will be determined once we know

how often the ESS will connect and

disconnect within a typical one-hour

time frame of operation.

F l i c k e r

51 C O M E T 2 0 1 7

IN STALLATION

52 C O M E T 2 0 1 7

Clockwise, from upper left:

Battery module delivery on-site,

Battery module installation,

AE crews discuss BMS with battery

representative, Completed install,

Electrical connection of battery modules,

Inside the battery container

KB E S S IN S TA LLA TIO N

53 C O M E T 2 0 1 7

Pole-Mounted Recloser

12.47kV/480V Transformer

Primary Metering Cabinet

Disconnect Enclosure

Power Conversion System

K i n g s b e r y En e r g y St o r a g e Sy s t e m

K i n g s b e r y E n e r g y S t o r a g e S y s t e m

Battery Container

54 C O M E T 2 0 1 7

L a L o m a C o m m u n i t y So l a r

55 C O M E T 2 0 1 7

K i n g s b e r y Su b s t a t i o n

K i n g s b e r y En e r g y St o r a g e Sy s t e m 1. 5 M W / 3 M W h

L a L o m a C o m m u n i t y So l a r

2 . 5 M W

56 C O M E T 2 0 1 7

CON TROL & M ON ITORIN G

57 C O M E T 2 0 1 7

IN TEGRA TED CO N TRO LLER K B E S S

S i t e l e v e l c o n t r o l o f f e r i n g 11 o p e r a t i n g m o d e s

R E A L P O W E R Limited Watts Charge/Discharge Peak Power Limiting Load/Generation Following Real Power Smoothing

R E A C T I V E P O W E R Fixed Power Factor Power Factor Correction Volt/VAR

V O L T A G E / F R E Q U E N C Y Dynamic Volt-Watt Automatic Generation Control (AGC) Spinning Reserves

58 C O M E T 2 0 1 7 ARCHITECTURE

Utility-Scale Energy Storage

System

59 C O M E T 2 0 1 7 CO N TRO L H IERA RCH Y

D E R O p t i m i z e r p r o v i d e s b u l k p o w e r s y s t e m c o n t r o l

C o n n e c t s d i r e c t l y t o A D M S a n d D a t a H i s t o r i a n

I n p u t s i n c l u d e m a r k e t s i g n a l s , f o r e c a s t s , g r i d d a t a

C i r c u i t M a n a g e r p r o v i d e s c o n t r o l a t d i s t r i b u t i o n c i r c u i t l e v e l

P r o v i d e s s u p p o r t f o r v o l t a g e c o n t r o l a l g o r i t h m

I n t e l l i g e n t C o n t r o l l e r p r o v i d e s l o c a l c o n t r o l f o r a s i n g l e e n e r g y s t o r a g e s i t e

D e s i g n e d t o t a l k t o o t h e r g r i d d e v i c e s

T r i e s t o m a k e a s m a n y d e c i s i o n s a s i t c a n l o c a l l y

DERO

DG- IC

DG- CM

60 C O M E T 2 0 1 7

V o l t a g e S u p p o r t f o r T r a n s m i s s i o n

P e a k L o s s A v o i d a n c e T r a n s m i s s i o n

C o n s t r a i n t A v o i d a n c e

S o l a r V a r i a n c e W i n d V a r i a n c e

P e a k L o a d R e d u c t i o n ( 4 - C P ) D a y - A h e a d E n e r g y A r b i t r a g e R e a l - T i m e P r i c e D i s p a t c h

F a s t F r e q u e n c y R e s p o n s e E m e r g e n c y R e s p o n s e S e r v i c e R e g u l a t i o n U p / D o w n

D E R C o n t r o l S y s t e m

R e n e w a b l e I n t e g r a t i o n

E n e r g y M a r k e t

O p e r a t i o n s

A n c i l l a r y S e r v i c e s

D i s t r i b u t i o n O p e r a t i o n s

S u p p o r t

T r a n s m i s s i o n O p e r a t i o n s

S u p p o r t

C u s t o m e r V a l u e

C o n g e s t i o n M a n a g e m e n t V o l t a g e S u p p o r t H a r m o n i c s L o s s A v o i d a n c e P o w e r F a c t o r C o r r e c t i o n

D e m a n d C h a r g e R e d u c t i o n

B a c k - u p P o w e r T i m e o f U s e

D E R VALU E AP P LIC ATIO N S

61 C O M E T 2 0 1 7

V o l t a g e S u p p o r t f o r T r a n s m i s s i o n

P e a k L o s s A v o i d a n c e T r a n s m i s s i o n

C o n s t r a i n t A v o i d a n c e

S o l a r V a r i a n c e W i n d V a r i a n c e

P e a k L o a d R e d u c t i o n ( 4 - C P ) D a y - A h e a d E n e r g y A r b i t r a g e R e a l - T i m e P r i c e D i s p a t c h

F a s t F r e q u e n c y R e s p o n s e E m e r g e n c y R e s p o n s e S e r v i c e R e g u l a t i o n U p / D o w n

D E R C o n t r o l S y s t e m

R e n e w a b l e I n t e g r a t i o n

E n e r g y M a r k e t

O p e r a t i o n s

A n c i l l a r y S e r v i c e s

D i s t r i b u t i o n O p e r a t i o n s

S u p p o r t

T r a n s m i s s i o n O p e r a t i o n s

S u p p o r t

C u s t o m e r V a l u e

C o n g e s t i o n M a n a g e m e n t V o l t a g e S u p p o r t H a r m o n i c s L o s s A v o i d a n c e P o w e r F a c t o r C o r r e c t i o n

D e m a n d C h a r g e R e d u c t i o n

B a c k - u p P o w e r T i m e o f U s e

D E R VALU E AP P LIC ATIO N S

62 C O M E T 2 0 1 7

D ER VA LUE STA CKIN G

A PPL I CA TI O N B EN EFI T

MA

RK

ET

U t i l i t y P e a k L o a d R e d u c t i o n

P o t e n t i a l f o r h i g h e c o n o m i c v a l u e

D a y - A h e a d E n e r g y A r b i t r a g e

I n c r e a s e f l e x i b i l i t y o f d a y - a h e a d p l a n n i n g

R e a l - T i m e P r i c e D i s p a t c h

H i g h v a l u e p e r e n e r g y t h r o u g h p u t

RE

LIA

BIL

ITY

V o l t a g e S u p p o r t R e d u c e l o s s e s a n d i n c r e a s e P V g e n e r a t i o n

D i s t r i b u t i o n C o n g e s t i o n

M a n a g e m e n t

I n c r e a s e l o c a l g r i d r e l i a b i l i t y

CU

ST

OM

ER

D e m a n d C h a r g e R e d u c t i o n

C u s t o m e r a n d s y s t e m b e n e f i t

M A R K E T V A L U E Economic dispatch based on market products and services

R E L I A B I L I T Y V A L U E Benefits to the grid in the form of real-time support or deferred

build

C U S T O M E R V A L U E Reduction in bill charges or increase in reliability support provided

directly to the customer

63 C O M E T 2 0 1 7

D ERO A PPL I CA TI O N

KB

ES

S

MU

ES

S

Ag

g. P

V/E

SS

(c

om

me

rcia

l)

Ag

g. P

V/E

SS

(r

esi

den

tial

)

So

lar

PV

(r

esi

den

tial

)

MA

RK

ET

U t i l i t y P e a k Lo a d R e d u c t i o n

D a y - A h e a d E n e r g y A r b i t r a g e

R e a l - T i m e P r i c e D i s p a t c h

RE

LIA

BIL

ITY

V o l t a g e S u p p o r t

D i s t r i b u t i o n C o n g e s t i o n M a n a g e m e n t

CU

ST

D e m a n d C h a r g e R e d u c t i o n

64 C O M E T 2 0 1 7

D ERO RESO URCE PA GE

65 C O M E T 2 0 1 7

Illustrative

Discharging threshold

D A Y- A H EA D EN ERGY A RBITRA GE

66 C O M E T 2 0 1 7 D A Y- A H EA D EN ERGY A RBITRA GE

Interval Ending Deployed Energy Actual Energy SoC Scheduled SoC Actual

Deployed vs Actual

Value Generation

Interval Ending Energy Price Internal Revenue Accumulated Revenue

Ener

gy (M

Wh)

Pr

ice

($/M

Wh)

Reve

nue

($)

Stat

e of

Cha

rge

(%)

charging

discharging

68 C O M E T 2 0 1 7

L o a d s e r v e d b y l o c a l s o l a r ( % k W h )

Sy s t e m L C O E t o

s e r v e l o a d

( $ / k W h )

B A SE L I N E N o n e w S H I N E S a s s e t s i n s t a l l e d

B a s e l i n e + A l l A s s e t s + H o l i s t i c C o n t r o l s

B A SE L I N E + A L L A SSE T S N o c o n t r o l s

B A SE L I N E + A L L A SSE T S A u t o n o m o u s c o n t r o l s

SH I N E S So l u t i o n

+ SO L A R / ST O R A G E A SSE T N o c o n t r o l s

W i t h c o n t r o l s

Δ S y s t e m LC O E S H I N E S

Δ S y s t e m LC O E B A S E

H O LIS TIC VALU E o f D E R

69 C O M E T 2 0 1 7

Init ial Capacit y YEAR 1 YEAR 2 YEAR 3 …

Warrantied Capacity [%] 100% 94% 89% 85%

Adjusted Warrantied Capacity [%] -- 94% 88% 82%

Average SOC Reduction -- -1% -- -2%

Average Temp Reduction -- -- -1.5% --

Annual Energy Reduction -- -- -- -1%

Annual DC Charge/Discharge

Reduction -- -- -0.5% --

Cumulative Reduction 0% -1% -3% -6%

Adjusted Warrantied Capacity [%] 100% 93% 86% 79%

W A RRA N TY B a t t e r y E n e r g y S t o r a g e

B a t t e r y m o d u l e s c o m e w i t h a e x p e c t e d d e g r a d a t i o n c u r v e , u s u a l l y u n d e r w a r r a n t y

A n i n n o v a t i v e a p p r o a c h p r o v i d e s a d d e d f l e x i b i l i t y, r e c o g n i z i n g m o r e t h a n o n e o p e r a t i o n a l u s e - c a s e

Capacity reduction if annual average state of charge

exceeds a predefined threshold

A V E R A G E S O C

Capacity reduction if average hourly ambient temperature

falls outside a tolerance band

Larger reduction as tolerance bands deviate further from

acceptable range

A V E R A G E T E M P E R A T U R E

Capacity reduction if cumulative annual discharge energy

exceeds a predefined threshold (varies by year)

Also includes limits on cycles/day and mandatory rest times

A N N U A L E N E R G Y

Capacity reduction if annual average DC charge/discharge

power exceeds a kW threshold per battery rack

A N N U A L D C C H A R G E / D I S C H A R G E

70 C O M E T 2 0 1 7

CON CLUSION S

71 C O M E T 2 0 1 7

O n g o i n g Su p p o r t K i n g s b e r y E S S

T h e f o l l o w i n g w o r k g r o u p s w i l l c o n t i n u e t o o p e r a t e a n d m a i n t a i n t h e e n e r g y s t o r a g e s y s t e m :

D i s t r i b u t i o n C o n s t r u c t i o n

T r o u b l e s h o o t e r s

S y s t e m E n g i n e e r i n g

E l e c t r i c a l M a i n t e n a n c e

C o n t r o l E n g i n e e r i n g

C o m p l e x M e t e r i n g

O & M S e r v i c e s

P r o g r a m S u p p o r t

E n e r g y M a r k e t O p e r a t i o n s

72 C O M E T 2 0 1 7

P r o j e c t Tak e aw ay s K i n g s b e r y E n e r g y S t o r a g e S y s t e m

A u s t i n E n e r g y i s n o d i f f e r e n t f r o m o t h e r u t i l i t i e s t h a t l o o k t o s t a n d a r d i z e e q u i p m e n t a n d p r o c e s s e s a s

m u c h a s p o s s i b l e . H e r e a r e a f e w t h i n g s w e l e a r n e d a l o n g t h e w a y f r o m t h i s n o n - s t a n d a r d p r o j e c t :

Cu l t u r e M a t t e r s

Make a concerted effort to

educate the team about

DERs and how they help

both our customers and our

utilities. There must be buy

in for a successful project.

Ex p e r t i se D e p t h

Distribution engineering

does not typically require

the skillset required for a

project like SHINES. Get

the expertise and build a

“bench” to support.

P r o j e c t Sc r u t i n y Q A / Q C

Quality assurance and

quality control are

extremely difficult when

dealing with multiple

consultants and

workgroups.

I n t e r c o n n e c t Gu i d e

Spend the time to develop

and train your teams on the

interconnection guide.

Project schedules and

contracts require immense

scrutiny to avoid delays and

less than optimal designs.

73 C O M E T 2 0 1 7

GET IN TOUCH

J o s h . C o n t r e r a s @ a u s t i n e n e r g y. c o m

w w w. a u s t i n e n e r g y. c o m / g o / S H I N E S

L i s a . M a r t i n @ a u s t i n e n e r g y. c o m

JOSH CONTRERAS LISA MARTIN AUSTIN ENERGY

SMART GRID & SYSTEM OPERATIONS

.

top related